

 Interconnection of inverters and servocontrollers

 on the CAN BUS

stop
return

star t
enter

VAL

Hz

stop
return

star t
enter

CTRL

 min-1

stop
return

star t
enter

VAL

Hz

CTRL

 min-1

 Data transfer protocol

 EN

 CAN BUS data transfer protocol

applicable to Inverters of series
SMARTDRIVE VF1000 S/M/L

Servocontrollers of series
MASTERDRIVE MC6000/7000

 Date: March 1999

 ID no.: A047.22B.1-00

 We reserve the right to make technical changes.

 Table of contents

1 General introduction..7
1.1 System requirements... 7

1.2 User level in operation over CAN bus .. 7

1.3 Further documentation .. 7

1.4 General information on the structure of a CAN network....................... 8
1.4.1 Multimaster capability ..8
1.4.2 Access rights ...8
1.4.3 Size of identifiers ...9
1.4.4 Telegram structure ..9
1.4.5 Time response...9
1.4.6 Transmission speeds...10

1.5 CAN protocol for LUST drives... 10
1.5.1 System states ..11
1.5.2 Device states ...11
1.5.3 Device control ..11
1.5.4 Control functions..12
1.5.5 Parameter channel ..13
1.5.6 Error messages ...14
1.5.7 Watchdog for network monitoring..14

2 Installation..15
2.1 Electrical connection ... 15

2.2 Controller enable (ENPO) .. 15

2.3 Assignment of device address by connector coding.......................... 15

3 Commissioning and configuration16
3.1 Presets for control over CAN bus... 16

3.2 Commissioning sequence... 16

3.3 Commissioning instructions... 17

3.4 Data handling ... 17
3.4.1 Saving settings ..17
3.4.2 Restoring factory defaults..17

4 Setting the device parameters18
4.1 VF1000 parameters for bus operation .. 18
4.1.1 82-SIOA - Device address for interface operation...18
4.1.2 40-TCAN - Sampling time monitoring..18
4.1.3 37-BCAN - CAN baud rate ..18
4.1.4 90-FCAN - CAN function selector..19
4.1.5 60-ACAN - Analog output ..20

4.2 MC6000/MC7000 parameters for bus operation 21
4.2.1 492-CACNF - CAN configuration .. 21
4.2.2 491-CACTR - Control word ... 21
4.2.3 490-CASTA - Status word... 21
4.2.4 409-BUTWD - Bus watchdog time in ms... 21
4.2.5 486-BUTCD - Maximum permissible cycle deviation relative to master.................. 21
4.2.6 411-BUTCY - Bus sampling time .. 22
4.2.7 487-BUTCS - Sampling time of status message relative to "BUTCY" 22
4.2.8 488-BUSYE - Activating/deactivating synchronization .. 22
4.2.9 493-CAADR - CAN bus device address.. 22
4.2.10 489-CABDR - CAN bus baud rate... 22
4.2.11 Automatic intervention in parameter setting of MC6000 ... 23

4.3 Representation of parameter data... 24

4.4 Representation of parameter number ... 28

4.5 Telegram execution and verification... 29

4.6 Parameter channel ... 30

4.7 Field parameters (MC7000 only).. 32
4.7.1 Access to individual field parameters .. 32
4.7.2 Access to field range... 33
4.7.3 Reading field parameters .. 34
4.7.4 Reading string parameters.. 34
4.7.5 Writing string parameters .. 35

4.8 Handshake for downloading parameter data sets on the
MC6000/MC7000 servocontroller... 37

5 Control and reference input ... 39
5.1 System states ... 39

5.2 Device states... 39

5.3 Device control... 40
5.3.1 Terminal emulation.. 40
5.3.2 DRIVECOM state machine ... 40
5.3.3 Control word.. 41

 5.3.3.1 Device control commands... 41

5.4 Device status .. 42
5.4.1 Terminal emulation.. 42
5.4.2 Status word and device states .. 42

 5.4.2.1 Device states... 42

5.5 Identifiers .. 43
5.5.1 Selective transmissions... 43
5.5.2 Broadcast transmissions ... 43
5.5.3 Station logon ... 43
5.5.4 System start/stop... 44
5.5.5 Control functions ... 44

 5.5.5.1 Control in Speed and Torque Control modes.. 46
 5.5.5.2 Control in MC7000 modes: ... 47
 5.5.5.3 Control word to control MC7000 POSMOD, electronic gearing and
stepper motor interface ... 48

5.5.6 Control mechanisms, MC7000 POSMOD... 49
 5.5.6.1 Control enable... 49
 5.5.6.2 Automatic enable and start of sequence program................................. 49
 5.5.6.3 Feed hold and update ... 49

 5.5.6.4 Jog+ and jog-...49
 5.5.6.5 Program number..50
 5.5.6.6 Reference run number...50
 5.5.6.7 Table index ..50
 5.5.6.8 Flags and variables..51

5.5.7 Status messages ...52
 5.5.7.1 Inverter status messages...52
 5.5.7.2 Servodrive status messages in modes: Speed and Torque Control......53

5.5.8 Status word for control of POSMOD over CAN ...54

6 Response to device fault...56
6.1 Error messages .. 56

6.2 Acknowledgment of error messages.. 58

7 Examples..59
7.1 Activation of a VF1000 frequency inverter ... 59

7.2 Activation of an MC7000 in Speed Control mode 61
7.2.1 Terminal emulation control mode ..61
7.2.2 Control mode: DRIVECOM state machine ..62

7.3 Example: MC7000 POSMOD activation... 65

7.4 Loading and deleting the positioning program of the positioning and
sequence control ... 67

7.5 Example: Activation in "Electronic Gearing" mode 68

 Appendix A: Glossary of terms

 CAN bus data transfer protocol 7

1 General introduction

 This CAN bus documentation is applicable to inverter of the VF1000 series and all servocon-
trollers of the MASTERCONTROL series. The telegram structures of each of the two series are
very similar, and so are documented together here. Both series can be operated together in a
network.

 Where the term "device" is used in general terms in the following, it refers both to frequency
inverters of the SMARTDRIVE VF1000 series and to all servocontrollers of the
MASTERCONTROL MC6000/MC7000 series.

 The term "master" as used in the following designates a higher-order controller which or-
ganizes the bus system.

1.1 System requirements
 Any system with a CAN interface is suitable. No requirements are set out in terms of proces-
sor speed, as the timeout monitoring functions on the devices can be adapted to the respec-
tive processor performance.

1.2 User level in operation over CAN bus
 The CAN BUS interface always operates on the device at a relatively high user level. This
means that parameters are accessible which cannot be accessed on the KEYPAD . Some of
the parameters at those user levels are service parameters, and are not documented in the
Operation Manuals of the individual devices.

Note: Unintentional write operations to such parameters may severely impair the
functioning of the device!

1.3 Further documentation

• Parameter description of the relevant drive unit

• ISO 11898, Road Vehicles, Interchange of digital information - Controller Area Network
(CAN) for high-speed communication

• CiA/DS20x : CAN Application Layer for Industrial Applications

• CiA/DS 102-1 : CAN Physical Layer for Industrial Applications - Part 1: Two Wire
Differential Transmission

 8 CAN bus data transfer protocol

1.4 General information on the structure of a CAN network

1.4.1 Multimaster capability
 A CAN network has multimaster capability - that is, any station can independently send mes-
sages on the bus which can be received by any other station on the bus.

MasterMaster

MasterMaster

 Typically, however, transmissions are exchanged between two stations on the bus.

 The basic rule is: Any one can evaluate the information from an identifier for its own ends.
But only one station can have transmission rights for each identifier.

 Each transmission is assigned a priority by selection of the identifier for that transmission.
The priority is antiproportional to the identifier number - that is, a rise in the significance of the
identifier results in fall in the priority of the transmission. Monitoring of the priorities and as-
signment of the access rights on the bus is controlled on the hardware side by the CAN con-
trollers.

1.4.2 Access rights
 Access rights to the bus where a number of stations are accessing it simultaneously are as-
signed by checking the priorities of the identifiers. The identifier with the lowest significance
has the highest priority, and is able to continue its transmission in the event of a conflict.

 Example of arbitration:

 Station 1 Station 1 continues its

transmission without
interruption.

 Station 2 Station 2 loses

*(Dominant bit of sta-
tion 1 overwrites reces-
sive bit of station 2)

 *
 Signal on
CAN bus

 *

 CAN bus data transfer protocol 9

1.4.3 Size of identifiers
 The size of the identifiers corresponds to the standard format, i.e. 11-bit identifiers. The
’Extended’ format is not supported.

1.4.4 Telegram structure
 The CAN bus is extremely well suited to the transfer of small data volumes and control se-
quences. On the CAN bus up to eight data bytes can be transmitted in one transfer.
 Structure of a data frame:

 Number
of bits

 1 bit
 A

 11 bits
 B

 1 bit
 C

 6 bits
 D

 0....8
bytes
 E

 15 bits
 F

 1 bit
 G

 1 bit
 H

 1 bit
 I

 7 bits
 J

 > 3 bits
 K

• A START OF FRAME

• B IDENTIFIER (Arbitration)

• C REMOTE TRANSMISSION REQUEST BIT (Arbitration)

• D CONTROL

• E DATA

• F CYCLIC REDUNDANCY CODE

• G CYCLIC REDUNDANCY CODE DELIMITER

• H ACKNOWLEDGE SLOT

• I ACKNOWLEDGE DELIMITER

• J END OF FRAME

• K INTERFRAME SPACE

 Apart from ranges B, C and E, the CAN controller independently controls the status of the
bits. The ranges B, C and E are determined by the user protocol.
 B contains the transmission identifier.
 With flag C an automatic checkback of the transferred protocol can be requested on the bus.
This mode is not applied in our devices, and must be 0.
 All other protocol definitions relate to range E.

1.4.5 Time response
 For the control telegrams defined response times of 8 ms for inverters and 1 ms for servos
are set.
 For status messages a sampling time of 80 ms is defined for inverters; for the servos the
sampling time can be set as desired by way of a parameter.

 For the parameter channel there may be different response times, because the processing
runs at a low priority in the device.

 The following table shows the times for the parameter channel:

 Series Response time with KEYPAD Response time without KEYPAD

 MASTERCONTROL

servocontrollers
 1..30 ms 1..25 ms

 VF1000 inverter series 1..60 ms 1..30 ms

 10 CAN bus data transfer protocol

 Exceptions:
1. If a 1 is entered in device parameter 04-PROG (for servos) or 71-PROG (for the VF1000),

the device overwrites all the parameter settings with its default value. In this case the reply
telegram is only sent when the complete parameter list has been reinitialized. This opera-
tion may take up to 10 seconds depending on the device.

2. During reading of the SMARTCARD no communication with the device is possible over the
CAN bus. This condition may last up to 10 seconds depending on the device.

3. If an error state is acknowledged over the CAN bus, a device restart may result. For more
detailed information on this subject refer to the section headed "Response to device fault".

1.4.6 Transmission speeds
 The CAN bus can be operated at the following transmission speeds:

 Transmission speed Maximum line length
over the entire

network
 0 1 MBaud 40 m
 1 800 KBaud 50 m
 2 500 KBaud 100 m
 3 250 KBaud 200 m
 4 125 KBaud 450 m
 5 75 KBaud 770 m
 6 50 KBaud 1000 m
 7 25 KBaud 1000 m

 However, when selecting the transfer rate it must be ensured that the line length does not
exceed the permissible line length for that transfer rate (cable length in device of approx.
30 cm must be taken into account).

 The following factors influence calculation of the permissible line length:

• Propagation time of the signal on the line

• Signal propagation time of the optocouplers

• Signal propagation time of the gates

 The line length values specified in the Operation Manuals for the VF1000, MC6000 and
MC7000 devices already allow for the signal propagation times. For the control a signal
propagation time from the bus connector to the CAN controller of max. 80 ns is assumed.
If these control values are exceeded, the transfer rate must be reduced by at least one
increment!

1.5 CAN protocol for LUST drives
 The CAN protocol for LUST drives permits integration of the device in a CAL network. The
identifiers are assigned in the devices by setting of the device address.

 After power-up the device responds cyclically with its "logon identifier". From that identifier the
higher-order controller can identify which devices are connected to the bus and which ad-
dresses have been assigned for the devices.

Note: Operation of two devices with the same address on the bus is not permitted.

 CAN bus data transfer protocol 11

 Once a device has been addressed by the controller with an identifier applicable to that de-
vice, the device switches to status message send. As a result the controller detects that the
device is connected to the network and is now ready for control and parameter-setting. For
control of the devices, a protocol for selective control of each drive is available.

 For synchronized starting/stopping of all drives a broadcast telegram is available.

1.5.1 System states
 The "system state" describes the status of the overall bus system. The following system
states are currently supported:

• System Stop
After power-on each device is in the System Stop state. In this state parameters can be
set over the bus, or control commands and reference values can be transmitted to the in-
dividual devices. The control commands and reference values are only stored however
(1 reference value / 1 control command) and are only executed in the system state
System Start.

• System Start
System Start is the normal operating state. The devices can be controlled by way of their
selective control commands. If control commands were transmitted to the devices during
System Stop, they are only executed on transition to System Start. This behavior allows
the individual devices to be preset before the overall system is up and running. Then, with
System Start all the devices receive their start command absolutely synchronously.

