
 

 1

 

Gem Drive Studio 
 

Commissioning manual of  
the Communication Server 



 

 2

Gem Drive Studio – Commissioning of the Communication server 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© INFRANOR – July 2011. All rights reserved. 

       Issue : 1.2 



 

 3

Gem Drive Studio – Commissioning of the Communication server 

Content 
 
 
 
Content .................................................................................................................................................... 3 
1. Introduction .......................................................................................................................................... 4 
2. Minimum configuration ........................................................................................................................ 4 
3. Installation of the server module ......................................................................................................... 4 
4. Description of the server ...................................................................................................................... 5 

4.1. Architecture .................................................................................................................................. 5 
4.2. Environment of the development ................................................................................................. 6 
4.3. Required files ............................................................................................................................... 7 

4.3.1. Installed files ......................................................................................................................... 7 
4.3.2. Configuration files of server and client ................................................................................. 7 

5. Function list ......................................................................................................................................... 9 
Fct_AddClientReference ..................................................................................................................... 9 
Fct_RemoveClientReference .............................................................................................................. 9 
Fct_ReadServerFeatures .................................................................................................................... 9 
Fct_CommConfig .............................................................................................................................. 10 
Sub_ReadCommConfig .................................................................................................................... 10 
Sub_StopPeripheral .......................................................................................................................... 11 
Fct_ReadPort .................................................................................................................................... 11 
Fct_WritePort .................................................................................................................................... 12 

6. Development of a client module ........................................................................................................ 12 
6.1. Pre-requested ............................................................................................................................ 12 
6.2. Object dictionaries ...................................................................................................................... 12 
6.3. Commissioning of the server ...................................................................................................... 13 

6.3.1. Creation of the WCF communication channel .................................................................... 13 
6.3.2. Launching the server .......................................................................................................... 14 
6.3.3. Connection with the server ................................................................................................. 14 
6.3.4. Selection of a communication peripheral ............................................................................ 14 
6.3.5. Use ...................................................................................................................................... 15 
6.3.6. Disconnection and stopping of the server .......................................................................... 15 
6.3.7. The callbacks ...................................................................................................................... 15 

6.4. Example: client model ................................................................................................................ 16 
7. Appendix: File system objects ........................................................................................................... 17 

7.1. File name .................................................................................................................................... 17 
7.2. Opening a file for reading ........................................................................................................... 17 
7.3. Reading a file ............................................................................................................................. 18 
7.4. Creating a file ............................................................................................................................. 18 
7.5. Writing a file................................................................................................................................ 18 
7.6. Deleting a file ............................................................................................................................. 18 
7.7. Closing a file ............................................................................................................................... 18 
7.8. Searching a file .......................................................................................................................... 18 
7.9. File list ........................................................................................................................................ 19 
7.10. Return codes ............................................................................................................................ 19 



 

 4

Gem Drive Studio – Commissioning of the Communication server 

1. Introduction 
 
PC softwares developed for the parameterization of INFRANOR's latest generation drives are based 
on a modular client/server architecture. 
 
One of the interests of this architecture is the possibility to develop independent client modules using 
the same server. 
 
The purpose of the Communication Server module is to manage the physical accesses to the fieldbus 
by adapting the communication protocol to the various peripherals (CANopen, RS232, ...).  
 
This manual provides all information allowing users to develop their own client module by using the 
Communication Server module.  
 

2. Minimum configuration  
 
The server module has to be installed on a PC with following minimum configuration: 
 
• Processor: 1 GHz, 
• RAM: 512 MB, 
• Operating System: Windows© XP (Service Pack 2) or Server 2003 
• Microsoft .NET Framework V3.0 (or higher) installed. 
 

3. Installation of the server module 
 
The installation set contains: 
 
• The installer of the server. 
• A client model (source code) written in VB.NET. 
• A documentation. 
 
Unzip the ZIP file and launch the Setup.exe file. 
Follow the procedure to install the server on the PC. 
 
The sources of the client model can be edited under the Microsoft Visual Studio environment. A free 
express version is available on the Microsoft website for download. 
 
