

Name: AH Cat HW SW BASIC Page 1 of 9

1. Introduction

This application note discusses the program needed to make a very simple palletising robot. Many
different types of robot could be used but in this example it uses a scale and rotate robot. It would
be very simple to change to a different robot type as detailed in the sections below.

2. Scale and rotate robot.

This robot type has 4 degrees of freedom it uses a mechanical arrangement so that the axes are as
follows:

1. Arm reach
2. Arm height
3. Shoulder rotate
4. Wrist rotate

2.1. Transformation

To enable simple programming in Cartesian coordinates it is possible to make a transformation in
TrioBASIC. To do this local variables are used to input the Cartesian positions and output the axis
position.

5. x_position – Cartesian X position
6. y_position – Cartesian Y position
7. z_position – Cartesian Z position
8. wrist_angle_abs – Absolute angle of the wrist against the X axis (programmed in degrees in this example)

9. base_angle – angle of the shoulder (programmed in degrees in this example)
10. wrist_angle – angle of the wrist relative to the arm (programmed in degrees in this example)
11. r_position – reach of the arm

The z_position does not need any transformation as it is a 1 to 1 relationship

The actual transformation mathematics from the Cartesian to the axes positions is as follows:

 'This is the scale and rotate robot transformation

 base_angle = (ATAN2(y_position, x_position)*360)/ (2* PI)

 wrist_angle = base_angle - wrist_angle_abs

 r_position = SQR(x_position * x_position + y_position * y_position)

Doc No.: AN-273

Version: 1.0

Date: 15 March 2012

Subject: Palletising robot

Name: AH Cat HW SW BASIC Page 2 of 9

The arm height and arm reach use a mechanical linkage to amplify the movement from the motor to
the height and reach. The example program uses UNITS to scale the counts per mm of linier
movement to the counts per mm of the tool tip movement as follows:

 BASE(r_axis)

 counts_x_per_mm = 10000 'counts per mm of screw feed

 scale_x = 10.3 'scale from screw feed to end point movement

 UNITS = counts_x_per_mm / scale_x

 BASE(z_axis)

 counts_z_per_mm = 10000 'counts per mm of screw feed

 scale_z = 10.3 'scale from screw feed to end point movement

 UNITS = counts_z_per_mm / scale_z

Similarly the rotate axes have been configured using UNITS so that they can be programmed in mm:

 BASE(base_axis)

 counts_base_per_rev = 10000 'counts per revolution

 UNITS = counts_base_per_rev/360 'counts per degree

 'Set the axis to work in +-180 degrees

 REP_DIST = 180

 REP_OPTION = 0

 BASE(wrist_axis)

 counts_wrist_per_ rev = 10000 'counts per revolution

 UNITS = counts_wrist_per_rev/360 'counts per degree

 'Set the axis to work in +-180 degrees

 REP_DIST = 180

 REP_OPTION = 0

2.2. Movements

To simplify the programming a sub routine is used to perform the transformation and move the axes.
The routine performs the transformation then loads the output into a MOVEABS. As discussed later in
this document the positions are stored in the TABLE so a local variable ‘position’ is set before
entering the sub routine so that the correct position can be moved to.

'***************************************

move_robot:

'***************************************

 'load positions from the table

 x_position = (TABLE(table_start + position * 4))

 y_position = (TABLE(table_start + position * 4 + 1))

 z_position = (TABLE(table_start + position * 4 + 2))

 wrist_angle_abs = (TABLE(table_start + position * 4 + 3))

 'Calculate the wrist and base angle

 'This is the scale and rotate robot transformation

 base_angle = (ATAN2(y_position, x_position)*360)/ (2* PI)

 wrist_angle = base_angle - wrist_angle_abs

 r_position = SQR(x_position * x_position + y_position * y_position)

 'Move the robot

 BASE(r_axis, z_axis, base_axis, wrist_axis)

 MOVEABS(r_position, z_position, base_angle, wrist_angle)

 WAIT IDLE

RETURN

Name: AH Cat HW SW BASIC Page 3 of 9

2.3. Homing

For the transformation to work the robot must be homed so that the arm and wrist are in line with
the x axis. The reach should be homed so that the zero position is minimum reach. The vertical
should be homed so that the zero position is the lowest position that it can reach.

In the example program this is using the DATUM command and DATUM_IN switches. The arm is homed
first so that is moves to the closest then lowest position. Finally both rotate axes are homed at the
same time. Then the offset is applied so that the zero position is in line with the x axis.