1.5.2 Device states
 In contrast to the system state, which describes the status of the overall bus system, the
device states in the various devices of a bus system may differ.
 The device state is determined, firstly, by the selective control commands over the bus and,
secondly, by means of information from the respective process.
 For example, an error in an application results in a change of device state.
 The devices run a so-called state machine, which assigns defined responses to events for
each state.

1.5.3 Device control
 There are two different modes of controlling the devices over the CAN bus.
 In the first control mode the control terminal function of the drives is emulated. The terminal
emulation is available on all devices.
 In the second control mode the device is controlled by the DRIVECOM state machine.
This control mode is supported only by the servodrives.

 Possible operation modes in use of CAN bus activation:

 VF1000 MC6000 MC7000
 Open-loop speed control á
 Closed-loop speed control á á
 Closed-loop torque control á á
 Closed-loop position control
(positioning and sequence
control)

 á

 12 CAN bus data transfer protocol

Terminal emulation
 The terminal emulation delivers control bits by way of the CAN control word which emulate
the input terminals (e.g. STL/STR - Start enable or S1IND - prog. digital input) of the device.
 For more detailed information on the setting and availability of these functions, refer to the
operation manual accompanying each device.

DRIVECOM control word
 To control a device in the second control mode over CAN, the state machine defined in the
DRIVECOM profile no. 22 of January 1994 for INTERBUS-S must be followed.

1.5.4 Control functions

 Function: Control functions/reference
Data direction: Master -> Device
Type: selective

 Control functions can be optimally adapted to the relevant application. Consequently, several
control formats are offered. The appropriate formats can be selected by the master during
the setup phase over the bus, or by adjusting the relevant device parameters.

A) Control functions for inverters
 An inverter can receive and process control commands at the full transfer rate of 1 Mbaud.
Since the internal state machine has a sampling time of 8 ms, these values enter the control
cycle of the inverter every 8 ms. Data byte 2 contains the terminal emulation of the inverter.

Sampling time: 8 ms

 Priority based

on CAL
 Base ID Data byte 0 Data byte 1 Data byte 2

 3 661 REF_LO

 REF_HI InBits 0 = STR
 1 = STL
 2 = S1IND
 3 = S2IND
 4 = S1OUT
 5 = S2OUT
 6 = S3OUT
 7 = ERROR_RESET

 CAN bus data transfer protocol 13

B) Control functions for servos
 The servo state machine has a sampling time of 1 ms. All control commands and reference
values are processed within that sampling time by the servocontroller.

Sampling time: 1 ms

 Selection of state control and reference input by way of parameter 492-CACNF.

 CACNF 1 2 3 4 5
 Reference 1 16 bits 32 bits 32 bits 32 bits
 Reference 2
 Actual 1 16 bits 16 bits 16 bits 32 bits
 Actual 2 16 bits 16 bits
 DRIVECOM á á á á
 Terminal
 emulation

 á

1.5.5 Parameter channel

A) Inverter parameter channel

Function: Parameter enquiry/transfer

 The data in this transfer are scaled according to the stipulations in the inverter parameter list
(see section 4.1).
 For more detailed information on the setting and availability of these functions, refer to the
parameter description which is available as a separate document for each device.

Data direction: Master -> FI

 At this ID parameters are transferred or enquiries entered. Each transmission of this ID re-
sults in a reply with ID 1321.

 Priority based

on CAL
 Base ID Data byte 0 Data byte 1 Data byte 2 Data byte

3
 Data byte 4

 5 1101 PARA_LO PARA_HI Mode of
transfer:
 "ENQ"
 "SEL"

 DATA_LO DATA_HI

B) Servo parameter channel

Function: Parameter enquiry/transfer

 The data in this transfer are scaled according to the stipulations in the servo parameter list
(see section 4.2).

Data direction: Master -> Servo

 At this ID parameters are transferred or enquiries entered. Each transmission of this ID re-
sults in a reply with ID 1321.

 only for MC7000 modes:
 - Positioning and sequence control
 - Electronic gearing

 for MC6000/7000 modes:
 - Speed control
 - Torque control

 14 CAN bus data transfer protocol

 Priority based

on CAL
 Base ID Data byte

 0
 Data byte

 1
 Data byte

 2
 Data byte
 3+4+5+6

 Data byte
 7

 5 1101 PARA_LO PARA_HI Mode of
transfer:

 "SEL"
 "ENQ"

 DATA COUNTER

1.5.6 Error messages
 Messages are only sent in the system state "System Start".

 Function: Error message
Data direction: Device > Master
Type: selective

A) For VF1000 inverters:

 Priority based

on CAL
 Base ID Data byte 0

 2 441 Error number
 The number corresponds to the error number of the inverter
 (For definition see Operation Manual >> Error messages)

B) For MC6000/7000 servos:

 Priority based

on CAL
 Base ID Data byte 0 Data byte 1

 2 441 Error number
 The number corresponds to the

error number of the servo
 (For definition see Operation
Manual >> Error messages)

 Error location
 This number permits a more

precise definition of the causes of
error in servodrives.

1.5.7 Watchdog for network monitoring
 All devices offer a facility for network monitoring by means of a programmable time monitor
(watchdog). The response time (timeout) of the watchdog can be set by way of parameter
40-TCAN (for VF1000) and parameter 409-BUTWD (for MC6000 and MC7000) (for scaling
see parameter description).

 The watchdog monitors the device to check whether a valid telegram has been received
within the preset time. If no such telegram has been received, the device switches to the
error state with the relevant error message. Servocontrollers also offer the facility to program
the response by parameter (e.g. Subject area _SCTY param. R-CAN).

 The watchdog is reset in the same way as any other device error.

 CAN bus data transfer protocol 15

2 Installation

2.1 Electrical connection

 The electrical connection of the power and control electronics is described in the relevant
operation manuals of the devices used.

2.2 Controller enable (ENPO)

A) On the VF1000 frequency inverter
 On the VF1000 frequency inverter no additional controller enable via control terminal is nec-
essary in the case of control over the CAN bus.

B) On the MC6000/MC7000 servocontroller
 On the servocontroller an additional hardware enable via control terminal X5/11 ENPO is
required for control over the CAN bus. This control signal is high-active. When this control
signal is removed the motor runs out freely. Also refer to the description in the
MC6000/MC7000 servocontroller operation manual.

2.3 Assignment of device address by connector coding
 Only for VF1000 frequency inverter.

 The contact assignment for address assignment by means of connector coding is described
in the relevant operation manuals of the devices used.

 16 CAN bus data transfer protocol

3 Commissioning and configuration

3.1 Presets for control over CAN bus
 Control of devices over the CAN bus requires a number of parameter settings. The devices
are factory configured for operation via terminals. It is possible to control them over the
CAN bus after adjusting the relevant configuration parameters appropriately.

A) VF1000 frequency inverter

 Presets:

• Parameter 01-MODE = 4 Control location interface
• Parameter 04-FSSEL = 25 (26) Reference source interface
• Parameter 37-BCAN = 2 Baud rate = 500 kB
• Parameter 82-SIOA = x Device address
• Parameter 40-TCAN = xx Watchdog

B) Servocontroller MC7000

 Presets:

• Parameter 402-CLSEL = CAN Control location CAN
• Parameter 419-RSSL3 = CAN Reference source interface (only in Speed and

Torque Control modes)
• Parameter 489-CABDR = 500 Baud rate = 500 kB
• Parameter 493-CAADR = x Device address
• Parameter 409-BUTWD = xx Watchdog

3.2 Commissioning sequence
 This section outlines the steps for initial commissioning of a servodrive.
 For more detailed information on optimizing the speed or position control circuit, refer to the
device Operation Manual.

1. Wire up the device, encoder and motor.
Ensure the motor is connected to the correct phase.

2. Load motor data from the motor database of the DRIVEMANAGER user interface or
from a SMARTCARD into the servocontroller.

3. Activate the operation mode you want in the device by way of the DRIVEMANAGER
user interface (speed control, position control, ...).

4. Configure the device according to the application requirements.
(inputs/outputs, encoder simulation, position control, ...).

5. Test the control quality and optimize the controller settings (speed controller) as set
out in the device Operation Manual.

6. Set the CAN-specific parameters; see below.

7. Test higher-order controller.

8. Save device configuration.

 CAN bus data transfer protocol 17

3.3 Commissioning instructions
 For various reasons, it may be that a device fails to reply to a telegram:

• There is no reply if the telegram frame (baud rate, data length) on the master computer is
not correct.

• There is no reply if a device is addressed by the wrong bus address.

• There is no reply if the serial link between the master computer and the device is not cor-
rectly set up.

• There is no valid reply if several devices with the same device address are connected to
the bus.

3.4 Data handling

3.4.1 Saving settings
 All configuration data, apart from sequence programs of the positioning and sequence con-
trol, can be backed up on a SmartCard or as a data file with the Drivemanager. Sequence
programs can only be saved as data files on PC.

3.4.2 Restoring factory defaults
 There are two way of restoring the factory defaults of the device parameter settings:

1. Set parameter PROG (VF1000: 71-PROG, MC6000/7000: 04-PROG) to the value 1
2. MC6000/7000 servocontrollers only: During power-up hold down the two cursor

keys on the KeyPad KP100 control unit

 18 CAN bus data transfer protocol

4 Setting the device parameters

4.1 VF1000 parameters for bus operation

4.1.1 82-SIOA - Device address for interface operation
 By way of this parameter the device address can be assigned. The parameter setting has
priority over a hardware setting by DIP switch or address coding plug. A hardware setting is
only adopted if 82-SIOA = 0 is set.

 Default: 0
Setting range: 0 - 29

4.1.2 40-TCAN - Sampling time monitoring
 The inverter checks the specified sampling times. If the sampling times are exceeded, the
inverter switches to fault mode. With parameter TCAN the sampling time can be changed.

 Scaling: 1 bit = 8.2 ms
Default: 3
Setting range: 0 - 255 (0 not permitted)

4.1.3 37-BCAN - CAN baud rate
 Setting of the CAN baud rate; changes only take effect after mains power reset.

 37-BCAN Baud rate Comments
 0 1 MBaud
 1 800 KBaud
 2 500 KBaud Factory setting
 3 250 KBaud
 4 125 KBaud
 5 75 KBaud
 6 50 KBaud
 7 25 KBaud

 Default: 2
Setting range: 0 - 7

 CAN bus data transfer protocol 19

4.1.4 90-FCAN - CAN function selector
 For selection of special functions:

 90-FCAN BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
 Function - - - - - Expanded

 status
 message

 Brake
 ramp
 with /S1IND
 (emergency
breakdown
function)

 Braking
ramp
 with
 E_CAN

 Default: 0
Setting range: 0 - 255

Braking ramp with error message E_CAN
 If bit 0 in 90-FCAN is set, when the error E_CAN (error no. 12) is detected a stop ramp is
activated. The steepness of the braking ramp can be adjusted by way of parameter 36 -
RSTOP. The drive runs down to 0 Hz.
 E_CAN can only be reset when the drive is at a standstill.

Emergency-off function
 If bit 1 in 90-FCAN is set, where S1IND = 0 the error F_STP (error no. 13) is generated.
 When this signal is activated the inverter runs down to a frequency of 0 Hz with a braking
ramp, and switches to System Stop.

 The steepness of the braking ramp can be adjusted by way of parameter 36 - RSTOP. Only
when the frequency 0 Hz has been reached and the DC holding time has expired does the
inverter again respond to new control commands.

Expanded status message
 If bit 2 in 90-FCAN is set, the status word is expanded by 1 byte:

 Priority Base ID Data byte 0 Data byte 1 Data byte 2 Data byte 3
 4 881 IST_LO IST_HI OUT_BIT

 Bit
 0 = STR
 1 = STL
 2 = S1IND
 3 = S2IND
 4 = S1OUT
 5 = S2OUT
 6 = S3OUT
 7 = ERROR

 Bit
 0 =
 1 =
 2 =
 3 =
 4 =
 5 =
 6 = Terminal X2/25
 7 = Terminal X2/24

 The two terminals X2/24 and X2/25 are used in standard devices of the VF1000M/L series
for the STR (Start Right) and STL (Start Left) function (VF1000S = terminals X1/3 & X1/4).
 Where 01-MODE = 4 (CAN operation), these inputs are used solely as inputs with no special
function. The Start function in CAN operation is executed by way of the CAN control word.

 20 CAN bus data transfer protocol

4.1.5 60-ACAN - Analog output
 By way of parameter 60-ACAN (Analog_CAN) a 16-bit value can be set for delivery via output
SOUTA (VF1000M and VF1000L only).

 Manipulating range 0 - 6000 HEX
 0 HEX ==> 0 V
 4000 HEX ==> 10 V
 6000 HEX ==> 15 V

Note: To activate output of this value via SOUTA, it is necessary to set parameter
61 - SOUTA to 16.

