Trio Motion Technology4 Application Note

Trio Motion Technology Ltd.
Shannon Way,
Tewkesbury
Glos. GL20 8ND U.K.
Tel: 01684292333
Fax: 01684297929
Email: apps@triomotion.com
Doc No.: TN20-20
Version: 1.0
Date:
27 March 1998
Subject: Sine Profile using CAM() Function

SINE Acceleration/Deceleration Profile

To reduce jerk when starting and stopping a motion, a sinusoidal acceleration profile can be adopted. There is no built-in function in Trio BASIC to do this but it can be achieved by programming a suitable sine lookup into a TABLE area and employing the CAM function.

SINEHUMP.BAS

The BASIC program listed here calculates the table points to form the sine profile shown.

```
Sine "HUMP"
```



```
' Subroutine to generate a SIN shape speed profile
```

' Subroutine to generate a SIN shape speed profile
' Uses: p is loop counter
' Uses: p is loop counter
' num_p is number of points stored in tables positions 0..num_p
' num_p is number of points stored in tables positions 0..num_p
' scale is distance travelled scale factor
' scale is distance travelled scale factor
'
num_p=100
scale=500
FOR p=0 TO num_p
TABLE (p, ((-SIN (PI*2*p/num_p) / (PI*2)) +p/num_p)*scale)
NEXT P

```

\section*{Program Example}

The sine profile in the TABLE can now be used to control the AXIS movement. The program shown below does a move of length \(m\) in a time \(t\), where \(m\) is in user units and \(t\) is in seconds.
```

BASE (0)
DEFPOS (0)
SERVO=ON
UNITS=500
SPEED=1000
ACCEL=1000000
DECEL=1000000
m=10
t=0.1
CAM(0,100,m,SPEED*t)
WAIT IDLE
CAM(0,100,-m,SPEED*t)
WAIT IDLE

```

Notes:
1) For simplicity, the values for scale in the table and UNITS in the program above are the same. This means that the m represents the distance moved. The example shows a move of 10 completed in 100 msecs .
2) \(A C C E L\) is set to 1000 times SPEED so that the CAM table will be processed at a constant rate. If ACCEL is a smaller value, the rate at which the CAM profile is generated will ramp up from zero to SPEED at the ACCEL rate.```