During the installation of the server on the PC, four keys are created in the Windows base register: 
 
One key containing the name of the executable allowing to launch the server: 
 

Key: HKEY_USER 
Subkey: Default\Software\DriveServer\Infos 
Name of the key: DriveServerName 

 
One key containing the access path to this executable: 
 

Key: HKEY_USER 
Subkey: Default\Software\DriveServer\Infos 
Name of the key: DriveServerPath 

 
 
 
 



 

 5

Gem Drive Studio – Commissioning of the Communication server 

One key containing the server version: 
 
Key: HKEY_USER 
Subkey: Default\Software\DriveServer\Infos 
Name of the key: DriveServerVersion 
 
One key containing the access path to the object dictionary files: 
 
Key: HKEY_USER 
Subkey: Default\Software\DriveServer\Infos 
Name of the key: DictionariesPath 
 
The client module can use these keys later for launching/stopping the server. 
 

4. Description of the server 
 
4.1. Architecture 
 
The server consists of: 
 
- a part dedicated to the communication between server and client modules, 
 
- a part managing the hardware peripherals (RS232, CANopen1, CANopen2, ...). 
 
 

 
 

CANopen 
IXXAT 

RS232 ... 

Commissioning of the peripherals

Interface with the client modules: 
- Connections/Disconnections 
- Communication choice 
- Request for reading or writing an 
object 
 

Client modules 

    Fieldbus 

Se
rv

er
 o

f c
om

m
un

ic
at

io
n 



 

 6

Gem Drive Studio – Commissioning of the Communication server 

The whole management of the hardware peripherals is made by the server. So, any new peripheral 
implemented on the server will not require the recompiling of the client modules. 
 
Adding a new communication channel will involve the development of a new module internal to the 
server as well as an incrementation of the server version, ensuring the compatibility with all former 
versions. 
 
The server remains independent from the data types. For each parameter (CAN object), the server 
reads or writes a sequence of bytes on the selected peripheral and the calling client will have to format 
the data according to the object type. The information regarding the type is given by the object 
dictionary corresponding to the drive model and version. 
 
 
4.2. Environment of the development 
 
The communication server has been developed under .NET environment in order to offer maximum 
compatibility with the present systems. 
 
The client modules can be written by using one of the NET languages (C#, VB.NET, C++, 
Delphi.NET....). 
 
The communication between communication server and modules is based on the WCF technology or 
on Windows Communication Foundation. This technology appeared with version 3.0 of the Framework 
.NET. 
 
WCF provides a unified programming model allowing to build distributed applications.  
 
This technology is based on 3 important elements: 
 
A/ The service 
 
A WCFservice is a software unit implementing a contract. These services are listed in an interface (in 
the meaning of object) which integrates the list of proposed operations by each service (service 
contract). 
 
B/ The address 
 
The address is just a URL defining the service location. 
 
C/ The protocol or "binding" 
 
This is the method used for communicating with the WCF service. Framework .NET 3.0 proposes 9 
various "bindings": 

• BasicHttpBinding  
• WSHttpBinding 
• WSDualHttpBinding 
• WSFederationHttpBinding 
• NetTcpBinding 
• NetNamedPipeBinding 
• NetMsmqBinding 
• NetPeerTcpBinding 
• MsmqIntegrationBinding 

 
 



 

 7

Gem Drive Studio – Commissioning of the Communication server 

4.3. Required files 

4.3.1. Installed files 
 
The services developed in the communication server are compiled in a DLL library file and proposed 
via an interface (DriveInterface.dIl). 
 
The services of the communication server requires a host on which they can be executed. This is the 
purpose of the DriveHost.exe executable. 
 
In order to develop a client module and to use the server services, a reference must be added to the 
DriveInterface.dll file. 
The server is started by launching the executable file DriveHost.exe. 
 

4.3.2. Configuration files of server and client 
 
The configuration of a Windows Communication Foundation (WCF) service with a configuration file 
allows to provide termination point and service behaviour data at the moment of the execution rather 
than at the compiling. 
 
These files must be located in the same directory as the executable. They allow to define the service  
termination points as well as their behaviour. 
 