 CAN bus data transfer protocol 21

4.2 MC6000/MC7000 parameters for bus operation

4.2.1 492-CACNF - CAN configuration

 CACNF Reference Actual Comments
 0 No reference adopted No actual transferred CAN bus is

switched off
 1 16 bits,

 torque, speed or position
 16 bits,
 torque, speed or position

 2 32 bits,
 torque, speed or position

 32 bits,
 torque, speed or position

 Factory set-
ting

 3 32 bits
 Speed

 16 bits torque (1st word)
 16 bits speed (2nd word)

 4 Format VF1400 (Sa)
 32 bits frequency +
 16 bit in-bits

 Format VF1400 (Sa)
 32 bits frequency +
 16 bit out-bits

 5 No
 transfer of POSMOD variable and
flags to positioning and sequence
control

 Actual position (absolute)
 Actual position from positioning
and sequence control in scaled
travel units

 Scaling of 32-bit values:

 Torque: Nm � 2 -16

 Speed: rpm � 2 -16

 Position: Revolutions � 2 -16

 Scaling of 16-bit values:
 Torque: Nm
 Speed: rpm
 Position: Revolutions

4.2.2 491-CACTR - Control word
 Current control word (CAN control), see section 5.3.3. Display value only!

4.2.3 490-CASTA - Status word
 Current status word (CAN status), see section 5.4.2. Display value only!

4.2.4 409-BUTWD - Bus watchdog time in ms
 Value for watchdog to monitor the CAN bus. The watchdog time is adjustable in millisecond
increments. The value 0 deactivates the watchdog.

Default: 0
Setting range: 0 - 255 ms (0 = off)

4.2.5 486-BUTCD - Maximum permissible cycle deviation relative to master
 Maximum permissible deviation of the internal cycle relative to the cycle of drive 1.

Scaling: 1 bit = 0.1 µs.
Default: 5000
Setting range: 1 - 32000

 22 CAN bus data transfer protocol

4.2.6 411-BUTCY - Bus sampling time
 Sampling time of the CAN bus in microseconds.

 This parameter only needs to be set if a time-equidistant input of the reference value is re-
quired.

Scaling: 1 bit = 1 µs.
Default: 1000
Setting range: 100 - 32000

4.2.7 487-BUTCS - Sampling time of status message relative to "BUTCY"
 BUTCS Bus_timer_statuscycle

 Sampling time of the status message relative to "BUTCY"
 Scaling: 1 = every cycle
 2 = every second cycle
 etc.

 Default: 10
Setting range: 1 - 255

4.2.8 488-BUSYE - Activating/deactivating synchronization
 With this parameter synchronization of the drive is activated. (0 = no synchronization)
 Function not yet implemented!

4.2.9 493-CAADR - CAN bus device address
 Address on the CAN bus. This parameter has priority over hardware settings!

 Default: 0
Setting range: 0 - 29

MC6000 only: For address input by hardware means (DIP switch or DSUB connector), the
parameter must be set to 0. 0 is the default value of the parameter.

Note: Operation of two devices with the same device address on a bus is not per-
mitted.

4.2.10 489-CABDR - CAN bus baud rate
 By way of this parameter the baud rate of the CAN controller is set:

 CABDR Transmission

speed
 Comments

 0 1 MBaud
 1 800 KBaud
 2 500 KBaud Factory setting
 3 250 KBaud
 4 125 KBaud
 5 75 KBaud
 6 50 KBaud
 7 25 KBaud

 CAN bus data transfer protocol 23

4.2.11 Automatic intervention in parameter setting of MC6000
 When the MC6000 is switched on the CAN option is automatically detected. If the device was
not previously equipped with the CAN option, the following parameters are automatically ad-
justed once only in the MC6000:

 Parameter: Value: Comments
 402-CLSEL OPT1 Control location CAN option
 417-RSSL1 RCON Reference source off
 418-RSSL2 RCON Reference source off
 419-RSSL3 OPT1 Reference source CAN option
 420-RSSL4 RCON Reference source off
 439-FIS00 OPT1 Input assigned to CAN
 440-FIS01 OPT1 Input assigned to CAN
 445-FOS00 OPT1 Output assigned to CAN
 446-FOS01 OPT1 Output assigned to CAN

 When the CAN board is removed from the MC6000 these parameters are reset to their fac-
tory defaults on power-up.

 24 CAN bus data transfer protocol

4.3 Representation of parameter data
 The parameters are set by way of the parameter channel described in sections 1.5.5 and 4.6.

 The parameter data are transmitted in binary format within a CAN data block. The parameter
data begin with data byte 3. On the VF1000 they have a max. length of 2 bytes and on the
servo 4 bytes.

 Interpretation of the data transferred in the data block differs depending on parameter data
type. A list of all device parameters with their respective data types is obtainable in a sepa-
rate document from LUST Antriebstechnik GmbH.

A) Parameter data types of the inverters
 The VF1000 inverters support the following parameter data formats:

 Data type Scaling Value range KP100 display MC6000/7000-

compatible
 PT_USIGN8 1 0 .. 255 00H .. FFH Value range

PT_USIGN8
 PT_FIXPOINT16 0.05 0.00 .. 3276.80 0.00 .. 999.95 yes
 PT_INTEGER16 1 -32768 .. 32767 -9999 .. 32767 yes
 PT_INTEGER8 1 -128 .. 128 -128 .. 128 no
 PT_VF_ERROR 1 0 .. 65535 Plain text e.g. "E-OV" no
 PT_PASSWORD 1 0 .. 65535 0 .. 65535 yes

 Notes on individual data types:

 Data type PT_USIGN8:
 The data type PT_USIGN8 is an 8-bit integer without preceding sign and is represented on
the display of the KEYPAD in hexadecimal format, as it is usually used to represent bit fields.

 Data type PT_PASSWORD:
 Passwords are represented as 16-bit integer values without preceding sign.

 Data type PT_VF_ERROR:
 This data type corresponds to a structured 16-bit integer. The Low byte designates the error
number (0 - 15) and the High byte the error time (0-15h) - that is, the value of the operating
hours meter when the error occurred.

 Structure element Error number Error time
 Data length 1 byte 1 byte

 CAN bus data transfer protocol 25

 Notes on use of the individual data types in C

 In the following examples it is assumed that the CAN data block has been imported from the
CAN controller into the RAM of the master. The parameter data start from the memory loca-
tion Data byte[3] in the RAM.
 If the same physical address is accessed with different data types in C, this is best done by
way of "union" structures.
 The following example demonstrates data accessing via the "union":
 /*--*\
 |
 | Example program for parameter data access within
 | the CAN data block
 |
--/

 /*--*\
 | Externals
 --/
 extern unsigned char Data byte[]; /* The Can-
data block */

/*--*\
 | Definitions
 --/

 typedef struct /* Structure of the error data */
 {
 unsigned char Number;
 unsigned char Time;
 }VF_Error;

 typedef union /* Union for parameter data access */
 {
 signed char int8;
 signed int int16;
 unsigned char usign8;
 unsigned int usign16;
 VF_Error err16;
 } VF_Data;

/*--*\
 | Function MAIN
 --/
 void main(void)
 {
 /*---*\
 | Test variables for data exchange
 ---/
 signed char TestInt8;
 signed int TestInt16;
 unsigned char TestUsign8;
 unsigned int TestUsign16;
 float TestFix16;
 unsigned char ErrorTime;
 unsigned char ErrorNumber;
 VF_Data *CanParaData;

/*---*\
 | Read access to the parameter data
 ---/
 /* Position data pointer */
 CanParaData = &(data byte[3]);

 /* Data access PT_UISGN8 */
 TestUsign8 = CanParaData->usign8;

 /* Data access PT_PASSWORD */
 TestUsign16 = CanParaData->usign16;

 /* Data access PT_INTEGER8 */
 TestInt8 = CanParaData->int8;

/* Data access PT_INTEGER16 */
 TestInt16 = CanParaData->int16;

 26 CAN bus data transfer protocol

/* Data access PT_FIXPOINT16 */

 TestFix16 = (float)(CanParaData->usign16) / 20.;

/* Data access PT_VF_ERROR */
 ErrorTime = CanParaData->err16.Time;
 ErrorNumber = CanParaData->err16.Number;

/*---*\
 | Write access to the parameter data
 ---/
 /* Place the value 3 on a parameter of type PT_USIGN8 */
 CanParaData->usign8 = 3;

 /* Place the value 3 on a parameter of type PT_BINARY16 */
 CanParaData->usign16 = 3;

 /* Place the value -3 on a parameter of type PT_INTEGER8 */
 CanParaData->int8 = -3;

/* Place the value -3 on a parameter of type PT_INTEGER16 */
 CanParaData->int16 = -3;

/* Place the value 326.15 on a parameter of type PT_FIXPOINT16 */
 CanParaData->usign16 = (unsigned int)(326.15 * 20.);

/* PT_VF_ERROR are read-only*/
 }

B) Parameter data types of the servos

 The servocontrollers of the MASTERCONTROL series support the following parameter data
formats:

 Data type Scaling /

Increment
 Value range KP100 display VF1000-

compatible
 PT_USIGN8 1 0 .. 255 0 .. 255 Value range

PT_BINARY8
 PT_USIGN16 1 0 .. 65535 0 .. 65535 no
 PT_FIXPOINT16 0.05 0.00 .. 3276.80 0.00 .. 999.95 yes
 PT_INTEGER16 1 -32768 .. 32767 -9999 .. 32767 yes
 PT_INTEGER32 1/65536 -32767.99 .. 32766.99 -9999 .. 32767 no
 PT_FLOAT_IEEE see IEEE see IEEE -99.99E9 .. 99.99E9 no
 PT_MC_ERROR 1 0 .. 65535 Plain text e.g. "E-OV" no
 PT_PASSWORD 1 0 .. 65535 0 .. 65535 yes

 Notes on the data types:

 Data type PT_INTEGER32
 This data type is a "signed long" (32-bit) type with scaling 1/65536. It is displayed on the
KEYPAD in the same way as a PT_FLOAT_IEEE.

 Data type PT_FLOAT_IEEE
 This data type corresponds to a 32-bit floating-point number in IEEE format.

 Data type PT_MC_ERROR
 This data type is structured and is 32 bits long. Its structure is as follows:

 Structure element Error number Error location Error time
 Data length 1 byte 1 byte 2 bytes

 CAN bus data transfer protocol 27

 Notes on use of the individual data types in C

 In the following examples it is assumed that the CAN data block has been imported from the
CAN controller into the RAM of the master. The parameter data start from the memory loca-
tion Data byte[3] in the RAM.
 If the same physical address is accessed with different data types in C, this is best done by
way of "union" structures.
 The following example demonstrates data accessing via the "union":
 /*--*\
 |
 | Example program for parameter data access within
 | the CAN data block
 |
--/

 /*--*\
 | Externals
 --/
 extern unsigned char Data byte[]; /* The Can-
data block */

/*--*\
 | Definitions
 --/

 typedef struct /* Structure of the error data */
 {
 unsigned char Number;
 unsigned char Location;
 unsigned int Time;
 }MC_Error;

 typedef union /* Union for parameter data access */
 {
 unsigned char usign8;
 unsigned int usign16;
 signed int int16;
 signed long int32;
 float float32;
 MC_Error err32;
 } MC_Data;

/*--*\
 | Function MAIN
 --/
 void main(void)
 {
 /*---*\
 | Test variables for data exchange
 ---/
 signed int TestInt16;
 unsigned char TestUsign8;
 unsigned int TestUsign16;
 float TestFloat32;

float TestFix16;
 float TestInt32Q16;
 unsigned int ErrorTime;
 unsigned char ErrorLocation;
 unsigned char ErrorNumber;
 MC_Data *CanParaData;

/*---*\
 | Read access to the parameter data
 ---/
 /* Position data pointer */
 CanParaData = &(data byte[3]);

 /* Data access PT_USIGN8 */
 TestUsign8 = CanParaData->usign8;

/* Data access PT_PASSWORD or PT_USIGN16 */
 TestUsign16 = CanParaData->usign16;

 /* Data access PT_INTEGER16 */

 28 CAN bus data transfer protocol

 TestInt16 = CanParaData->int16;

/* Data access PT_INTEGER32 */
 TestInt32Q16 = (float)(CanParaData->int32) / 65536.;

/* Data access PT_FIXPOINT16 */
 TestFix16 = (float)(CanParaData->usign16) /20.;

/* Data access PT_MC_ERROR */
 ErrorTime = CanParaData->err32.Time;
 ErrorNumber = CanParaData->err32.Number;
 ErrorLocation = CanParaData->err32.Location;

/* Data access PT_MC_ERROR */
 TestFloat32 = CanPara->float32;

 /*---*\
 | Write access to the parameter data
 ---/
 /* Place the value 3 on a parameter of type PT_USIGN8 */
 CanParaData->usign8 = 3;

/* Place the value 3 on PT_USIGN16 or PT_PASSWORD */
 CanParaData->usign16 = 3;

 /* Place the value -3 on a parameter of type PT_INTEGER16 */
 CanParaData->int16 = -3;

/* Place the value 2345.3456 on a parameter of type PT_INTEGER32 */
 CanParaData->int32 = (signed long)(2345.3456 * 65536.);

/* Place the value 23.15 on a parameter of type PT_FIXPOINT16 */
 CanParaData->usign16 = (unsigned int)(23.15 * 20.);

/* PT_MC_ERROR is read-only */

/* Place the value 2345.1234 on a parameter of type PT_FLOAT_IEEE */
 CanPara->float32 = 2345.1234;

 }

4.4 Representation of parameter number
 The parameter number (PARA_HI PARA_LO) is represented as a four-digit hexadecimal
number. The coding of these four hexadecimal numbers has different meanings for inverters
and servocontrollers. The device-specific descriptions follow.