'***************************************

home_robot:

'***************************************

 BASE(r_axis)

 DATUM_IN = r_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 WAIT IDLE

 FS_LIMIT = 1200

 RS_LIMIT = 0

 BASE(z_axis)

 DATUM_IN = z_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 WAIT IDLE

 FS_LIMIT = 750

 RS_LIMIT = 0

 BASE(base_axis)

 DATUM_IN = base_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 BASE(wrist_axis)

 DATUM_IN = wrist_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 WAIT IDLE

 DEFPOS(-170)

 FS_LIMIT = 170

 RS_LIMIT = -170

 BASE(base_axis)

 WAIT IDLE

 DEFPOS(-170)

 FS_LIMIT = 170

 RS_LIMIT = -170

RETURN

You can see that in the above example once the positions are homed and defined then the software
limits RS_LIMIT and FS_LIMIT are enabled to prevent over reaching of the arm and over rotation of the
rotary axes.

3. Pick and Place application

The pick and place example here is picking up bags of rice which are coming in on a conveyor then
placing them on a pallet. The pallet will hold 6 bags per layer and the layers must be alternated so
that the pattern varies making the stacking more stable.

3.1. Storing positions in the TABLE

The positions are all stored in the table. This example uses fixed set of positions though it would be
fairly easy to modify it to accept positions loaded from an HMI or even learnt from manually moving

Name: AH Cat HW SW BASIC Page 4 of 9

the robot to a position.

The load_positions sub routine loads table using the following format:

TABLE(table_start * position, x_position , y_position, z_position,

wrist_angle_abs)

So the positions are loaded as follows:

 'Positin 0, pick position

 TABLE(table_start + 0 * 4, 600 , -600, 200, 45)

 'Position 1 - 6, 'horizontal layer of palletizing

 TABLE(table_start + 1 * 4, 300 , 150, 700, 0)

 TABLE(table_start + 2 * 4, 500 , 150, 700, 0)

 TABLE(table_start + 3 * 4, 700 , 150, 700, 0)

 TABLE(table_start + 4 * 4, 300 , 450, 700, 0)

 TABLE(table_start + 5 * 4, 500 , 450, 700, 0)

 TABLE(table_start + 6 * 4, 700 , 450, 700, 0)

 'Position 7 - 12, 'horizontal layer of palletizing

 TABLE(table_start + 7 * 4, 350 , 100, 700, 90)

 TABLE(table_start + 8 * 4, 650 , 100, 700, 90)

 TABLE(table_start + 9 * 4, 350 , 300, 700, 90)

 TABLE(table_start + 10 * 4, 650 , 300, 700, 90)

 TABLE(table_start + 11 * 4, 350 , 500, 700, 90)

 TABLE(table_start + 12 * 4, 650 , 500, 700, 90)

3.2. Main program loop

The main program loop simply performs a pick, place, increments layer and bag position. If the pallet
is full then it reloads the pallet. To make the program easy to read many sub routines are used.

 bag_position=1 'first bag position on pallet

 bag_layer = 0 'start with the first layer

 bag_height = 100 'initial drop height for bag

 pick_height = 100 'height for picking the bags

 WHILE IN(machine_enabled) = ON

 GOSUB pick_bag

 IF bag_position = 1 OR bag_position = 7 THEN

 bag_layer = bag_layer + 1

 ENDIF

 place_height = bag_height * layer

 GOSUB place_bag

 bag_position = bag_position + 1

 IF bag_position = 13 THEN

 IF bag_layer = 5 THEN

 GOSUB reload_pallet

 ENDIF

 bag_position = 1

 ENDIF

 WEND

3.3. pick_bag sub routine

This subroutine moves to the pick position, lowers the arm then waits for a bag to arrive. When the
bag has been detected the jaws close and the arm rises. An output is used to close and open the
jaws. An input is used to sense when the jaws are closed.

'***************************************

pick_bag:

Name: AH Cat HW SW BASIC Page 5 of 9

'***************************************

 'Move to pick position

 position = 0

 GOSUB move_robot

 z_position = pick_height - MPOS AXIS(z_axis)

 'move down to the pick height

 MOVE(0, z_position, 0, 0)

 WAIT IDLE

 'wait for a bag to pick

 WAIT UNTIL IN(bag_loaded)=ON 'wait for bag in pick position

 OP(jaws, ON) 'close jaws to pick up bag

 'wait for the sensor to detect jaws are closed around the bag

 WAIT UNTIL IN(jaws_closed) = ON

 'move back up

 position = 0

 GOSUB move_robot

RETURN

3.4. place_bag sub routine

The main loop has already calculated which position on the pallet to place the bag. This routine will
move to this position, lower the arm, open the jaws. Then when the sensor detects that the bag has
been released the arm raises again.

