Fax: +44(0)1684 297929
Web: www.triomotion.com
1000 Gamma Drive
Suite 206
Pittsburgh, PA 15238
Ph: +1 412.968.9744
Fx: +1 412.968.9746

Application Note

Frame 4 Geometry

Frame 4 is one of a set of Transforms that can be used with any series 2 Motion Coordinator. It is not included as standard in the system firmware and must be requested as a special version from Trio. The frame is designed for 2 physical axes that are positioned at 90 degrees to one another, X and Z. The arrangement is such that there is interaction between the 2 axes when seen at the tool tip. Frame 4 mathematically transforms this geometery to standard x / z coordinates.

Figure 1 - Axis Geometry

Set-up calibration

There are 2 measurements that must be taken and entered into the set-up program. These are the length from the Z joint to the tool tip, and the distance from the Z joint to the X joint with the arm vertical. (See Fig. 2) Both axes must have the same UNITS value. i.e. the same number of encoder edges per mm.

Figure 2 - Calibration points

Startup program sequence

The entry of calibration constants and the home sequence must be carried out in the following way.

```
FRAME = 0
BASE (z)
DATUM(4) ' move z axis to top of travel
WAIT IDLE
BASE (x)
DATUM(4)
WAIT IDLE
MOVEABS(centre) ' move x axis to centre
WAIT IDLE
BASE (x, z)
TABLE(0,length) ' set the length of L
DEFPOS(0, b) ' set the distance b
WA (5)
FRAME = 4
```

The system is now ready. All moves can be defined using standard Cartesian Coordinates in the x / z plane. Transformation is done by the system software into the physical co-ordinates \mathbf{X} and \mathbf{Z}. It is not possible to re-define the absolute positions after the FRAME is set to 4. Calculate the required positions in BASIC, using ($0, b$) as the home position.

Notes

When the FRAME has been set to 4, the following conditions will apply:-
MPOS will show the actual positions of the physical axes \mathbf{X} and \mathbf{Z}.
DPOS shows the Cartesian positions x and z.
FE shows the following error of the physical axes. (i.e. the difference between the internal demand position after the transform and the MPOS)
If end-limit switches are used these will stop the motion when \mathbf{X} or \mathbf{Z} reach the switches as usual.
The software end-limits FS_LIMIT and RS_LIMIT will stop the motion when x or z reach the limit value. (Cartesian co-ordinate values)