A) Parameter numbers for inverters
 Frequency inverters have parameter numbers from 0 - 99. These parameters must be con-
verted into four-digit hexadecimal numbers and inserted in the protocol frame under
PARA_HI and PARA_LO, with PARA_LO representing the Low byte and PARA_HI the High
byte of the parameter number. Leading zeroes must be entered.

B) Parameter numbers for servocontrollers
 Servocontrollers have parameter numbers from 0 - 999. These parameters must be con-
verted into four-digit hexadecimal numbers and inserted in the protocol frame under
PARA_HI and PARA_LO, with PARA_LO representing the Low byte and PARA_HI the High
byte of the parameter number. Leading zeroes must be entered.

 CAN bus data transfer protocol 29

4.5 Telegram execution and verification
 Data transfers are acknowledged by reply telegram which contain the same data content and
have the same parameter number. Only data byte 2 is different in the reply, containing the
SIO STATUS instead of the mode of transfer.
 The SIO STATUS indicates whether the transfer was successful, or what problems occurred
if any.

 In general a reply is only sent after successful entry of the new parameter value in the device.
Since the new values of RAM parameters can be adopted directly, there is no delay in
sending of the reply telegram for that parameter group.

 In the case of EEPROM parameter inverters of the SMARTDRIVE series delay the reply tele-
gram until the parameter value has been stored free of errors in the EEPROM (approx.
40 ms).

 Servocontrollers of the MASTERCONTROL series have a RAM memory location for each pa-
rameter and an additional EEPROM memory location for each EEPROM parameter. After a
SELECT telegram relating to an EEPROM parameter the value is first entered in the RAM
and then the ACK is immediately sent to the master computer - that is to say, the new pa-
rameter value is available immediately.

 The save operation to the EEPROM is executed in the background, and does not delay the
main program. To store one byte in the EEPROM takes the servocontroller 15 ms. In the
case of several Select telegrams relating to EEPROM parameters in sequence, the
EEPROM write routine may be overloaded. The servocontroller signals this state by setting
the relevant bit in parameter 85-SERR. In this case the corresponding SELECT telegram
must be repeated until the servocontroller indicates that the new parameter value has been
adopted with ACK.

Mode-related access restrictions
 If in a reply telegram bit 6 (hexadecimal value 40H) of SIO_STATUS is set, write access to
that parameter has been refused regardless of the transferred value.
 This, on other hand, does not necessarily mean that the parameter is generally write-
protected. Write access may have been refused only on the basis of the current operating
state of the device. On inverters of the SMARTDRIVE series, for example, EEPROM parame-
ters are generally write-protected when the control is active.

Note: To find out which parameters are accessible when, refer to the operation
manual of the relevant device.

 30 CAN bus data transfer protocol

4.6 Parameter channel

 Function: Parameter setting
Data direction: Master -> Device

Device -> Master
Type: selective

 All device parameters can be addressed by way of these identifiers. These transfers are
processed at a low priority level in the device.

A) Inverter parameter channel

Parameter enquiry/transfer

 The data in this transfer are scaled according to the stipulations in the inverter parameter list.
 For more detailed information on the setting and availability of these functions, refer to the
parameter description which is available as a separate document for each device.

 Data direction: Master -> FI
 At ID 1101 parameters are transferred or enquiries entered. Each transmission of this ID
results in a reply with ID 1321.

 Priority based

on CAL
 Base ID Data byte

0
 Data byte

1
 Data byte 2 Data byte

3
 Data byte

4
 5 1101 PARA_LO PARA_HI Mode of

transfer:
 "ENQ"
 "SEL"

 DATA_LO DATA_HI

Data request: ENQ = 05H
Data transfer: SEL = 02H

 Data direction: FI -> Master

 Priority based

on CAL
 Base ID Data byte

0
 Data byte

1
 Data byte 2 Data byte

3
 Data byte

4
 6 1321 PARA_LO PARA_HI SIO STATUS

 0 = Transfer OK

 DATA_LO DATA_HI

 Function of bits:
 0 = Power on

 1 = SIO Watchdog
 2 = Transfer mode
unknown
 3 = Read not permitted
 4 = NN
 5 = Parameter unknown
 6 = Change not
permitted
 7 = Impermissible value

 CAN bus data transfer protocol 31

B) Servo parameter channel

Parameter enquiry/transfer 130

 The data in this transfer are scaled according to the stipulations in the inverter parameter list.

Data direction: Master -> Servo

 At ID 1101 parameters are transferred or enquiries entered. Each transmission of this ID
results in a reply with ID 1321.

 Priority based

on CAL
 Base

ID
 Data byte

 0
 Data byte

 1
 Data byte

 2
 Data byte
 3+4+5+6

 Data byte
 7

 5 1101 PARA_LO PARA_HI Mode of transfer:
 See below

 DATA Counter or
Index for field
parameters

 Transfer mode Value (Hex) Description
 ENQ (05) Request standard parameter

 SEL (02) Write standard parameter

 ENQuiry_List (04) Request parameter data description

 SELect_String (08) Write string parameter

 SELect_Field (09) Write field parameter

 ENQuiry_Field, (10) Read field parameter

 ENQuiry_String (11) Read string parameter

 SELect_Single Element (12) Write individual field parameter

 ENQuiry_Single Element (13) Read individual field parameter

 ENQuiry_Para_Text (14) Read value substitution text

 ENQuiry_Trans (15) Read transient memory

 List_End (16) Universal List-End identifier

 PARA_LO: Parameter number Low byte
 PARA_HI: Parameter number High byte
 DATA: 32-bit data

(at "List-End" : Checksum)
 COUNTER: Block counter for data lengths > 4 bytes, e.g. string parameter
 (incremented on every transmission)
 The data byte is used as the subindex when accessing an individual field parameter. Field

parameters always have a data length < 4 bytes.
 When accessing standard parameters always set the data byte to zero!

 32 CAN bus data transfer protocol

 Data direction: SERVO -> Master

 Priority based

on CAL
 Base ID Data byte

 0
 Data byte

 1
 Data byte

 2
 Data byte
 3+4+5+6

 Data byte
 7

 6 1321 PARA_LO PARA_HI SIO STATUS
 0 = Transfer OK

 DATA Counter or
Index for field
parameters

 Function of bits:
 0 = Power on

 1 = SIO Watchdog
 2 = Transfer mode
unknown
 3 = Read not permitted
 4 = Repeat action
 5 = Parameter un-
known
 6 = Change not
permitted
 7 = Impermissible
value

 PARA_LO: Parameter number Low byte

 PARA_HI: Parameter number High byte

 DATA: 32-bit data (at "List-End" : Checksum)

 COUNTER: Block counter for data lengths > 4 bytes, e.g. string parameter
(incremented on every transmission).

 The data byte is used as the subindex when accessing an individual field
parameter. Field parameters always have a data length < 4 bytes.

4.7 Field parameters (MC7000 only)
 All variables, flags, table positions and counters of the positioning and sequence control are
stored in the device as field parameters. This means, for example, that POSMOD variables
are accessible under parameter 528-POVAR in the device. Individual elements of this pa-
rameter are addressed by way of a subindex.

 Example: Variable H10 = 528-POVAR (Subindex 10)

 By way of the parameter channel of the servo, individual field parameters (SELect_Single
Element) or a range of parameters (SELect_Field) can be accessed.

4.7.1 Access to individual field parameters
 Individual field parameters can be accessed with a single protocol. For this, the parameter
number of the field is entered in data bytes 0+1, the mode of transfer in data byte 2
(12 - write, 13 - read), the value in data bytes 3-6 and the number of the element (subindex)
in data byte 7.

 Example: Set variable H11 = 10 (528Dec = 0210Hex)

 ID Data byte 0 Data byte 1 Data byte 2 Data byte 3-6 Data byte 7

 1101 10 02 c 0a 00 00 00 b

 CAN bus data transfer protocol 33

Note: Waiting time when using this protocol type until the next telegram in the
servocontroller approx. 30 ms maximum, typically 10 ms.

4.7.2 Access to field range
 If data are to be transferred into a field parameter, the first telegram (data byte 7 = 0) con-
tains the information on the field index and the number of fields to be written.
 In the following telegrams one element per data block is transferred. Each data block is con-
firmed by a reply from the servo or rejected with an error in the status word.
 The last data block sent contains a 32-bit checksum formed by the logical XOR link between
the data areas of all individual telegrams including the first (index and length). Consequently,
the number of individual telegram blocks is calculated as:

 BlockCount = Size + 2
 where Size = number of elements to be written

Note: Waiting time between the individual telegram blocks in the servocontroller
approx. 1 ms.

 Telegram sequence:
1. Block:
 Master

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7
(counter)

 SEL_Field= 3+4=Index, 5+6=Size 0
 Servo

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7
(counter)

 Status 3+4=Index, 5+6=Size 0

 2nd block:
 Master

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7
(counter)

 SEL_Field = Individual data element 1
 Servo

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7
(counter)

 Status Individual data element 1

 Last block:
 Master

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7
(counter)

 LIST_End 32-bit checksum Number of blocks
 Servo:

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7
(counter)

 Status 32-bit checksum Number of blocks

 34 CAN bus data transfer protocol

4.7.3 Reading field parameters
 In the first telegram block the master transmits the field data (Index, Size) of the parameter of
which the values are to be read. The servo confirms this request and enters in the reply tele-
gram the number of readable elements as from the index, if the number of elements re-
quested by the master is greater than the number of readable elements.
 Then the servo sends the requested field elements in series. Only one element per telegram
is ever transmitted.
 In the last telegram (with the LIST_End identifier) a 32-bit checksum is sent by logical XOR
linking of all data blocks including the first block (field description).
 The number of telegram blocks is calculated as:

 BlockCount = Size + 2
 where Size = number of elements to be read

Note: Waiting time between the individual telegram blocks in the servocontroller
approx. 1 ms.

 Telegram sequence
 1st block:
 Master

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 ENQ_Field= 3+4=Index, 5+6=Size 0

 Servo
 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 Status 3+4=Index, 5+6=Size 0

 2nd block:
 Master

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 ENQ_Field= xxxx 1
 Servo

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 Status Individual data element 1

 Last block:
 Master

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 ENQ_Field= xxxx Number of blocks

 Servo:
 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 LIST_End 32-bit checksum Number of blocks

4.7.4 Reading string parameters
 The master registers in data byte 2 (mode of transfer) that it wants to read a string parame-
ter. The contents of data bytes 3-6 are not relevant.
 The block counter (data byte 7) contains the value 0. The reply telegram from the servo
contains the status byte and gives information on the readability of the parameter. If the pa-
rameter is readable, the first reply telegram contains the first four characters.

 For synchronization purposes the master requests each substring by means of a request
telegram. The servo copies the received telegram to its send area, overwrites the data area
of that telegram with the string data and sends it back to the master. The last but one reply
telegram from the servo contains the 0-terminator of the string in the data area.

 In the last reply telegram the servo enters the LIST_End identifier in the status byte. The data
area of the telegram now contains the checksum covering all individual data areas
(0 to number of blocks -1) of the servo reply telegrams which have contained part of the data
string.
 If the string length = 4, the 2nd block is the last block and then already contains the check-
sum.

 CAN bus data transfer protocol 35

 Telegram sequence
 1st block:
 Master

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 ENQ_String= xxxx 0
 Servo

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 Status 4 characters where stat= 0 0

 Where status = 0 and string longer than 3 characters, 2nd block:
 Master

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 ENQ_String xxxx 1
 Servo

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 Status 4 characters 1

 Last but one block
 Master

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 ENQ_String xxxx Number of blocks - 1
 Servo

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 Status 0-3 char., 0-terminator Number of blocks - 1

 Last block:
 Master

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 ENQ_String xxxx Number of blocks
 Servo

 Data byte 2
(selector)

 Data bytes 3+4+5+6
(data)

 Data byte 7 (counter)

 LIST_End 32-bit checksum Number of blocks

Plausibility checks:
 After the first block the existence and access rights of the parameter are checked. If the
servo inserts an error in the status of the reply telegram of block 1, communication is termi-
nated for that parameter.
 The last telegram contains the checksum of the overall string. If it is wrong, or if the counter
is incorrect, the transmitted string is not valid.
 The telegram sequence within the servo is executed according to a state machine. This state
machine is automatically reset if the master transmits a telegram with an incorrect value for
the block counter.

4.7.5 Writing string parameters
 The master enters in data byte 2 the code for "Write string parameter". Data bytes 3-6 are of
no significance in block 0. In the reply telegram from the servo in block 0 a status message is
entered in data byte 2. If the status is 0, write access is permitted and the master begins
sending the first string. Status != 0 terminates the communication.

 The master transmits 4 characters per data block. The last but one data block must contain a
0-terminator. For the purpose of synchronization, the servo returns each data block to the
master.
 Explanatory note on checksum: Blocks 1 to n - 1 by logical XOR linking of data bytes 3 - 6.

 36 CAN bus data transfer protocol

 Telegram sequence
 1st block
 Master

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 SEL_String= xxxxx 0

 Servo
 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 Status xxxx 0

 If status = 0 then 2nd block:
 Master

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 SEL_String 4 characters 1

 Servo
 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 Status 4 characters 1

 Last but one block:
 Master

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 SEL_String 0-3 char., 0-terminator Number of blocks -1

 Servo
 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 Status 0-3 char., 0-terminator Number of blocks - 1

 Last block:
 Master

 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 LIST_End 32-bit checksum Number of blocks

 Servo
 Data byte 2 (selector) Data bytes 3+4+5+6 (data) Data byte 7 (counter)
 Status 32-bit checksum Number of blocks

Plausibility checks:
 After data block 1 the servo checks the access authorization to the parameter. If the status is
unequal to 0, communication is terminated for the parameter.
 If the master transmits more than 100 characters for a string, the string is not saved and the
error is entered at the end of the block sequence in the status (bit 7 = 1).
 If the checksum in the last telegram is not identical with the original, a repetition of the tele-
gram is requested by setting of bit 4 in the status.

