Trio Motion Technology Ltd. Shannon Way, Tewkesbury, Gloucestershire. GL20 8ND United Kingdom
Tel: $\quad+44(0) 1684292333$
Fax: +44(0)1684 297929
Web: www.triomotion.com
Doc No.: TN20-79
1000 Gamma Drive
Version: 1.0
Date:
$22^{\text {th }}$ Sept 2005
Suite 206
Pittsburgh, PA 15238
Subject: Guide to using Frame Transform \#6
Ph: +1 412.968.9744
Fx: +1 412.968.9746

Application Note

FRAME Transform \#6

This FRAME transformation allows an $\mathrm{X}-\mathrm{Y}$ axis system to perform moves in Theta (an angle) and R (a radius).

Axis 0 is the radius and units are set in the usual way.
Axis 1 is the angle theta. Axis positions are held internally as integers in the Motion Coordinator. The axis holds the angle in radians*1000000. Theta is 0 when at positions on Axis 0.

Units Example:

Suppose an X-Y system has 4000 edges/mm from the encoder system. It is desired to program the axis in mm and degrees. In FRAME=0 the units are set in the usual way:

UNITS AXIS(0)=4000
UNITS AXIS(1)=4000
When using frame 6 there will be 1000000*2*PI/360 edges/degree:
UNITS AXIS(1)=17453.29
Note that this transformation uses TABLE(0) for its calculations.

Setting Absolute Positions:

The transformation mathematics assume that position $(0,0)$ is the centre of the R -Theta system. The absolute position should be set using $\operatorname{DEFPOS}(x, y)$ prior to issuing the FRAME $=6$ command.

Note that the output of the transformation is in the axis parameter TRANS_DPOS.