Client side: 
 
The configuration file (app.config) must be located in the same directory as the executable.  
Example of its content: 
 
<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
  <system.serviceModel> 
    <bindings> 
      <netTcpBinding> 
        <binding name="longTimeoutBinding" 
                 receiveTimeout="infinite"  
                 sendTimeout="infinite"> 
          <reliableSession enabled ="true" inactivityTimeout ="infinite" 
ordered="false"/> 
          <security mode="None"/> 
        </binding> 
      </netTcpBinding> 
    </bindings> 
    <client> 
      <endpoint 
        address="net.tcp://localhost:8018/AllDriveServices" 
        binding="netTcpBinding" 
        bindingConfiguration="longTimeoutBinding" 
        contract="DriveInterface.IDriveService" 
        name="NetTcpBinding_IDriveService" /> 
    </client> 
  </system.serviceModel> 
</configuration> 
 
 



 

 8

Gem Drive Studio – Commissioning of the Communication server 

Server side: 
 
The configuration file is installed in the same directory as the DriveHost.exe file. 
Its content is the following: 
 
<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
  <system.serviceModel> 
    <bindings> 
      <netTcpBinding> 
        <binding name="longTimeoutBinding" 
                 receiveTimeout="infinite" 
                 sendTimeout="infinite"> 
          <reliableSession enabled ="true" inactivityTimeout ="infinite" 
ordered="false"/> 
          <security mode="None"/> 
        </binding>   
      </netTcpBinding> 
    </bindings> 
    <services> 
      <service name="DriveService.AllDriveServices"> 
        <endpoint 
            address="net.tcp://localhost:8018/AllDriveServices" 
            bindingConfiguration="longTimeoutBinding" 
            binding="netTcpBinding" 
            contract="DriveInterface.IDriveService" /> 
      </service> 
    </services> 
  </system.serviceModel> 
</configuration> 
 
In this example, clients will connect to the address 
net.tcp://localhost:8018/AllDriveServices for using the services of the server and 
dialogue by using TCP sockets. 
 
Configuration files can be modified. For example, it is possible to add <endpoint> tags with various 
addresses and different bindings. 
 
So, when adding the following lines into the App.config file, the service will also be available in http: 
<endpoint address="http:// localhost:8018/AllDriveServices " 
binding="basicHttpBinding" contract=" DriveInterface.IDriveService "/>  
 
 
 



 

 9

Gem Drive Studio – Commissioning of the Communication server 

5. Function list 
 
Fct_AddClientReference 
 
Description  
 
This function allows to reference a client module on the server. 
 
Input parameters 
 
Use of the Callbacks (boolean). 
 
Output parameters 
 
None. 
 
Feedback value 
 
- Client number ("Short" type). 
 
Note: This number must be used later for all exchanges with the server. 
 
 
Fct_RemoveClientReference 
 
Description 
 
This function allows to unreference the client module of the server. 
 
Input parameters 
 
- Client number ("Short" type). 
 
Output parameters 
 
None. 
 
Feedback value 
 
- Number of clients still referenced on the server ("Byte" type). 
 
 
Fct_ReadServerFeatures 
 
Description 
 
This function allows to know the list of functionalities implemented on the communication server.  
 
Input parameters 
 
None. 
 
Output parameters 
 
None. 
 
 
 



 

 10

Gem Drive Studio – Commissioning of the Communication server 

Feedback value 
 
- 32 bit word. Each bit represents a supported functionality ("UInteger" type) 
 
The summary below gives the list of the integrated functions for the various server versions. If the 
corresponding bit is set at 1, then the function is implemented. 
 
Version 1.0 (first version) 
Bit 0: Basic simulator (reading only) 
 
 
Fct_CommConfig 
 
Description   
 
This function allows to configure the communication by displaying a window grouping the various 
available peripherals. 
 