 CAN bus data transfer protocol 37

4.8 Handshake for downloading parameter data sets on the
MC6000/MC7000 servocontroller

 Problem:
 A unified, valid data set - that is, not just individual parameters - needs to be transmitted from
the master computer to the servocontroller. On every transmission of an individual parameter
the servocontroller checks whether the parameter matches its existing data set.

 The check of the new parameter value in part adds existing parameter values. This creates
the possibility that the servocontroller may reject a parameter even though it originates from a
valid parameter data set. Possible error messages are E-PLS and E-PAR.

 E-PLS Plausibility error -> Parameter settings not mutually plausible

(control parameters)
 E-PAR Parameter setting error -> Parameter settings in the reference structure

are mutually exclusive

 Remedy:
 The new parameter data set of the master computer is transmitted to the servocontroller
without individual checking of the parameter values. When the upload is complete the servo-
controller checks the now completed new data set for plausibility. If the data are not logical,
the entire data set is rejected and the old data set is reactivated.
 This procedure requires a handshake, which is described in more detail in the following.

Important: In this action only parameters having the attribute "CardWriteable" are
changed. Consequently, the upload of a parameter data set by way of the
serial interface runs in the same way as by way of the SMARTCARD.
If, during the upload, a Select telegram is sent to a parameter without the
"CardWriteable" attribute, the servocontroller does reply to the telegram
with "Acknowledge", but does not accept the new parameter value.

Handshake to upload a complete parameter data set

 1. Register upload with parameter 80-SLOAD = -1
 A write operation to this parameter is only possible when the system is at a standstill. After
the write operation the servocontroller is secured against being switched on until the down-
load is completed.

2. Transfer complete parameter data set

 With several Select telegrams the individual parameters are transmitted from the master
computer to the servocontroller. The servocontroller initially accepts the new parameter val-
ues without carrying out a plausibility check.

3. Terminate upload with parameter 80-SLOAD = -2

 When all parameter data have been transmitted, the master computer sets SLOAD to the
value (-2). This signals the end of data transfer to the servocontroller. The servocontroller
then begins checking its entire data set for plausibility. If the data set is valid, the parameters
are accepted with the attribute "CardWriteable" into the EEPROM. The drive is enabled again
and can be started. The parameter 80-SLOAD is set according to the result of the parameter
check.

4. Poll parameter 80-SLOAD with timeout (10s)

 If SLOAD becomes 0 within the timeout the transfer was completed correctly. The parame-
ters are accepted into the EEPROM with the attribute "CardWriteable". The drive is enabled
again and can be started.
 If SLOAD = (-1) within the timeout, the servocontroller is still busy checking and saving.
If SLOAD > 0, the servocontroller has rejected the data set.

 38 CAN bus data transfer protocol

 The value of SLOAD then corresponds to the number of the first parameter of which the
value is invalid.

Important: If the connection is broken during transmission, or if the timeout is reached,
the transmission must be repeated or the servocontroller restarted.

 CAN bus data transfer protocol 39

5 Control and reference input

5.1 System states
 The "system state" describes the status of the overall bus system. The following system
states are currently supported:

• System Stop
After power-on each device is in the System Stop state.
In this state parameters can be set over the bus, or control commands and reference
values can be transmitted to the individual devices. The control commands and reference
values are only stored however (1 reference value / 1 control command) and are only
executed in the system state System Start.

• System Start
System Start is the normal operating state. The devices can be controlled by way of their
selective control commands. If control commands were transmitted to the devices during
System Stop, they are only executed on transition to System Start. This behavior allows
the individual devices to be preset before the overall system is up and running. Then, with
System Start all the devices receive their start command absolutely synchronously.

5.2 Device states
 In contrast to the system state, which describes the status of the overall bus system, the
device states in the various devices of a bus system may differ.

 The device state is determined, firstly, by the selective control commands over the bus and,
secondly, by means of information from the respective process. For example, an error in an
application results in a change of device state.

 The devices run a so-called state machine, which assigns defined responses to events for
each state.

 40 CAN bus data transfer protocol

5.3 Device control
 There are two different modes of controlling the devices over the CAN bus.
 In the first control mode the control terminal function of the drives is emulated. The terminal
emulation is available on all devices.
 In the second control mode the device is controlled by the DRIVECOM state machine. This
control mode is supported only by the servodrives.

5.3.1 Terminal emulation
 The terminal emulation delivers control bits by way of the CAN control word which emulate
the input terminals (e.g. STL/STR - Start enable or S1IND - Prog. digital input) of the device.
 For more detailed information on the setting and availability of these functions, refer to the
operation manual accompanying each device.

5.3.2 DRIVECOM state machine
 To control a device in the second control mode over CAN, the state machine defined in the
DRIVECOM profile no. 22 of January 1994 for INTERBUS-S must be followed.

 CAN bus data transfer protocol 41

5.3.3 Control word

 The 16 bits of the control word result from the logical linking of control commands which act
on the state machine. The following bits of the DRIVECOM control word are supported:

 Bit Name Comments
 0 Switch-on

 1 Disable power

 2 Emergency stop

 3 Operation enabled

 4 Mode-dependent Device or mode dependent assignment

 5 More detailed definition:

 6 DRIVECOM profile no. 22
 from January 1994

 7 Reset fault

 8 reserve

 9 reserve Device or mode dependent assignment

 10 reserve

 11 vacant

 12 vacant

 13 vacant

 14 Reference state output OS001), S1OUT2)

 15 Reference state output OS011), S2OUT2)

 1) MCxxxx, 2)VF1xxx

5.3.3.1 Device control commands
 The following bit combinations form the device control commands:

 Control bit
 Command: 7 3 2 1 0 Transitions:
 SHUTDOWN X X 1 1 0 2, 6, 8
 POWER-UP X X 1 1 1 3
 DISABLE POWER X X X 0 X 7, 9, 10, 12
 EMERGENCY STOP X X 0 1 X 11
 DISABLE OPERATION X 0 1 1 1 5
 ENABLE OPERATION X 1 1 1 1 4
 RESET FAULT 0Ø1 X X X X 15

 Transitions 4 and 5 are also influenced by ’System Start Stop’!

 42 CAN bus data transfer protocol

5.4 Device status
 Depending on the control mode in which the device is operated, the relevant mode for the
status message is automatically selected.

5.4.1 Terminal emulation
 In terminal emulation you get the information available on the device control terminal as an
image in a status word.
 For more detailed information on the setting and availability of these functions, refer to the
operation manual accompanying each device.

5.4.2 Status word and device states
 In the status word the current state of the device and additional messages are displayed. The
following bits of the DRIVECOM status word are supported:

 Bit Name Comments
 0 Ready for start
 1 On
 2 Operation enabled
 3 Fault
 4 Power disabled
 5 Emergency stop
 6 Switch-on inhibit
 7 Warning
 8 No function
 9 Remote
 10 Reference reached
 11 Limit value Device or mode dependent assignment

 12 Mode-dependent
 13 More detailed definition:

 DRIVECOM profile no. 22
 from January 1994

 14 Actual state input IS001), S1IND2)
 15 Actual state input IS011), S2IND2)

1) MCxxxx, 2)VF1xxx

5.4.2.1 Device states
 The following bit combinations form the device states:

 Status bit
 State: 6 5 3 2 1 0
 NOT READY 0 X 0 0 0 0
 SWITCH-ON INHIBIT 1 X 0 0 0 0
 READY 0 1 0 0 0 1
 ON 0 1 0 0 1 1
 OPERATION ENABLED 0 1 0 1 1 1
 FAULT 0 X 1 0 0 0
 FAULT RESPONSE ACTIVE 0 X 1 1 1 1
 EMERGENCY STOP ACTIVE 0 0 0 1 1 1

 CAN bus data transfer protocol 43

5.5 Identifiers

5.5.1 Selective transmissions
 For communication between the various CAN bus stations a "base" CAN identifier is defined
for each data transfer.
 Each station on the bus is assigned a number (0 - 29) which can be set on the devices in a
variety of ways:

 On the VF1000: By way of a DIP switch, coding on the D_SUB connector or parameter

82-SIOA
 On the MCxxxx: By way of parameter 493-CAADR

 Setting by way of parameter has priority. Only if the address set in the parameter is 0 does
the VF1000 accept the hardware setting.

 Station 0 operates with the "base" CAN identifier. All other stations operate with identifiers
calculated according to the following formula:

 ID = ("base" CAN identifier) + 2 ∗ (station number)

5.5.2 Broadcast transmissions
 Broadcast transmissions are received and evaluated by all devices simultaneously. The
’Remote Transmission Request’ flag must not be set for these transfers. No reply is given to
such transmissions.

 A broadcast transmission may be sent by only one bus user.

5.5.3 Station logon

 Function: Log on system after power ON
Data direction: Device -> Master
Type: selective

 This message is also delivered in event of System Stop

 Priority based

on CAL
 Base ID Data byte

 7 1543 No data

 After Power On each bus user attempts to log on to the master.
 The device transmits this identifier with a sampling time of 100 ms. The master identifies
from the identifiers which devices are connected to the bus and which address is assigned to
the devices concerned.
 The identifier is transmitted until the device has been addressed once by the master over the
bus (function: System Start).
 When the master has addressed the device over the bus assigned to the device by means of
an identifier, the device detects that the master has accepted the logon, terminates transmis-
sion of the "logon identifier" and immediately starts sending cyclic device status messages
onto the bus.

 44 CAN bus data transfer protocol

5.5.4 System start/stop

 Function: System Start/ Stop
Data direction: Master -> All
Type: broadcast

 Priority based
on CAL

 ID Data byte 0

 1 221 00 = STOP
 01 = START

 STOP

• The device is at System Stop:

• - The device stops the drive

• - Reference values are then only received and stored

 START

• - Enable time monitoring (watchdog functions)

• - FI / SERVO is allowed to transmit messages over the bus

• - Control functions are processed

• - Error messages can be sent over the bus

5.5.5 Control functions

 Function: Control functions/reference
Data direction: Master -> Device
Type: selective

 Control functions can be optimally adapted to the relevant application. Consequently, several
control formats are offered. The appropriate formats can be selected by the master during
the setup phase over the bus, or by adjusting the relevant device parameters.

A) Control functions for inverters
 An inverter can receive and process control commands at the full transfer rate of 1 Mbaud.
Since the internal state machine has a sampling time of 8 ms, these values enter the control
cycle of the inverter every 8 ms. Data byte 2 contains the terminal emulation of the inverter.

Sampling time: 8 ms

 Priority based

on CAL
 Base ID Data byte 0 Data byte 1 Data byte 2

 3 661 REF_LO

 REF_HI InBits 0 = STR
 1 = STL
 2 = S1IND
 3 = S2IND
 4 = S1OUT
 5 = S2OUT
 6 = S3OUT
 7 = ERROR_RESET

 CAN bus data transfer protocol 45

 Explanatory note on the in-bits:

 STR /STL = Start commands: Where 01-MODE = 4 CAN as control location

 (device default setting in CAN operation). Where 01-MODE < 4 the device can only be
activated via terminals.

 S1IND/S2IND = Freely programmable inputs of the inverter.
 If these bits are set in the control word , they are linked by an OR function in
the inverter to the values of the hardware inputs (with the default setting fixed
frequencies are selected by way of the inputs).

 S1OUT/S2OUT/S3OUT = Freely programmable outputs of the inverter. If these bits are set in the control
word, they are linked in the inverter to the values of the inverter outputs by an
OR function. To control the outputs over the CAN bus alone, all functions of
the inverter of which the parameters can be set to this output must be shut
down. For more detailed information on the setting and availability of these
functions, refer to the parameter description which is available as a separate
document for each device.

 ERROR_RESET = With this bit errors are reset and the inverter switches to "System_Stop".

 04-FSSEL defines which reference source is used to control the inverter. The values 25 and
26 refer to the CAN bus as the reference source. Note that any different setting of these pa-
rameters will result in reference sources other than the CAN bus being processed. For more
detailed information on the setting and availability of these functions, refer to the parameter
description which is available as a separate document for each device.

• With parameter setting: 04-FSSEL = 26
Reference scaling: 1 Bit = 0.009934Hz

 In this mode the maximum resolution of the inverter is reached. The accuracy of the deliv-
ered frequency incorporates no conversions or ramps whatever. The output frequency of the
inverter depends only on the quartz oscillator used.

Attention: With 04-FSSEL=26, the drive rigidly follows the reference input (no ramp
function !!) Consequently, the reference ramp must be generated by the
higher-order controller.

• With parameter setting: 04-FSSEL = 25
Reference scaling: 1 Bit = 0.05Hz

 In this mode all ramp functions and control functions are applicable. For more detailed infor-
mation on the setting and availability of these functions, refer to the parameter description
which is available as a separate document for each device.

