

Name: AH Cat SWC Page 1 of 5

1. Introduction:

This technical note provides notes to explain some of the MC464 Panasonic RTEX interface features
which are not yet in the Technical Reference Manual. The document also describes how to use the
new features of the A5N drives: speed and torque modes, registration, and the expanded parameter
lists.

2. Applicability:

Information applies to MC464 with RTEX32 interface for Panasonic A4N/A5N digital drives.

MC464 Software Version 2.0153 and later.

If the Motion Coordinator SERVO_PERIOD is 500 µsec the RTEX communication cycle should also be set
to 500µsec using Panaterm.

The A5N default servo cycle time is 500 µsec, so the MC464 must be set to SERVO_PERIOD=500 or the
drives must be changed to 1000 µsec.

Panasonic A5N Drive Parameters

SERVO_PERIOD
7.20 : RTEX communication
cycle setup.

7.21 : RTEX command
updating cycle ratio.

500 µsec 3 2 or 1

1000 µsec 6 1

If the drive is set to 500µsec and the Motion Coordinator to 1000µsec it is NOT possible to change

the drive parameters via the controller.

Doc No.: AN-270

Version: 2.5

Date: 07 February 2013

Subject: MC464 Panasonic RTEX

Name: AH Cat SW Page 2 of 5

3. Initialisation:

During controller initialisation or software reset the RTEX bus is scanned for drives. The MC464 sets
an axis parameter DRIVE_TYPE to 4 for an A4N drive and 5 for an A5N drive.

Axes are allocated to the drive ADDRESS switch setting + 1. So for example a drive set to address 2
will be allocated to axis 3 in the controller.

Axes are set by default to ATYPE=50. The ATYPE can be assigned to 51 or 52 to select Speed or
Torque modes on A5N drives. Profile position mode is not supported.

Drive Mode: ATYPE

Cyclic Position 50

Cyclic Speed 51

Cyclic Torque 52

4. Drive Parameter Commands:

The parameter numbers for A5N and A4N drives are NOT compatible. On the A5N drive parameters
have a “Class” number plus a number within the class. The parameter number for the
DRIVE_READ/DRIVE_WRITE commands are constructed by multiplying the class number by 256 and
adding the number within the class.

For example:

DRIVE_READ(4 * 256 + 16) AXIS(2) ‘ read parameter 16, class 4

value = DRIVE_READ(param)

result = DRIVE_READ(param,VR#)

DRIVE_READ is an axis function which reads a drive parameter. There are 2 forms of the command.
The single parameter form reads a drive parameter and returns the result. This is a quick way to
read a drive parameter. For example:

>>? DRIVE_READ($19) AXIS(17)

35.0000

The two parameter form of the command places the parameter read into a VR value and returns the -
1 for a successful read, 0 for an error during reading. This form is the best to use when putting the
DRIVE_READ command into a program:

PRINT#5,""

PRINT#5,"Drive Parameters Axis:";ax[2,0]

PRINT#5,""

IF DRIVE_TYPE AXIS(ax)=4 THEN

 FOR p= 1 TO 127

 IF DRIVE_READ(p,1) AXIS(ax) THEN

 PRINT#5, HEX(p);":";VR(1)[8,0]

 ELSE

Name: AH Cat SW Page 3 of 5

 PRINT#5, "Error reading parameter:";HEX(p)

 ENDIF

 NEXT p

ELSE

 FOR class=0 TO 8

 FOR p= 0 TO 43

 IF DRIVE_READ(p + (class * 256),1) AXIS(ax) THEN

 PRINT#5, class[3,0];":";p[3,0];":";VR(1)[8,0]

 ELSE

 PRINT#5, "Error reading parameter:";HEX(p)

 ENDIF

 NEXT p

 NEXT class

ENDIF

 NEXT p

Note that the Panasonic drive parameters are numbered 1..127. In addition the DRIVE_READ function
can be used to access the drive “System ID”, “Alarm” and “Monitor” values:

result = DRIVE_WRITE(param,value)

DRIVE_WRITE is an axis function which writes a drive parameter. The function always takes 2
parameters and returns the success/fail result. For example:

>>? DRIVE_WRITE($19,50) AXIS(17)

-1.0000

Note that some parameters in the drive can be successfully written to but the drive will not update
them due to the drive functionality.