Input parameters 
 
- Client number ("Short" type) 
 
 
Output parameters 
 
- Selected communication type ("SByte" type): 
 0: Serial link 
 1: CANopen (IXXAT peripherals) 
 
-  Name of the selected peripheral ("String" type) 
 
- Communication speed ("UInteger" type) 
 
Feedback value 
 
- Communication status ("SByte" type): 
 
 0: Peripheral stopped 
 1: Peripheral started 
 -1: Peripheral faulty 
 
 
Sub_ReadCommConfig 
 
Description   
This function allows to read the communication status. The returned information allow to avoid calling 
the  Fct_CommConfig function if a peripheral is already started and the client wants to remain on the 
same peripheral. 
 
Input parameters 
 
- None. 
 
Output parameters 
 
- Selected communication type ("SByte" type): 
 0: Serial link 
 1: CANopen (IXXAT peripherals) 
 
- Selected peripheral type "(String" type) 



 

 11

Gem Drive Studio – Commissioning of the Communication server 

- Communication speed ("UInteger" type) 
 
- Communication status ("SByte" type): 
 
 0: Peripheral stopped 
 1: Peripheral started 
 -1: Peripheral faulty 
 
Sub_StopPeripheral 
 
Description    
 
This function stops the started peripheral. 
  
Input parameters 
 
- None. 
 
Output parameters 
 
- None. 
 
Fct_ReadPort 
 
Description 
 
This function allows to read a parameter (CANopen object) on one of the drives connected to the 
fieldbus. 
 
Input parameters 
 
- Client number ("Short" type) 
 
- Node number (CAN address) of the drive ("Short" type) 
 
- Parameter index in hexadecimal ("String" type) 
 
- Parameter sub-index in hexadecimal ("String" type) 
 
- Timeout value in seconds (optional, value = 1 by default) ("Short" type) 
 
Output parameters 
 
-  Byte table containing the read value ("Byte" type) 
 
Feedback value 
 
- Command status ("Integer" type): 
 
 - 1: Feedback OK 
 - 2: Server busy (in this case, renew the request)  
 - 3: Faulty feedback 
 - Other values: "Abort" code (see CANopen Communication Profile DS-301).  
 
 



 

 12

Gem Drive Studio – Commissioning of the Communication server 

Fct_WritePort 
 
Description 
 
This function allows to read a parameter (CANopen objetc) on one of the drives connected to the 
fieldbus. 
 
Input parameters 
 
- Client number ("Short" type) 
 
- Node number (CAN address) of the drive ("Short" type) 
 
- Parameter index in hexadecimal ("String" type) 
 
- Parameter sub-index in hexadecimal ("String" type) 
 
- Table containing the bytes to be written ("Byte" type) 
 
- Timeout value in seconds (optional, value = 1 by default) ("Short" type) 
 
Output parameters 
 
-  None. 
 
Feedback value ("Integer" type) 
 
- Command status: 
 
 - 1: Feedback OK 
 - 2: Server busy (in this case, renew the request)  
 - 3: Faulty feedback 
 - Other values: "Abort" code (see CANopen Communication Profile DS-301).  
 

6. Development of a client module 
 
6.1. Pre-requested 
 
The client module must refer to the DriveInterface.dll interface file and to the mechanisms of the 
WCF technology grouped within the space named System.ServiceModel. 
 
The DriveInterface.dll file is located in the server installation directory. 
 
6.2. Object dictionaries 
 
The object dictionaries allow to recognize the list and features of the parameters belonging to a drive. 
These dictionaries are managed as versions and can be modified according to the firmware 
evolutions. 
Concretely, an object dictionary is an XML file which contains a header allowing the identification of 
the versions, followed by a list and description of the parameters. 
 



 

 13

Gem Drive Studio – Commissioning of the Communication server 

For each parameter, the object dictionary specifies:  
 
 - The index 
 - The sub-index 
 - The name 
 - The type (*) 
 - The access type (**) 
 - The limit values 
 - The possibility or not to map this object into a PDO message 
 - The behaviour (modification when enabled or disabled, ...) 
 - The category (parameter of motor, regulator, communication, application, ...) 
 