Attention: With 04-FSSEL=25, the drive follows the reference input with an internal
ramp function. This means that the higher-order controller does not need to
generate a ramp.

 46 CAN bus data transfer protocol

B) Control functions for servos
 The servo state machine has a sampling time of 1 ms. All control commands and reference
values are processed within that sampling time by the servocontroller.

Sampling time: 1 ms

 Selection of state control and reference input by way of parameter 492-CACNF.

 CACNF 1 2 3 4 5
 Reference 1 16 bits 32 bits 32 bits 32 bits
 Reference 2
 Actual 1 16 bits 16 bits 16 bits 32 bits
 Actual 2 16 bits 16 bits
 DRIVECOM á á á á
 Terminal
 emulation

 á

5.5.5.1 Control in Speed and Torque Control modes

Control with DRIVECOM state machine
 Where 492-CACNF = 1

 Priority based

on CAL
 Base ID Data byte

 0+1
 Data byte 2+3 Data byte

 4
 3 661 Control word

 Reference Cycle

 Control word: See description of control word

Cycle: Number of the internal time cycle of the drive in which the reference value is
to become valid. Evaluated only in synchronized operation.

 Reference: Reference (dependent on the respective control)
 The data format is Int16 -> Value range: -32767 to +32768 without decimal place

 Where 492-CACNF = 2,3

 Priority based

on CAL
 Base ID Data byte

 0+1
 Data byte
2+3+4+5

 Data byte 6

 3 661 Control word

 Reference Cycle

 Control word: See description of control word

Cycle: Number of the internal time cycle of the drive in which the reference value is
to become valid. Evaluated only in synchronized operation.

Reference: Reference (dependent on the respective control). The data format is
Int32Q16 -> Value range: -32767.999 to +32768.999
(High word = pre-decimal point, Low word = post-decimal point; see also
492-CACNF =4)

 only for MC7000 modes:
 - Positioning and sequence control
 - Electronic gearing

 for MC6000/7000 modes:
 - Speed control
 - Torque control

 CAN bus data transfer protocol 47

Control via terminal emulation
 Where 492-CACNF = 4

 Priority

based on
CAL

 Base ID Data byte 0 Data byte
1

 Data byte
2

 Data byte
3

 Data byte
4

 Data byte
5

 3 661 Bit:
 0 = START
 1 = INV
 2 = /STOP
 3 = E_EXT
 4 = MP_UP*
 5 = MP_DOWN*
 6 = not assigned
 7 = ERROR_RESET

 Bit:
 0 = OS00
 1 = OS01
 2 = n.a.
 3 = n.a.
 4 = n.a.
 5 = n.a.
 6 = n.a.
 7 = n.a.

 SOLLW
 _LWLB

 SOLLW
 _LWHB

 SOLLW
 _HWLB

 SOLLW
 _HWHB

 * Note: Only active if MOP function is set via reference selector.

 SOLLW_LWLB: Reference value Low Word Low Byte
 SOLLW_LWHB: Reference value Low Word High Byte
 SOLLW_HWLB: Reference value High Word Low Byte
 SOLLW_HWHB: Reference value High Word High Byte

 The data format of the reference value is Int32Q16 -> Value range: -32767.999 to +32768.999
 (High Word = pre-decimal point, Low Word = post-decimal point)

5.5.5.2 Control in MC7000 modes:

• Positioning and sequence control (POSMOD)
• Electronic gearing and
• Stepper motor interface

 Where 492-CACNF = 5 (MC7000 only)

 For information on the functions of flags (529-POMER), the table index (527-POTAB) and
variables (528-POVAR) refer to the MC7000 POSMOD programming manual.
 In Electronic Gearing and Stepper Motor Interface modes data bytes 2 - 7 have no function.

 492-CACNF = 5 ; Control of POSMOD over CAN

 Base

ID
 Data byte 0-1 Data byte 2 Data byte 3 Data bytes 4-7

 661 Control word
to control the

POSMOD

(see above)

 559-POQTI
Table index

 529-POMER
 Flag

Index 90-97
Flag byte

 528-POVAR
 Variable
Index 98

 48 CAN bus data transfer protocol

5.5.5.3 Control word to control MC7000 POSMOD, electronic gearing and
stepper motor interface

 The first word of the control identifier 661 is always interpreted as the control word. The
16 bits of the control word result from the logical linking of control commands which act on
the state machine. Bits 4 to 6 are mode-specific, bits 11 to 13 manufacturer-specific. Here
the POSMOD-specific control is coded.
 The POSMOD-specific bits are only used by the POSMOD in CAN system state 4, "Operation
enabled"; otherwise they are deleted.

 Control word in "Positioning and sequence control" mode:

 Bit Name Comments
 0 Switch-on
 1 Disable power DRIVECOM state machine

 2 Emergency stop for controller enable

 3 Enable operation
 4 Auto Switch between Manual/Automatic mode (0/1)

 5 Start / Referencing Start a sequence program with a high edge; trigger a refer-
ence run in manual mode

 6 Feed hold Enable for axle movement (high-active)

 7 Reset fault
 8 Reserve
 9 Reserve
 10 Reserve
 11 Update Enable sequence prog. processing (high-active)

 12 Jog+ Jog, in manual mode only (bit 4)

 13 Jog- Jog, in manual mode only (bit 4)

 14 Engage/disengage "Electronic gearing", "Stepper motor interface" mode only

 15 vacant

 The reserve bits 8 to 10 are reserved for profile expansions and must always be set to 0.
 Only the bits printed in bold in the control word are used by the device.

 Control word in "Electronic gearing" or "Stepper motor interface" mode:

 Bit Name Comments
 0 Switch-on
 1 Disable power DRIVECOM state machine

 2 Emergency stop for controller enable

 3 Enable operation
 4 Auto "Positioning and sequence control" mode only

 5 Start / Referencing Trigger a reference run

 6 Feed hold "Positioning and sequence control" mode only

 7 Reset fault
 8 Reserve
 9 Reserve
 10 Reserve
 11 Update "Positioning and sequence control" mode only

 12 Jog+ "Positioning and sequence control" mode only

 13 Jog- "Positioning and sequence control" mode only

 14 Engage/disengage 1= Engage, axle follows guide reference

 15 vacant not used

 The reserve bits 8 to 10 are reserved for profile expansions and must always be set to 0.
 Only the bits printed in bold in the control word are used by the device.

 CAN bus data transfer protocol 49

 If the CAN control location is selected, the reference run may be triggered over CAN or by
way of an appropriately set input. The logic link between the two settings may be seen as an
OR function. Triggering of referencing is not accepted if the electronic gearing is already
engaged.

5.5.6 Control mechanisms, MC7000 POSMOD

 The following functions can be reached by way of the bus system

• Start control (currently with ENPO) CAN control word according to DRIVECOM
• Start sequence program CAN control word (mode-specific)
• Automatic enable CAN control word (mode-specific)
• Feed hold CAN control word (mode-specific)
• Update CAN control word (mode-specific)
• Jog + - CAN control word (mode-specific)
• Transfer of table index, Parameter channel,

program no. and reference run no.
• Transfer of flags and variables Parameter channel
• Loading of positioning program Parameter channel, parameter 551-POCMD
• CAN outputs CAN control telegram

5.5.6.1 Control enable
 When positioning and sequence control (546-POENA = ON), electronic gearing or stepper
motor interface mode is active control is enabled by way of the CAN control word
(DRIVECOM state machine), and not solely via the control contact ENPO.

5.5.6.2 Automatic enable and start of sequence program
 "Positioning and sequence control" mode only!

 The Auto and Start control functions are permanently linked to the control location. If the
control location (402-CLSEL = PMOD) is positioned on terminals, the digital inputs IS00 and
IS01 are active. If the control location is located on CAN (402-CLSEL = CAN), these func-
tions are determined by bits from the incoming CAN control word.

Note: Between the Auto and Start control functions a delay of 10 ms must be
maintained, to ensure that the positioning and sequence control has switched
safely to automatic mode.

5.5.6.3 Feed hold and update
 "Positioning and sequence control" mode only!

 The Feed Hold and Update functions are described simultaneously by the incoming CAN
control word and the configured digital inputs of the MC7000. Both functions are high-active.
The setting under which the relevant bit or input - as appropriate - is deleted has priority.

5.5.6.4 Jog+ and jog-
 "Positioning and sequence control" mode only!

 The jog+ and jog- functions are described with equally by the incoming CAN control word and
the configured digital inputs of the MC. The effect can be seen as an OR function of the two
settings.

 50 CAN bus data transfer protocol

5.5.6.5 Program number
 "Positioning and sequence control" mode only!

 The program number can be selected via terminals or by way of parameter 535-POPKD -
Coding of program number. Parameter 534-POQPN-Source of program number determines,
with the fix setting, that the program number is set by way of parameter 535-POPKD. A set-
ting unequal to fix means that the program number is read-in with the appropriate coding via
the digital inputs (IE00 - IE07) (see MC7000 POSMOD programming manual).

 To enable the program number to be changed over CAN, parameter 534-POQPN must be
set to fix. Parameter 535-POPKD-Coding of program number can be set by way of the pa-
rameter channel. The setting only takes effect when Auto mode is reselected.

5.5.6.6 Reference run number
 "Positioning and sequence control" mode only!

 The reference run number can only be set by way of parameter 522-PORTY Reference run
type [0-8]. This parameter can be set via the parameter channel.
 (see MC7000 POSMOD programming manual).

5.5.6.7 Table index
 "Positioning and sequence control" mode only!

 Similarly to the program number, the table index can be set via terminal or CAN control word.
The configuration is specified by the two parameters described in the following
 (see MC7000 POSMOD programming manual).

 558-POTKD-Coding of table index
 Default setting BIN => Table index via defined control inputs.

 Setting FIX => Index from control word
 Data type: usign8, EEPROM
 Value range: fix, bin
 Subject area: Positioning and sequence control
 SC subject area: PMOD

 559-POQTI-Source of table index
 The value is determined by the data content in the control identifier (data byte 2).

 Default setting 0
 Data type: usign8, RAM control value
 Value range: 0-15
 Subject area: Positioning and sequence control
 SC subject area: NON

 CAN bus data transfer protocol 51

5.5.6.8 Flags and variables
 "Positioning and sequence control" mode only!

 The field parameters 529-POMER-Flag and 528-POVAR-Variable can be read and written to
in the sequence program. By way of parameter 529-POMER the POSMOD can be informed of
events to which the sequence program responds. Likewise, the sequence program can indi-
cate the occurrence of certain events in parameter 529-POMER. By way of parameter
528-POVAR data can be exchanged with the POSMOD sequence program.
 They can be accessed via the parameter channel.
 If the MC7000 POSMOD is controlled over CAN, some indices of the field parameters are
accessible via the control/status identifier.

 In the control identifier: Flags M90 - 97 Data byte 3
 Variable H98 Data bytes 4 - 7

 In the status identifier: Flags M80 - 87 Data byte 3

 (see also MC7000 POSMOD programming manual).

 52 CAN bus data transfer protocol

5.5.7 Status messages

 Function: Status/actual value
Data direction: Device -> Master
Type: selective

5.5.7.1 Inverter status messages
 The inverter transmits its status message every 80 ms.

 Cycle: 80 ms

 Priority Base ID Data byte 0 Data byte 1 Data byte 2
 4 881 IST_LO IST_HI OUT_BIT 0 = STR

 1 = STL
 2 = S1IND
 3 = S2IND
 4 = S1OUT
 5 = S2OUT
 6 = S3OUT
 7 = ERROR

 Where 04-FSSEL = 26, actual value scaling: 1 bit = 0.009934Hz
 Where 04-FSSEL = 25, actual value scaling: 1 bit = 0.05Hz

 Explanatory note on the out-bits:

 STR /STL = Status of the start commands
 S1IND/S2IND = Freely programmable inputs of the inverter.

 If these bits are set in the control word, they are
linked by an OR function in the inverter to the val-
ues of the inverter inputs, and signaled in the in-
verted as the status.

 S1OUT/S2OUT/S3OUT = Freely programmable outputs of the inverter.
 If these bits are set in the control word, they are
linked in the inverter to the values of the inverter
outputs by an OR function. To control the outputs
over the CAN bus alone, all functions of the
inverter of which the parameters can be set to this
output must be shut down.
 For more detailed information on the setting and
availability of these functions, refer to the parame-
ter description which is available as a separate
document for each device.

 ERROR = Error message

 CAN bus data transfer protocol 53

5.5.7.2 Servodrive status messages in modes: Speed and Torque Control
 With regard to selection of the required status message refer to "Selection of control com-
mands".

Status with DRIVECOM state machine
 Where 492-CACNF = 1

 Priority based

on CAL
 Base ID Data byte

 0+1
 Data byte

2+3
 Data byte

 4
 3 881 Status word

 Actual Cycle

 Where 492-CACNF = 2,3

 Priority based

on CAL
 Base ID Data byte

 0+1
 Data byte

2+3
 Data byte

 4+5
 Data byte

 6
 3 881 Status word

 Actual 1 Actual 2 Cycle

 Status word: See description of status word

Cycle: Number of the internal cycle in which the status word was determined -
evaluated only in synchronized operation.

