
Modbus in MAC400/800

The modbus implementation in MAC400/800 is a subset of the Modbus Specification V1.1b. This
standard can be downloaded free of charge from the website www.modbus.org or http://modbus-
ida.org.

Also you may want to download and read the Modbus Serial Line Protocol and Implementation
Guide V1.02, that describes many aspects of the signals, and the details of using and inter-
connecting RS-422, two-wire RS-485 and four-wire RS-485.

The serial communications lines normally used for communications between the basic motor and
one of the intelligent MAC00-XX modules can be configured to use the Modbus protocol instead of
the standard FastMac protocol.

The MAC400/800 firmware supports the two command types Read Holding Registers (3) and Write
Multiple Register (0x10). All other commands will result in Exception replies (exception type 1,
Illegal Function).
Use firmware v1.31 or later for MAC800 and firmware v1.03 or later for MAC400.

All registers can be read as well as written over Modbus, but the number of registers per transfer is
limited to 16 16-bit registers or 8 32-bit registers. Contact JVL if more registers are needed in a
single transfer.

All registers in the MAC400/800 motors are 32-bits. To comply with the clean 16-bit Modbus
standard, a 32-bit register must be read or written as two consecutive 16-bit registers.
The register address mapping follows the normal documented register numbers but the address
field, but must be multiplied by two, so to read or write register 3, P_SOLL, use the address 6.

The setup of the Modbus protocol is part of the general setup of the UART (serial port chip).
The motor default uses the FastMac protocol at 19200 baud, No parity, 8 data bits, 1 stop bit.
All fields in bits 8 to 31 depend on the chosen protocol, and currently are used only with Modbus.

Register 213, UART1_SETUP, supports the following bit-fields (default values marked with *):

Bits Values Description
3:0 0=9600,

1=19200, *
2=38400,
3=57600,
4=115200,
5=230400,
6=444444,
7=1000000 baud

Basic baud rate in bits per second.
Note that values 6 and 7 are non-standard baud rates, that
are intended to be used between two or more
MAC400/800 motors only.

7:4 0=FastMac, *
1=Modbus (motoraddress),
2=Modbus (address 254)

Protocol to use – select 1 for Modbus.
The option to use Modbus address 254 (instead of the
motor address) is intended for use with the JVL MAC00-
xx interface modules.

9:8 0=5, Number of data bits in a byte. Modbus always uses 8 bits

http://www.modbus.org/
http://modbus-ida.org/
http://modbus-ida.org/
http://modbus-ida.org/docs/Modbus_over_serial_line_V1_02.pdf
http://modbus-ida.org/docs/Modbus_over_serial_line_V1_02.pdf

1=6,
2=7,
3=8 data bits

per byte.

10 Must be zero
13:11 0=Even,

1=Odd,
2=Space,
3=Mark,
4 or 5=None
6 or 7=Multidrop

Parity scheme. Modbus should use either Even or Odd
parity for maximum error checking. Multidrop parity is
not supported by Modbus, but a non-standard multi-drop
operation is supported, see bits 20 and 21.

15:14 0=1,
1=1.5,
2=2 stop bits

Number of stop bits to use.

19:16 0..15 Guard-time. Number of idle bit times between bytes
during transmission. These can be seen as additional stop
bits. Normally this value is set to zero, but with some
UARTs that have trouble synchronizing on long
telegrams, this value can be set to non-zero. Setting this
value non-zero may help visually separating bytes on an
oscilloscope.

20 0=Multi-drop
1=Point-to-point

Selects if the motor should drive differential transmitter
line-pair A+ and A- at all times (=1) or only when it is
actually transmitting bytes (=0).
When only one (bus slave) motor is on the line, like
regular RS422 4-wire operation, use the value of 1 for
point-to-point. This can save pull-up and pull-down
resistors on some systems.
When more than one slave motor is on the line, in RS485
operation, use the value of 0 for multi-drop mode, so
only one motor will drive the line at any time, and
release the line up to 50 us after the last byte has been
transmitted.
You must use multi-drop mode if more than one slave
motor is on the line – otherwise the electronics will be
overloaded, and may fail permanently. This will not be
covered by the guarantee.

21 0=Half duplex
1=Full duplex

Modbus is generally specified as a half-duplex protocol,
so there will only be traffic in one direction between
client and a server at a time. For very advanced
operation, it is possible to use full-duplex operation to
optimize communication speed, but at the cost of more
difficult error checking. Full duplex can be used only
with strict RS422 operation and four-wire RS485. For
two-wire RS485 operation, use half duplex.

23:22 0..3 Reserved for future use
25:24 0=Passive server,

1=Active server with
timeout monitoring.

For normal operation where a PC or PLC talks to one or
more motors, set this to zero.
If set to One, the motor will set a Communications Error

2=Client (bus master)
operation to transfer
requested position and
monitor errors.

and stop if it has not received a valid write request to
P_SOLL within the timeout selected in bits 31:28.
If set to two, the motor will write a position and read the
error/status register of the client at address 254 once per
sample period. If not both write acknowledge and
error/status data is received within the timeout specified
in bits 31:28, the motor will set a Communications error
and stop.

27:26 Reserved
31:28 Timeout in milliseconds.

The firmware will use only the power-up value of register 213, so for any changes to take effect, do
a Save in Flash operation.

Read Holding operation:

Request: <adr>, 0x03, RegHi, RegLo, CountHi, CountLo, CRC1, CRC2
Offset: [0] [1] [2] [3] [4] [5] [6] [7]
Reply: <adr>, 0x03, #Bytes, Reg0Hi, Reg0Lo, Reg1Hi, Reg1Lo, CRC1, CRC2

Example to read P_IST from motor with address 1, values in decimal:
1, 3, 0, 20, 0, 2, NN, MM (NN and MM are the CRC-16 bytes)

Write Multiple Register operation:

Request: <adr>, 0x10, RegHi, RegLo, CountHi, CountLo, NBytes, Val0Hi, Val0Lo, ..., CRC1, CRC2
Offset: [0] [1] [2] [3] [4] [5] [6] [7] [8]
Reply: <adr>, 0x10, RegHi, RegLo, CountHi, CountLo, CRC1, CRC2

Example to write P_SOLL to motor with address 1, values in decimal:
1, 16, 0, 6, 0, 2, 4, bb, aa, dd, cc, NN, MM (NN and MM are the CRC-16 bytes)

This would write a 32-bit hexadecimal value of ddccbbaa – note the byte-packing.