(*) Possible values: 
 
 - 0x02: 8 bit signed whole number (Integer8) 
 - 0x03: 16 bit signed whole number (Integer16) 
 - 0x04: 32 bit signed whole number (Integer32) 
 - 0x05: 8 bit unsigned whole number (Unsigned8) 
 - 0x06: 16 bit unsigned whole number (Unsigned16) 
 - 0x07: 32 bit unsigned whole number (Unsigned32) 
 - 0x09: Character sequence (VisibleString) 
 - 0x0A: Character (ByteString) 
 
(**) Possible values: 
 
 - rw: Accessible in reading or writing 
 - ro: Accessible in reading only 
 - wo: Accessible in writing only 
 
In fact, the dictionary contains the information which are normally contained in the EDS (Electronic 
Data Sheet) file available for any drive running with the CANopen protocol. Information contained in 
the object dictionary are more complete than those contained in the EDS file. 
 
For each new version of the communication server, the directory containing the object dictionary 
pertaining to the drives will be updated. 
This directory is located in the "Dictionaries" file of the server installation directory. 
 
The name of this directory is given by a key recorded in the Windows base register when installing the 
server (see chapter "Installation of the server module"). 
 
 
6.3. Commissioning of the server 

6.3.1. Creation of the WCF communication channel 
 
The creation of a communication channel with the server requires the ChannelFactory object. This 
object allows to generate a class which will authorize a client to send to and/or receive from a service. 
 
This channel can only be defined from the client to the server or in both directions. In this case, it is 
called "duplex channel". The communication from the server to the client is made by means of 
"callback" procedures. 
 
The following code (example in VB .NET) allows to create this communication channel between client 
and server.  
 
Note: This object is an interface type object (service contract). 
 
 
 



 

 14

Gem Drive Studio – Commissioning of the Communication server 

'Normal channel 
'Public myChannelFactory As ServiceModel.ChannelFactory(Of 
DriveInterface.IDriveService) = Nothing 
 
'Duplex channel (by using the callback procedures) 
Public myChannelFactory As ServiceModel.DuplexChannelFactory(Of 
DriveInterface.IDriveService) = Nothing 
 
Public myService As DriveInterface.IDriveService 
 
Dim Instance As New InstanceContext(New CbCallbackClass()) 
 
myChannelFactory = New DuplexChannelFactory(Of  
DriveInterface.IDriveService)(Instance, "NetTcpBinding_IDriveService") 
 
myService = myChannelFactory.CreateChannel() 
 
The following code line allows to close the communication channel: 
 
myChannelFactory.Abort() 
 

6.3.2. Launching the server 
 
The first client must launch the server. The actions required for it are the following: 
 

 Check whether the server is installed, by verifying the availability of the keys 
(DriveServerName and/or DriveServerPath) in the base registers. 

 
 Check whether the server is already launched, by verifying if its name (see 

DriveServerName key) is in the list of active Windows processes. 
 

 Launch the server (see DriverServerPath key) if not already done. 
 
Reminder: The server is not a Windows application (application with window). It is a DLL which 
contains procedures called by the clients. Launching the server consists in creating a communication 
channel (in the meaning of Windows Communication Foundation) between this server and the client 
modules. 
 
When the server is launched, a new icon is displayed in the notification area of the Windows tool bar 
(systray). Clicking on this icon displays a menu which allows to stop the server. 
 

6.3.3. Connection with the server 
 
When a client is connecting to the server, it references on the server and gets a client number which 
will be used later in all exchanges between client module and server module. 
 

6.3.4. Selection of a communication peripheral 
 
For launching a reading or writing instruction on one of the drives connected to the fieldbus, a 
communication peripheral must be selected among all available peripherals (RS232, CAN,...). 
 
When the first client is connecting to the server (referencing), then the server automatically starts the 
last peripheral used, if it is available. 
 
For using another peripheral, it is possible, from the client module, to call a server procedure which 
opens a configuration window of the communication. In this window, the user can stop the running 
peripheral, if it has started, and select another peripheral and launch its initialization.  



 

 15

Gem Drive Studio – Commissioning of the Communication server 

Note: When a user selects a communication peripheral and clicks on the button initializing this 
peripheral, this one is immediately started by the server. If there are other client modules, those will 
have to use the same peripheral as long is it will not have been stopped. But it is possible to stop the 
running peripheral from any client connected to the server. 
 