Actual 1: See definition of 492-CACNF, actual value of active operation mode, data
format Int16

 Actual 2: See definition of 492-CACNF, actual torque, data format Int16

Status with terminal emulation
 Where 492-CACNF = 4

 Priority
based

on CAL

 Base ID Data byte 0 Data byte
1

 Data byte
2

 Data byte
3

 Data byte
4

 Data byte
5

 4 881 Bit:
 0 = ERROR
 1 = WARN
 2 = REF
 3 = LIMIT
 4 = ACTIV
 5 = ROT_0
 6 = ROT_R
 7 = ROT_L

 Bit:
 0 = ENPO
 1 = IS00
 2 = IS01
 3 = OS00
 4 = OS01
 5 = A0
 6 = A1
 7 = EXT_SYN1

 IST
 _LWLB

 IST
 _LWHB

 IST
 _HWLB

 IST
 _HWHB

 IST_LWLB: Actual value Low Word Low Byte
 IST_LWHB: Actual value Low Word High Byte
 IST_HWLB: Actual value High Word Low Byte
 IST_HWHB: Actual value High Word High Byte

 The data format is Int32Q16 -> Value range: -32767.999 to +32768.999
 (High Word = pre-decimal point, Low Word = post-decimal point)

 54 CAN bus data transfer protocol

 Status message of MC7000 in modes:
• Positioning and sequence control (POSMOD)
• Electronic gearing and
• Stepper motor interface

 Where 492-CACNF = 5

 For information on the functions of flags (POMER) and the table index (POQTI) refer to the
positioning and sequence control programming manual.
 In Electronic Gearing and Stepper Motor Interface modes data bytes 2 - 7 have no function.

 Base

ID
 Data bytes 0 -1 Data byte 2 Data byte 3 Data bytes 4-7

 881 Status word
to control
POSMOD

(see above)

 559-POQTI
Table index

 529-POMER
 Flag

Index 80-87
Flag byte

 545-POAIP
 Current actual

position in
travel units

5.5.8 Status word for control of POSMOD over CAN
 The status word is always written to the first word of status identifier 881. In the status word
the current state of the device and additional messages are displayed. Bits 12 to 15 offer
room for mode-dependent or manufacturer-specific displays.
 The following bits of the status word are supported:

 Bit Name Comments
 0 Ready for start
 1 On DRIVECOM state machine

 2 Operation enabled
 3 Fault
 4 Power disabled
 5 Emergency stop
 6 Switch-on inhibit
 7 Warning
 8 vacant
 9 Remote, always 1
 10 Mode-dependent, Axle in position POSMOD ONLY

 11 Limit value
 12 Mode-dependent, engaged Electronic gearing

and stepper motor interface only

 13 Mode-dependent, Ref.pt. defined
 14 Manufacturer-specific, Prog. end POSMOD ONLY

 15 Manufacturer-specific, error POSMOD ONLY

 Only the bits printed in bold are used by the device.

 CAN bus data transfer protocol 55

 Status word in "Electronic gearing" or "Stepper motor interface" mode:

 Bit Name Comments
 0 Ready for start
 1 On DRIVECOM state machine

 2 Operation enabled
 3 Fault
 4 Power disabled
 5 Emergency stop
 6 Switch-on inhibit
 7 Warning
 8 vacant
 9 Remote, always 1
 10 Mode-dependent, Axle in position POSMOD ONLY

 11 Limit value
 12 Mode-dependent, Engaged Electronic gearing and

stepper motor interface only

 13 Mode-dependent, Ref.pt. defined
 14 Manufacturer-specific, Prog. end POSMOD ONLY

 15 Manufacturer-specific, Tracking error POSMOD ONLY

 Only the bits printed in bold are used by the device.

 56 CAN bus data transfer protocol

6 Response to device fault

 In case of error this state is indicated by the existing LEDs on the device, by the red back-
lighting of the KEYPAD and by the device status word.
 The SMARTDRIVE always disables the power stage in case of error. The error response of the
MASTERCONTROL is programmable for each error in five stages.
 In the error state the devices remain operable via the KEYPAD and all connected bus sys-
tems.

6.1 Error messages

 Function: Error messages
Data direction: Device > Master
Type: selective

 Messages may only be sent when Start = 1.

A) Error messages relating to inverters

 Priority based

on CAL
 Base ID Data byte 0

 2 441 Error number
 The number corresponds to the error number of the inverter

 (for definition see Operation Manual >> Error messages)

B) Error messages relating to servos

 Priority based

on CAL
 Base ID Data byte 0 Data byte 1

 2 441 Error number
 The number corresponds to the error

number of the servo
 (for definition see Operation Manual >>

Error messages)

 Error location
 This number permits a

more precise definition of
the causes of error in

servodrives.

Error codes, MC6000/7000

 Value Error text Description
 1 E-CPU Hardware or software error
 2 OFF Power failure
 3 E-OC Current overload shut-off
 4 E-OV Voltage overload shut-off
 5 E-OLI Ixt shut-off
 6 E-OTM Motor overheating
 7 E-OTI Servo overheating
 8 E-EEP Faulty EEPROM
 9 E-OLM I²xt shut-off
 10 E-PLS Plausibility error in parameter or program sequence
 11 E-PAR Faulty parameter setting
 12 E-FLT Floating-point error
 13 E-PWR Power pack not recognized
 14 E-EXT External error message (input)
 15 E-ENC Encoder evaluation defective

 CAN bus data transfer protocol 57

 16 E-OP1 Error in module in option slot 1
 17 E-OP2 Error in module in option slot 2
 18 E-TIM Runtime error
 19 E-FLW Tracking error
 20 E-WDG SIO watchdog
 21 E-CAN Error in CAN hardware or software
 22 E-IO1 Input submodule not recognized
 23 E-IO2 Output submodule not recognized
 24 E-VEC Error initializing VeCon processor
 25 E-BRK Error at brake output OS03
 26 E-POS Error message from POSMOD1
 27 E-FLH Error in FLASH memory

 MC7000 POSMOD error messages
 All errors signaled by the POSMOD are displayed with the error text ’E-POS’. Various error
locations are used to differentiate between the errors.

 Error text Error
location

 Description of error

 E-CPU 210 Positive hardware limit switch approached
 211 Negative hardware limit switch approached
 212 Positive software limit switch approached
 213 Negative software limit switch approached
 214 Reference point not defined
 215 Addressed hardware not available
 216 Selected program not available
 217 Jump to non-existent record number
 218 Called subroutine not available
 219 Destination position outside positioning range
 220 Division by zero
 221 Max. nesting depth exceeded
 222 Timeout in manual mode
 223 Destination position not reached
 224 No feed hold
 225 Selection (Auto/Referencing/Jog) not permitted
 226 Index overflow (indexed addressing)
 227 not used
 228 not used
 229 not used
 230 Max. velocity of servo exceeded
 231 not used
 232 No controller enable
 233 not used
 234 not used
 235 Impermissible command during axle movement

 58 CAN bus data transfer protocol

6.2 Acknowledgment of error messages

A) Inverters
 When the error flag is set in the status message the error message is additionally transmitted
over the CAN bus alternately with the status message.
 Errors can be reset in different ways:

• By changing the system status from System Start to System Stop and then back to
System Start - This operation allows an error to be reset on any number of devices in
the network simultaneously

• By setting the ERROR_RESET flag in the control word or in the DRIVECOM control word
by change of state to Error Reset (control code 0080 Hex)

• On the KEYPAD (see KEYPAD instructions)

• By way of control terminals (only with appropriate parameter setting)

 When the error bit is set in parameter 11-STAT a reset can be triggered relating to that
parameter by a SELECT telegram with the new value 000F Hex (VALUE = "000F").

B) Servos
 The basic response of a servo to errors is the same as the inverter as described above.

 CAN bus data transfer protocol 59

7 Examples

7.1 Activation of a VF1000 frequency inverter

 Presets:

• Parameter 01-MODE = 4 Control location interface
• Parameter 04-FSSEL = 25 Reference selector
• Parameter 82-SIOA = 0 Device address

 Action Who is
transmitting

 ID on bus Data bytes Comments

 Log on system FI 0 1543 None The frequency inverter transmits
this identifier in a 100 ms cycle
until the master has addressed
an identifier of the inverter.

 Send
 control identifier

 Master For FI 0:
 661
 For FI 1:
 663
 etc.

 Data byte 0 = 0
 Data byte 1 = 0
 Data byte 2 = 0

 The master sends the control
identifier to the FI to terminate
the system logon.
 The transmitted data are only
relevant when "System Start" is
set.

 Start system Master For all FIs:
 221

 Data byte 0 = 01 The master sends "System
Start".
 With this command the control
commands stored in the control
word of the FI are activated.

 From this point on the master
must transmit a control identi-
fier for the corresponding
inverter at least every 10 ms.
 If this time is exceeded an error
is generated.

 Send control
identifier

 Master For FI 0:
 661
 For FI 1:
 663
 etc.

 For example:
 Data byte 0 = 01
 Data byte 1 = 00
 Data byte 2 = 01

 Example:
 FI 0 is to rotate clockwise at
0.009934 Hz.

 Status message FI For FI 0:
 881
 For FI 1:
 883
 etc.

 For example:
 Data byte 0 = 01
 Data byte 1 = 00
 Data byte 2 = 01

 Example:
 FI rotates at 0.009934 Hz
 clockwise

 The FI must signal its status
at least every 80 ms.
 If the status is not signaled
within that time, the master
must signal an error

 60 CAN bus data transfer protocol

 Parameter channel for VF1000 frequency inverter:

 Action Who is

transmitting
 ID on bus Data bytes Comments

 Enquire for pa-
rameter

 Master to FI
0

 1101 Data byte 0 = 0E
 Data byte 1 = 00
 Data byte 2 = 05
 Data byte 3 = XX
 Data byte 4 = XX

 Enquire for parameter for
phase current (parameter
14-IS)

 Reply from FI FI 0 1321 Data byte 0 = 0E
 Data byte 1 = 00
 Data byte 2 = 05
 Data byte 3 = 28
 Data byte 4 = 00

 Phase current signal
 2 A
 (scaling 0.05 A = 1 bit)

 Send parameter Master to FI

0
 1101 Data byte 0 = 4E

 Data byte 1 = 00
 Data byte 2 = 02
 Data byte 3 = 03
 Data byte 4 = 00

 Set
parameter 78-OPT4) to 3

 Reply from FI FI 0 1321 Data byte 0 = 4E
 Data byte 1 = 00
 Data byte 2 = 05
 Data byte 3 = 28
 Data byte 4 = 00

 CAN bus data transfer protocol 61

7.2 Activation of an MC7000 in Speed Control mode

7.2.1 Terminal emulation control mode

 Preset:

• Load motor data via DRIVEMANAGER user interface
• Activate Speed Control mode via DRIVEMANAGER user interface
• Optimize controller
• Parameter 402-CLSEL = CAN (OPT1 on MC6000)
• Parameter 419-RSSL3 = CAN
• Parameter 489-CABDR = 500 Set baud rate
• Parameter 493-CAADR = 1 Device address
• Parameter 492-CACNF = 4 (speed-controlled) Control mode: terminal

emulation
• Mains reset to reinitialize
• Wire control contact hardware enable ENPO

 Action Who is
transmitting

 ID on bus Data bytes Comments

 Log on system MC 1 1545 None The MC sends this identifier in a
100 ms cycle until the master has
addressed an identifier of the
MC.

 Send
 control identifier

 Master For MC 0:
 661
 For MC 1:
 663
 etc.

 Data byte 0 = 0
 Data byte 1 = 0
 Data byte 2 = 0
 Data byte 3 = 0
 Data byte 4 = 0
 Data byte 5 = 0

 The master sends the control
identifier to the MC to complete
the system logon.
 The transmitted data are only
relevant when "System Start" is
set.

 Start system Master For all MCs:
 221

 Data byte 0 = 01 The master sends "System
Start".
 With this command the control
commands stored in the control
word of the MC are activated.

 From this point on the preset
timeout 409-BUTWD is moni-
tored.
 If this time is exceeded an error
is generated.

 Send control
identifier

 Master For MC 0:
 661
 For MC 1:
 663
 etc.

 For example:
 Data byte 0 = 01
 Data byte 1 = 00
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 0A
 Data byte 5 = 00

 Example:
 MC 1 is to rotate clockwise
at 10 rpm

 Status message MC For MC 0:
 881
 For MC 1:
 883
 etc.

 For example:
 Data byte 0 = 01
 Data byte 1 = 00
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 0A
 Data byte 5 = 00

 Example:
 MC 1 rotates clockwise at 1 rpm

 62 CAN bus data transfer protocol

7.2.2 Control mode: DRIVECOM state machine

 Preset:

• Load motor data via DRIVEMANAGER user interface
• Activate Speed Control mode via DRIVEMANAGER user interface
• Optimize controller
• Parameter 402-CLSEL = CAN (OPT1 on MC6000)
• Parameter 419-RSSL3 = CAN
• Parameter 489-CABDR = 500 Set baud rate
• Parameter 493-CAADR = 1 Device address
• Parameter 492-CACNF = 2 (speed-controlled) Control mode: DRIVECOM

state machine
• Mains reset to reinitialize
• Wire control contact hardware enable ENPO

 Action Who is
transmitting

 ID on bus Data bytes Comments

 Log on system MC 1 1545 None The MC sends this identifier in a
100 ms cycle until the master has
addressed an identifier of the
MC.

 Send
 control identifier

 Master For MC 0:
 661
 For MC 1:
 663
 etc.