Tip: Writing zero to parameter 128 stores the drive parameters into EPROM

It is possible to perform other Minas A4N drive commands if you have a knowledge of the drive
interface. Request from Panasonic the document “Network Interface Specifications” SX-DSV01601.
Please note that Trio cannot supply this document.

Drive Function: Command Format: Notes:

System ID DRIVE_READ($10XXX) System ID’s are strings. DRIVE_READ command
will print string to command line or place into VR
variables if the DRIVE_READ(val,vr) format is used

XXX is the Panasonic code for the System ID
string. For example DRIVE_READ($10140) returns
the firmware version for the drive.

Alarm Read DRIVE_READ($2Z0XX) Bits 12..15 of command value (Z) hold the
“index” of the alarm number. For example:

DRIVE_READ($26000,1) places alarm 6 into VR 1

DRIVE_READ($20001) performs Clear Alarm
function

Monitor Command DRIVE_READ($3ZXXX) For example DRIVE_READ($30201) reads
Mechanical Angle, the position within one turn.
Note that this is -1 until encoder zero has been
seen.

DRIVE_READ($30102) reads Encoder Resolution.

Name: AH Cat SW Page 4 of 5

WRITE: READ:

DRIVE_CONTROL DRIVE_STATUS

Command Position Actual Position

DRIVE_INDEX DRIVE_PARAMETER

DRIVE_SET_VAL DRIVE_VALUE

The 3 32 bit axis parameters DRIVE_CONTROL, DRIVE_INDEX and DRIVE_SET_VAL are written cyclically
by the MC464 to the drive and can be overwritten by a user program. The DRIVE_STATUS,
DRIVE_PARAMETER and DRIVE_VALUE axis parameters are returned cyclically and can be read.

SLOT_NUMBER is an axis parameter which returns the drive interface module slot number that an axis
is connected to.

5. Registration:

The A5N drives support drive based registration. However only a single registration channel / drive is
currently implemented and it is not possible to read or write parameters or perform other commands
whilst the registration is running.

The registration input is the rising edge of EXT2 (pin 11 of I/O connector):

REGIST(3)

WAIT UNTIL MARK

PRINT REG_POS

Each RTE32 Panasonic Interface has 8 time based registration inputs. Unlike other registration inputs
on Trio controllers each may be used with any of the RTEX32 axes.

REGIST(32+channel+options) AXIS(x)

Tip: The axis number for the REGIST command comes from the BASE or AXIS function.

channel 0..7 selects the physical input number on the RTE32 interface.

options: add 32 to select falling edge of input, add 128 to switch on 10µsec filter.

Tip: Note how this REGIST command can be used up to 8 times with the same axis provided a
different “channel” is selected.

done = R_MARK(channel) returns TRUE/FALSE has registration occurred.

v = R_REGPOS(channel) returns the registration position for the channel

The R_MARK and R_REGPOS functions are specific to an interface “slot”. When multiple

interfaces are fitted the SLOT(x) modifier should be used.

Pinout for Registration Connector PCB ver C and above

Channel 0 Channel 4

Channel 1 Channel 5

Channel 2 Channel 6

Channel 3 Channel 7

0V 0V

0V 0V

Name: AH Cat SW Page 5 of 5

6. Datuming A4N Drives:

A5N drives can be datumed using the built-in datuming routines of the Motion Coordinator. To datum
the A4N drives to the Z mark of the encoder the DRIVE_READ command can be used:

'

' Datum A4N Drive to Z mark:

'

ax=2' Set axis number

oneturn=10000' Distance for one turn depends on encoder type

BASE(ax)

pos = DRIVE_READ($30201) AXIS(ax)

UNITS=1

SPEED=5000

ACC(50000)

WDOG=ON

IF pos <> -1 THEN

 PRINT "Mechanical offset:";pos[0]

ELSE

 PRINT "Drive has not yet seen Z mark"

 MOVE(oneturn)

 WAIT UNTIL DRIVE_READ($30201)<>-1

 CANCEL

 WAIT IDLE

 pos = DRIVE_READ($30201) AXIS(ax)

 PRINT "Mechanical offset:";pos[0]

ENDIF

DEFPOS(pos)

WAIT UNTIL OFFPOS=0

MOVEABS(0)

7. Reset Drive Interface:

The whole drive interface can be restarted with the DRIVE_INTERFACE command:

DRIVE_INTERFACE(slot,0)