6.3.5. Use 
 
When a client module is connected to the server and a peripheral is started, it is possible to use the 
functions allowing to read or write parameters in a drive connected to the fieldbus (for more details, 
see chapter "Function list"). 
 

6.3.6. Disconnection and stopping of the server 
 
When a client disconnects from the server, it is unreferenced from the server and its client number is 
released. 
 
Disconnecting from the server does not mean stopping the server. But the disconnection procedure 
called by the client specifies in return the number of clients remaining connected. If this number is 
equal to 0, it is recommended to stop the server because the process is not more used. 
 
On server side, if a communication peripheral is started, it is automatically stopped after disconnection 
of the last client. 
 
For stopping the server, just stop the process under Windows from the keys described above. 
 

6.3.7. The callbacks 
 
The callbacks are procedures of the client called by the server. 
The setup of these procedures is only effective if the input parameter of the referencing procedure on 
the server (Fct_AddClientReference) is set at 1. 
 
Attention: The client module must mandatorily contain the declaration of these procedures. If one of 
these procedures is not used, the procedure body can be empty but the procedure will however be 
declared. 
 
The list of the presently implemented callbacks is the following : 
 
Sub_ServerNotification 
 
Description: This procedure is used only for Gem Drive Studio projects. It allows to inform a client 
module about a project modification. 
 
Input parameters 
 
- Notification type (Short) 
 

- 0: The notification indicates that the client must store his project configuration 
- 1: The notification indicates that the project file has been modified. The other parameters  
      contain the new project file path and the list of the connected devices. 

             - 2: The notification indicates that the client module must stop. 
 
- Access path to the project file (string type) 
 
- NodeID list of the connected devices separated by "#" characters (string type). 
 



 

 16

Gem Drive Studio – Commissioning of the Communication server 

Output parameters 
 
- None. 
 
Sub_ServerCommandProgress 
 
Description: As soon as a transfer size (reading or writing) exceeds 50 bytes, this procedure is called 
by the server every second for indicating the total transfer byte number and the number of bytes still to 
be transferred. 
 
Input parameters 
 
- Number of bytes to be transferred (Integer type) 
 
- Number of bytes remaining for transfer (Integer type) 
 
Output parameters 
 
- None. 
 
 
6.4. Example: client model 
 
The installer of the communication server contains a Visual Studio project named ClientModel. 
According to its name, this project contains the commented source files corresponding to a client 
module template. 
 
Compiling this project requires to add the DriveInterface.dll file in the reference list.  
Reminder: this file is located in the installation directory of the communication server. 
 
The main interface contains several buttons allowing to use the various possibilities of the 
communication server: 
 
 

 
 
 
 



 

 17

Gem Drive Studio – Commissioning of the Communication server 

Various possible actions: 
 
A/ Starting the server 
 
=> Use of the server installation keys for launching/controlling the server process. 
 
 
B/ Connection to / disconnection from the server 
 
=> Creation of the WCF communication channel 
=> Client referencing on the server (assignment of a client number). 
=> Delisting of the client (release of the client number). 
 
 
C/ Selection of the communication peripheral 
 
=> Display of the configuration window of the communication. 
=> Start/Stop of the peripheral. 
 
 
D/ Identification of a drive on the bus 
 
=> Connection to a drive by using its address. 
=> Reading of its object dictionary version and association with a dictionary file available in the library. 
=> Creation of a CANopen object list from the analysis of the object dictionary. 
 
 
E/ Reading/writing of a parameter on a drive 
 
=> Reading of an object with formatting according to the type 
=> Writing of an object 
 
 
F/ Getting the file system of a drive working  
 
=> Reading of the file list available in a drive 
=> Reading/Writing/Deletion of a file. 
 
All objects regarding the file system are detailed in the appendix of this document. 
 

7. Appendix: File system objects 
 
7.1. File name 
 
There are several possible commands on the file contained in the drive. Before each command, the 
file name must be communicated to the device. 
 