 Data byte 0 = 0
 Data byte 1 = 0
 Data byte 2 = 0
 Data byte 3 = 0
 Data byte 4 = 0
 Data byte 5 = 0

 The master sends the control
identifier to the MC to complete
the system logon.
 The transmitted data are only
relevant when "System Start" is
set.

 Start system Master For all MCs:
 221

 Data byte 0 = 01 The master sends "System
Start".
 With this command the control
commands stored in the control
word of the MC are activated.

 From this point on the preset
timeout 409-BUTWD is moni-
tored.
 If this time is exceeded an error
is generated.

 Send control
identifier

 Master For MC 0:
 661
 For MC 1:
 663
 etc.

 For example:
 Data byte 0 = 00
 Data byte 1 = 00
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 0A
 Data byte 5 = 00

 Example:
 MC 1 is to dwell in the
"Ready for start" state.
Reference value 10 rpm
clockwise applied.

 Status message MC For MC 0:
 881
 For MC 1:
 883
 etc.

 For example:
 Data byte 0 = 40
 Data byte 1 = 02
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 00
 Data byte 5 = 00

 Example:
 MC 1 signals "Ready"

 CAN bus data transfer protocol 63

 Send control
identifier

 Master For MC 0:
 661
 For MC 1:
 663
 etc.

 For example:
 Data byte 0 = 06
 Data byte 1 = 00
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 0A
 Data byte 5 = 00

 Example:
 MC 1 is to switch from
"Ready" to "On".
Reference value 10 rpm
clockwise applied.

 Status message MC For MC 0:
 881
 For MC 1:
 883
 etc.

 For example:
 Data byte 0 = 31
 Data byte 1 = 02
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 00
 Data byte 5 = 00

 Example:
 MC 1 signals "On"

 Send control
identifier

 Master For MC 0:
 661
 For MC 1:
 663
 etc.

 For example:
 Data byte 0 = 0F
 Data byte 1 = 00
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 0A
 Data byte 5 = 00

 Example:
 MC 1 is to switch from
"On" to "Operation enabled".
Reference value 10 rpm
clockwise applied.

 Status message MC For MC 0:
 881
 For MC 1:
 883
 etc.

 For example:
 Data byte 0 = 37
 Data byte 1 = 02
 Data byte 2 = 00
 Data byte 3 = 00
 Data byte 4 = 0A
 Data byte 5 = 00

 Example:
 MC 1 rotates clockwise at 10 rpm
 and signals "Operation enabled"

Parameter setting

 Action Who is

transmitting
 ID on bus Data bytes Comments

 Enquire for pa-
rameter

 Master to MC
1

 1103 Data byte 0 = 02
 Data byte 1 = 00
 Data byte 2 = 05
 Data byte 3 = XX
 Data byte 4 = XX
 Data byte 5 = XX
 Data byte 6 = XX
 Data byte 7 = 00

 Enquire for parameter to be dis-
played as continuous actual
value (parameter 02-DISP)

 Reply from FI MC 1 1323 Data byte 0 = 02
 Data byte 1 = 00
 Data byte 2 = 00
 Data byte 3 = 05
 Data byte 4 = 00
 Data byte 5 = 00
 Data byte 6 = 00
 Data byte 7 = 00

 Message: Parameter DISP = 5
(5-CTLFA)

 Send parameter Master to MC

3
 1103 Data byte 0 = 02

 Data byte 1 = 00
 Data byte 2 = 02
 Data byte 3 = 03
 Data byte 4 = 00
 Data byte 5 = 00
 Data byte 6 = 00
 Data byte 7 = 00

 Set
parameter 02-DISP to 3

 64 CAN bus data transfer protocol

 Reply from MC MC 1 1323 Data byte 0 = 02
 Data byte 1 = 00
 Data byte 2 = 00
 Data byte 3 = 03
 Data byte 4 = 00
 Data byte 5 = 00
 Data byte 6 = 00
 Data byte 7 = 00

 Checkback from MC after suc-
cessful data transfer

 CAN bus data transfer protocol 65

7.3 Example: MC7000 POSMOD activation

 Task:

 Load a sequence program into the servo axle and activate it over CAN.
 In this process, the positioning is to be controlled by the status of a flag between the
absolute position 0 and a freely adjustable position.

 Presets:

• Load motor data set via DRIVEMANAGER user interface
• Activate "Positioning and sequence control" mode via DRIVEMANAGER user

interface
• In Parameter Editor set following parameters:

492-CACNF = 5 Select control mode
402-CLSEL = CAN (OPT1 on MC6000)
489-CABDR = 500 Set baud rate
493-CAADR = 1 Device address

• Load sequence program into servocontroller
• Mains reset to activate changed settings
• Wire control contact hardware enable ENPO

 Note:
 Flag M90 triggers the positioning operations with an edge change.
 Variable H98 contains the freely selectable reference position. Unit = increments

 66 CAN bus data transfer protocol

 The drive can now be started with input ENPO set, with the following control sequence:

 ID Data bytes Comments
 DD 01 ;Systemstart

 297 06 00 00 00 00 00 00 00 ;SHUT DOWN DRIVECOM (0->6)

 297 4F 08 00 00 00 00 00 00 ;SWITCH ON DRIVECOM (6->F)

 ;Feed hold (4) always set

 ;Update (8) always set

 297 5F 08 00 00 00 00 00 00 ;Automatic enable (5)

 ;10ms delay until start of sequence program

 297 7F 08 00 00 00 00 00 00 ;Start enable, sequence program started (7)

 297 7F 08 00 00 00 00 0A 00 ;POMER[90] = 0,

 ;POVAR[98] = 655360 incr., destination
position = 10 motor revolutions (absolute)

 297 7F 08 00 01 00 00 0A 00 ;POMER[90] = 1, Start positioning

 ;POVAR[98] = 655360 incr.,

 297 7F 08 00 00 64 00 00 00 ;POMER[90] = 0, Trigger positioning to pos. 0

 ;POVAR[98] = 100 incr.,

 297 7F 08 00 01 64 00 00 00 ;POMER[90] = 1, Trigger positioning

 ;POVAR[98] = 100,

 .
 .
 .
 297 4F 08 00 00 00 00 00 00 ;SWITCH ON DRIVECOM (6->F)

 ;Feed hold (4) set

 ;Update (8) set

 ;Axle in manual mode, axle can be moved by
"Jog" function.

 ;Parameter settings and download of se-
quence prog. possible

 297 06 00 00 00 00 00 00 00 ;SHUT DOWN DRIVECOM (0->6), power
stage off

 DD 00 ;System stop, also error reset

 CAN bus data transfer protocol 67

7.4 Loading and deleting the positioning program of the
positioning and sequence control

 A positioning program can be downloaded line-by-line to the POSMOD software by writing to
the string parameter 551-POCMD-POSMOD Direct command input in manual mode.

 Example program:

 %P00 (Commissioning)
 N010 SET H10=5000; Positioning speed in inc/5ms
 N020 SET H11=655360; Absolute position 1 in inc. = 10 motor revs
 N030 SET H12=0; Absolute position 2 in inc.
 N040 SET H20=100; Waiting time between positioning operations in ms

 N100 GO 0; Trigger referencing
 N110 WAIT (IE01=1); Wait until input IE01=1
 N120 GO W A H11 H10; Approach pos. 1
 N130 WAIT H20; Waiting time
 N140 WAIT (IE01=0); Wait until input IE01=0
 N150 GO W A H12 H10; Approach pos. 2
 N160 WAIT H20; Waiting time
 N200 JMP N110; Close endless loop
 END

 The above example program is transferred line-by-line to the servocontroller as a string via
the parameter channel. The comments separated by semicolons are eliminated in the pro
cess. That is to say, the following strings are transmitted as data:

 1st string "%P00 (Commissioning)"
 2nd string "N010 SET H10=5000"
 3rd string "N020 SET H11=655360"
 .
 .
 14th string "END" Servo detects end of program transmission
 15th string "%SAV" Back-up program code in Flash.

The execution time depends on the
program length (approx. 100ms).

Note: The program sets being transferred must have no comments or semicolons
at the end, otherwise the transfer will be rejected by the device.

 If a sequence program is to be overwritten, the original must first be deleted from the device
memory. To this end the following string is transmitted:

 String "%CLPxx"
 ° xx = program number 00 - 99

 If the string "xx" is actually inserted for the program number, all sequence programs

in the servocontroller are deleted!

 Sequence programs can only be transmitted with the sequence control in manual mode!

 68 CAN bus data transfer protocol

7.5 Example: Activation in "Electronic Gearing" mode

 Presets:

• Load motor data set via DriveManager user interface
• Activate Electronic Gearing mode via DriveManager user interface
• In Parameter Editor set following parameters:

492-CACNF = 5 Select control mode
402-CLSEL = CAN (OPT1 on MC6000)
489-CABDR = 500 Set baud rate
493-CAADR = 1 Device address

• Mains reset to activate changed settings

Note: With parameters 387-VRNOM and 388-VRDOM the transmission ratio of the
electronic gearing is specified as the numerator/denominator ratio

 The drive can now be started with input ENPO set, with the following control sequence:

 ID Data bytes ;Description
 DD 01 ;Systemstart

 297 06 00 00 00 00 00 00 00 ;;SHUT DOWN DRIVECOM

 297 0F 00 00 00 00 00 00 00 ;;SWITCH ON DRIVECOM

 297 2F 00 00 00 00 00 00 00 ;Request reference run (not engaged)

 297 0F 40 00 00 00 00 00 00 ;Engage EGear

 44F 83 01 02 0A 00 00 00 00 ;Parameter channel VRNOM-183h = 10

 44F 84 01 02 01 00 00 00 00 ;Parameter channel VRDOM-184h = 1

 ;Transmission ratio = 10-1

 44F 83 01 02 01 00 00 00 00 ;Parameter channel VRNOM-183h = 1

 44F 84 01 02 0A 00 00 00 00 ;Parameter channel VRDOM-184h = 10

 ;Transmission ratio = 1-10

 297 0F 00 00 00 00 00 00 00 ;Disengage EGear

 297 06 00 00 00 00 00 00 00 ;SHUT DOWN DRIVECOM

 DD 00 ;Systemstop

 CAN bus data transfer protocol 69

 Appendix A: Glossary of terms

CiA: ("CAN in Automation") CAN bus user group, generally defines a
protocol for automation

CAL: (CAN Application Layer) CiA protocol, primarily describes the way
in which variables are transmitted without defining their function
or content

Subsets:
CMC: (CAN based Message Specification) Specifies the above-
described definition; accepted by most CAN suppliers; LUST
conforms to this specification.

NMT: (Network Management) Required for the master in the
CAN system; not implemented by Lust, as drive controllers
always have a slave function but no "control function".

LMT: (Layer Management) See NMT

DBT: (Identifier Distributor) See NMT

CANopen: Based on CAL definition

Corresponds to CiA Draft Standard 301

Expands the CAL definition to include function and unit assign-
ment of the predefined variables

This definition is being drafted by CiA and various user groups
(MOTION for drive technology and I/O for inputs/outputs)
(e.g. variable for torque in Nm).

Definition scheduled for completion by the end of 1996.

⇒ First devices scheduled for 2nd quarter 97

MOTION: User group under CiA tasked to draft a profile of the CANopen
protocol for drive technology

I/O: User group under CiA tasked to draft a profile of the CANopen
protocol for sensors and actuators

Note: Operation with drive controllers in a network is possible, as long as there are
no overlaps of the identifiers used.

 70 CAN bus data transfer protocol

General points on the various protocol definitions

CAL Mainly in use in Europe

LUST has currently implemented a protocol which can be acti-
vated by a CAL master.

Initialization has been simplified relative to CAL (CMC): e.g.
addressing via jumper, but without impacting on operation.

Device Net Mainly in the USA (corresponds to CAL definition)

SDS Has not established itself.

 We reserve the right to make technical changes. ID no.: A047.22B.1-00 EN 03/99

 Lust Antriebstechnik GmbH ∗ Gewerbestr. 5-9 ∗ D-35633 Lahnau ∗ Phone +49 64 41 / 966 -0 ∗ Fax +49 64 41 / 966 -137

 Internet: http://www.lust-tec.de ∗ e-mail: lust@lust-tec.de

	First Page
	Table of contents
	1 General introduction
	1.1 System requirements
	1.2 User level in operation over CAN bus
	1.3 Further documentation
	1.4 General information on the structure of a CAN network
	1.5 CAN protocol for LUST drives

	2 Installation
	3 Commissioning and configuration
	4 Setting the device parameters
	4.1 VF1000 parameters for bus operation
	4.2 MC6000/MC7000 parameters for bus operation
	4.3 Representation of parameter data
	4.4 Representation of parameter number
	4.5 Telegram execution and verification
	4.6 Parameter channel
	4.7 Field parameters (MC7000 only)
	4.8 Handshake for downloading parameter data sets

	5 Control and reference input
	5.1 System states
	5.2 Device states
	5.3 Device control
	5.4 Device status
	5.5 Identifiers

	6 Response to device fault
	6.1 Error messages
	6.2 Acknowledgment of error messages

	7 Examples
	7.1 Activation of a VF1000 frequency inverter
	7.2 Activation of an MC7000 in Speed Control mode
	7.3 Example: MC7000 POSMOD activation
	7.4 Loading and deleting the positioning program
	7.5 Example: Activation in "Electronic Gearing" mode

	Appendix A

