Using user-defined Receive PDOs with the MAC00-FCx modules

From firmware version 2.2 Beta 1, the Receive PDO24 can be configured for different data formats.
This allows one 16-bit motor register and one 32-bit motor register to be received via PDOs.

Make sure to upgrade to the V2.2 firmware in MacTalk as shown below. The firmware version of
the MAC motor is less important — any version released after the summer 2006 should work well
for CANopen.

Firmware Update n

Select firmware [~ Show all flles
| Name | ‘Yersion | Hardware |

MAL Firrnvware 713 MAC50-14
aC00FC_TEST 2.2 Cx

Current version:

Loading version:

Status: Done

Wiew Relaze notes | Start | Exit

[Fois5

The setup is illustrated with the help of a screenshot from the JVL utility CANopen Explorer:

JVL CAMopenExplorer ¥2.10

Peak Can interface: Mode 1D m Sy Tirne
Fﬁgﬁr&:g;faa'u 50 Enable Sunc | Stap ‘
Copyright (C] 13952005 by Speed |S00 Ko ad Guard time
PEAK.-Systemn Technik GrbH, D armstadt EDS - File ,W Load =00 Enable guarding | Stop |
s00
+- 0x1415 Receive PDO 22 Communication Parameter j Message D | Length | Data | Period | Count |
+- 0x1615 Receive PDO 22 Mapping Farameter w704 1 on 8163 2
—|- 0x1416 Receive PDO 23 Communication Parameter
Sub Ox00 Mumber of Entries = 2 [0x2]
Sub 0«07 COB-ID = 1028 [04404)
Sub 0402 Tranzmizgion Type = 265 [04FF)
+- 0x1616 Feceive PDO 23 Mapping Farameter
—|- 0x1417 Receive PDO 24 Communication Parameter
Sub Ox00 Mumber of Entries = 2 [0x2]
Sub 0«07 COB-ID = 1284 [04504)
Sub 0402 Tranzmizgion Type = 265 [04FF)
+- 021617 Receive PDO 24 Mapping Parameter
+- Transmit PO Setup
=+ Manufacturer Specific
+ 022010 Exgcute commatd
= 0x2011 Module parameters
Sub 0=00 MiOf0bjects = 8 [0=8]
Sub 0=07 Input status = 0 [0=0]
Sub 0x02 Output = 0 [0x0) lser SO0 List
Sub 0x03 Mator statuz = 0 [0=0)
Sub 0x04 Last rmotor eror = 0 [0x0) R | Mame | Inde: | Sub | Walue -
Sub 0x05 Output setup = 0 (0x0] ki COB-D 0x1814 1 389 (0x185)
Sub 0408 Input Active Level = B3 [0x3F] $ Ex:g: ::m:: g:} g]: g 1 B[“[EH i
Sub 007 Input setup = 0 0:0) W CORID 01414 1 17 [0x205)
ST UL W COBID 0814 1 390 0185
Sub 009 Reserved! = 0(0x0) Fi COB-ID 01814 1 369 [0x185)
Sub 004 Reserved? = 0 [0=0] i Ewent timer 0«1815 5 2[0=2]
Sub 0x0B Rx=POO24Rcv1BRitSelect = B5 [Ok41) o Cog-ID 041815 1 G45 [0285)
Sub 00C RxPDO24R cv32BitSelect = 0[0x0] o Ewent timer 0:1815 5 16 (0210)
Sub 0x0D THPDO24R oyl EBitG elect = 0 [0x0) $ Egg::g 3:};}3 1 233[0[5;*3?5]
Sub 0x0E T=PDOZ4Rcyv32BitS elect = 0 [0x0) W CORD 0x1414 1 16 (0x10] -
Sub 0=0F RxPDO24Rcv1EBitDat 02)
Sub 0«10 R=PDOZ4R cyv32BitData = BROST (0410203 N | | 4
—|- 0x2012 Motar paraneters Save ser SD0s... ‘ Fead User S0z | ‘wihite User SD0s ‘
Sub 0=00 Muraber of entries = 253 [0<FD] ﬂ

Send MMT command to node: Load User SDO:... Close
Start Pre-operational Stop Rezet ‘ |D 021 |F'DD4 J < Send REPDO
e -

Object 0x2011, SubIndex 0x0B and SubIndex 0x0C are used to select which motor register will
receive the values written with RxPDO24.

Three basic formats are possible.

When both sub-indices are zero (default after power-up), RxPD0O24 will work in backwards
compatible way, with a length of one byte, that sets the modules digital outputs.

When Sublndex 0x0B is non-zero, but SubIndex 0x0C is zero, the length of the PDO must be 4
bytes, and the first byte is used to set up the module outputs. The second byte is not used. The third
and fourth byte hold the 16-bit value (with the low byte first), that will be written to the motor
register number 2..250, selected by SubIndex 0x0B. For example, writing the value 65 (decimal) to
Object 0x2011, SubIndex 0x0B will cause data written with Receive PD0O24 to be saved to motor
register 65, V1.

When Sublndex 0x0C is non-zero, the length of PDO24 must be 8 bytes. The first four bytes work
as described above, except that the 16-bit data will not be written to any motor register is SubIndex
0x0B is zero. Bytes 4, 5, 6 and 7 (lowest bytes first) are written as a 32-bit value to the motor
register number stored in Sublndex 0x0C. For example a value in SubIndex 0x0C of 49 (decimal)
will cause the last four bytes in Receive PDO 24 to be written to motor register 49, P1.

It is not necessary to change the PDO mapping objects for this to work. Also the firmware does not
modify the mapping objects at index 0x16xx.

The new Sublndices 0xOE and 0xOF are generally not used in production, but can be used for
development. These hold the latest 16-bit and 32-bit values received on RxPDO24 — before they are
written to the basic motor.

Note that the 32-bit value is written to the basic motor before the 16-bit value, if both are used in
the same PDO. This allows operations like updating a 32-bit Position register, and then execute a

FastMac command immediately after that by writing the FastMac command value to the Command
register Reg211.

<place description of user-defined TxPDOs here>

/This document was last updated on 3™ April 2009, NJG.

	Using user-defined Receive PDOs with the MAC00-FCx modules