Object: Index 0x5F40, Sub-index 0x0 
Type: String 
Value: File name in format 8.3 (Example: DRIVEPAR.TXT) 
 
7.2. Opening a file for reading 
 
Object: Index 0x5F42, Sub-index 0x1 
Type: Integer32 
Value to be written: File length in bytes 
 
The use of this object requires to previously specify a file name with object 0x5F40/0x0.  



 

 18

Gem Drive Studio – Commissioning of the Communication server 

7.3. Reading a file 
 
Object: Index 0x5F48, Sub-index 0x0 
Type: Unsigned8 
Value to be read: Byte array 
The use of this object requires to previously open the file with object 0x5F42/0x1 
 
 
7.4. Creating a file 
 
Object: Index 0x5F42, Sub-index 0x2 
Type: Integer32 
Value to be written: File length in bytes 
The use of this object requires to previously specify a file name with object 0x5F40/0x0.  
 
 
7.5. Writing a file 
 
Object: Index 0x5F49, Sub-index 0x0 
Type: Unsigned8 
Value to be written: Byte array 
The use of this object requires to previously create the file with object 0x5F42/0x2 
 
 
7.6. Deleting a file 
 
Object: Index 0x5F42, Sub-index 0x4 
Type: Integer16 
Value to be written: 0 
The use of this object requires to previously specify a file name with object 0x5F40/0x0.  
 
 
7.7. Closing a file 
 
Object: Index 0x5F42, Sub-index 0x3 
Type: Integer32 
Value to be written: 0 
The use of this object requires to previously open the file for reading or for writing.  
 
 
7.8. Searching a file 
 
Object: Index 0x5F42, Sub-index 0x5 
Type: Integer16 
Value to be read: File status 
 
Return values: 
 
-2  Wrong file name 
-1 A file is already opened 
0 File not found 
1 File found 
2 file corrupted 
The use of this object requires to previously specify a file name with object 0x5F40/0x0.  
 
 



 

 19

Gem Drive Studio – Commissioning of the Communication server 

7.9. File list 
 
Object: Index 0x5F4A, Sub-index 0x0 
Type: String 
Value to be read: List and size of the files 
 
The returned string contains the list and the size of files contained in the device memory. 
 
Example: 
 
DRIVEPAR.TXT 2621 
USER_PAR.TXT 1582 
2 file(s). 
 
 
7.10. Return codes 
 
The following return codes concern the opening, closure, reading, writing and deleting commands on 
the file. 
 
0 FILE_OK  Command OK 
-1 FILE_EXIST  A file already exists with the same name 
-2 FILE_ACCESS  Access conflict: A file is already opened 
-3 DSK_FULL  Memory is full for writing 
-4 FILE_NOTFOUND File not found 
-7 FILE_RDERROR Reading error 
-5 FILE_EOF  End of file 
-6 FILE_NOTOPENED The file is not opened 
-8 FILE_WRERROR Writing error 
-9 FILE_OPENED  The file is opened 
-10 FILE_NAME  File name error 
-11 FILE_TOO_BIG File size too large 
-12 FILE_CRC32  CRC32 error 


	Content
	1. Introduction
	2. Minimum configuration
	3. Installation of the server module
	4. Description of the server
	4.1. Architecture
	4.2. Environment of the development
	4.3. Required files
	4.3.1. Installed files
	4.3.2. Configuration files of server and client


	5. Function list
	6. Development of a client module
	6.1. Pre-requested
	6.2. Object dictionaries
	6.3. Commissioning of the server
	6.3.1. Creation of the WCF communication channel
	6.3.2. Launching the server
	6.3.3. Connection with the server
	6.3.4. Selection of a communication peripheral
	6.3.5. Use
	6.3.6. Disconnection and stopping of the server
	6.3.7. The callbacks

	6.4. Example: client model

	7. Appendix: File system objects
	7.1. File name
	7.2. Opening a file for reading
	7.3. Reading a file
	7.4. Creating a file
	7.5. Writing a file
	7.6. Deleting a file
	7.7. Closing a file
	7.8. Searching a file
	7.9. File list
	7.10. Return codes