'***************************************

place_bag:

'***************************************

 'Move to place position

 position = bag_position

 GOSUB move_robot

 BASE(r_axis, z_axis, base_axis, wrist_axis)

 z_position = place_height - MPOS AXIS(z_axis)

 'move down to the pick height

 MOVE(0, z_position, 0, 0)

 WAIT IDLE

 OP(jaws, OFF) 'open jaws to replease the bag

 'wait for the sensor to detect that the jaws are open

 OP(jaws_closed,OFF)

 WAIT UNTIL IN(jaws_closed) = OFF

 'move back up

 position = bag_position

 GOSUB move_robot

RETURN

4. Variables

Local variables have been used through this program to make it more readable and so that it is easy
to define input, outputs etc. They are defined in a separate program which is INCLUDEd in the main
program. The example VARIABLE program is as follows:

'***************************************

' IN

'***************************************

 machine_enabled = 8

 bag_loaded = 9

 jaws_closed = 11

 r_axis_datum = 12

 z_axis_datum = 13

 base_axis_datum = 14

 wrist_axis_datum = 15

Name: AH Cat HW SW BASIC Page 6 of 9

'***************************************

' OP

'***************************************

 jaws = 10 'ON= jaws closed, OFF = jaws open

'***************************************

' TABLE

'***************************************

 'Table 100+ is used for storing the positions

 table_start = 100

5. Full program

The full program can be seen below. Remember this is a sample and will need customisation to run on
your robot. It is also important to remember that it does not have any error handling or reset
conditions and so should be used as a sample when writing your full project.

 INCLUDE "VARIABLES"

 GOSUB initialise_robot

 GOSUB enable_robot

 GOSUB home_robot

 GOSUB load_positions

 bag_position=1 'first bag position on pallet

 bag_layer = 0 'start with the first layer

 bag_height = 100 'initial drop height for bag

 pick_height = 100 'height for picking the bags

 WHILE IN(machine_enabled) = ON

 GOSUB pick_bag

 IF bag_position = 1 OR bag_position = 7 THEN

 bag_layer = bag_layer + 1

 ENDIF

 place_height = bag_height * layer

 GOSUB place_bag

 bag_position = bag_position + 1

 IF bag_position = 13 THEN

 IF bag_layer = 5 THEN

 GOSUB reload_pallet

 ENDIF

 bag_position = 1

 ENDIF

 WEND

 STOP

'***************************************

pick_bag:

'***************************************

 'Move to pick position

 position = 0

 GOSUB move_robot

 z_position = pick_height - MPOS AXIS(z_axis)

 'move down to the pick height

 MOVE(0, z_position, 0, 0)

 WAIT IDLE

Name: AH Cat HW SW BASIC Page 7 of 9

 'wait for a bag to pick

 WAIT UNTIL IN(bag_loaded)=ON 'wait for bag in pick position

 OP(jaws, ON) 'close jaws to pick up bag

 'wait for the sensor to detect the jaws are closed around the bag

 WAIT UNTIL IN(jaws_closed) = ON

 'move back up

 position = 0

 GOSUB move_robot

RETURN

'***************************************

place_bag:

'***************************************

 'Move to place position

 position = bag_position

 GOSUB move_robot

 BASE(r_axis, z_axis, base_axis, wrist_axis)

 z_position = place_height - MPOS AXIS(z_axis)

 'move down to the pick height

 MOVE(0, z_position, 0, 0)

 WAIT IDLE

 OP(jaws, OFF) 'open jaws to release the bag

 'wait for the sensor to detect that the jaws are open

 WAIT UNTIL IN(jaws_closed) = OFF

 'move back up

 position = bag_position

 GOSUB move_robot

RETURN

'***************************************

reload_pallet:

'***************************************

 PRINT#5, "Pallet full, press any key to continue"

 GET#5,char

RETURN

'***************************************

move_robot:

'***************************************

 'load positions from the table

 x_position = (TABLE(table_start + position * 4))

 y_position = (TABLE(table_start + position * 4 + 1))

 z_position = (TABLE(table_start + position * 4 + 2))

 wrist_angle_abs = (TABLE(table_start + position * 4 + 3))

 'Calculate the wrist and base angle

 'This is the scale and rotate robot transformation

 base_angle = (ATAN2(y_position, x_position)*360)/ (2* PI)

 wrist_angle = base_angle - wrist_angle_abs

 r_position = SQR(x_position * x_position + y_position * y_position)

 'Move the robot

 BASE(r_axis, z_axis, base_axis, wrist_axis)

 MOVEABS(r_position, z_position, base_angle, wrist_angle)

 WAIT IDLE

RETURN

'***************************************

initialise_robot:

'***************************************

Name: AH Cat HW SW BASIC Page 8 of 9

 BASE(r_axis)

 counts_x_per_mm = 10000 'counts per mm of screw feed

 scale_x = 10.3 'scale from screw feed to end point movement

 UNITS = counts_x_per_mm / scale_x

 SPEED = 1000

 ACCEL = SPEED * 100

 DECEL = ACCEL

 BASE(z_axis)

 counts_z_per_mm = 10000 'counts per mm of screw feed

 scale_z = 10.3 'scale from screw feed to end point movement

 UNITS = counts_z_per_mm / scale_z

 BASE(base_axis)

 counts_base_per_rev = 10000 'counts per rev

 UNITS = counts_base_per_rev/360 'counts per degree

 'set the axis to work in +-180 degrees

 REP_DIST = 180

 REP_OPTION = 0

 BASE(wrist_axis)

 counts_wrist_per_rev = 10000 'counts per rev

 UNITS = counts_wrist_per_rev/360 'counts per degree

 'set the axis to work in +-180 degrees

 REP_DIST = 180

 REP_OPTION = 0

RETURN

'***************************************

home_robot:

'***************************************

 BASE(r_axis)

 DATUM_IN = r_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 WAIT IDLE

 FS_LIMIT = 1200

 RS_LIMIT = 0

 BASE(z_axis)

 DATUM_IN = z_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 WAIT IDLE

 FS_LIMIT = 750

 RS_LIMIT = 0

 BASE(base_axis)

 DATUM_IN = base_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 BASE(wrist_axis)

 DATUM_IN = wrist_axis_datum 'select input to use as datum switch

 DATUM(4) 'start datum routine

 WAIT IDLE

 DEFPOS(-170)

 FS_LIMIT = 170

 RS_LIMIT = -170

 BASE(base_axis)

 WAIT IDLE

Name: AH Cat HW SW BASIC Page 9 of 9

 DEFPOS(-170)

 FS_LIMIT = 170

 RS_LIMIT = -170

RETURN

'***************************************

enable_robot:

'***************************************

 IF MOTION_ERROR THEN

 DATUM(0)

 ENDIF

 BASE(r_axis)

 SERVO = ON

 BASE(z_axis)

 SERVO = ON

 BASE(base_axis)

 SERVO = ON

 BASE(wrist_axis)

 SERVO = ON

 WDOG = ON

RETURN

'***************************************

load_positions:

'***************************************

 'TABLE(table_start * position, x_position , y_position, z_position,

wrist_angle_abs)

 'Position 0, pick position

 TABLE(table_start + 0 * 4, 600 , -600, 200, 45)

 'Position 1 - 6, 'horizontal layer of palletizing

 TABLE(table_start + 1 * 4, 300 , 150, 700, 0)

 TABLE(table_start + 2 * 4, 500 , 150, 700, 0)

 TABLE(table_start + 3 * 4, 700 , 150, 700, 0)

 TABLE(table_start + 4 * 4, 300 , 450, 700, 0)

 TABLE(table_start + 5 * 4, 500 , 450, 700, 0)

 TABLE(table_start + 6 * 4, 700 , 450, 700, 0)

 'Position 7 - 12, 'horizontal layer of palletizing

 TABLE(table_start + 7 * 4, 350 , 100, 700, 90)

 TABLE(table_start + 8 * 4, 650 , 100, 700, 90)

 TABLE(table_start + 9 * 4, 350 , 300, 700, 90)

 TABLE(table_start + 10 * 4, 650 , 300, 700, 90)

 TABLE(table_start + 11 * 4, 350 , 500, 700, 90)

 TABLE(table_start + 12 * 4, 650 , 500, 700, 90)

RETURN

