

Shannon Way Tewkesbury Gloucester GL20 8ND Ph: 011.44.1684.292333 Fx: 011.44.1684.297929 1000 Gamma Drive Suite 206 Pittsburgh, PA 15238 Ph: 412.968.9744 Fx: 412.968.9746 www.triomotion.com

TECHNICAL NOTE

Doc No.:	TN30-08
Date:	22 Jan 2002
Version:	1.0
Subject:	Overview of CAN Control Protocol

1 - Introduction:-

This document is provided to give an overview of the functions implemented in the CAN Drive protocol between Trio Motion Coordinator and Infranor SMT-B range of drives.

The information is taken from the Infranor document "Communication protocol between NC and amplifiers via the CAN bus". Details of the protocol definition are the property of Infranor Inter AG, Schaffhauserstrasse 418, Postfach, CH-8050 Zurich, Switzerland. This document may be copied provided that any copy made by whatever means contains the foregoing acknowledgement.

By the nature of an overview such as this, there may be errors and/or omissions in the details of this document. Trio Motion Technology Ltd., Trio Motion Technology LLC and any of our partners cannot be held responsible for the use of this information in any way, both commercially or technically. The inclusion of any feature in this document should not be taken to mean that it has been implemented. For example, "position error", "Position error limit" and "position gain" parameters are not supported by the Motion Coordinator.

2 – Main Characteristics:-

- Conforms with CAN specification 2.0 part A
- Physical layer in conformity with the ISO 11898 standard up to 1Mbit/s
- Connector conforms to CiA recommendation DS-102, version 2.0
- Cyclic data transfer up to 1KHz
- Axes synchronized by means of Sync message
- Amplifiers addressable between addresses 1 and 15
- Motion Controller has address 0
- Control modes implemented : Speed

The Motion Coordinator and amplifier exchange messages on the CAN bus. There are 2 types of communication messages:

- Synchronous messages
- Asynchronous messages

3 – Synchronous Messages:-

These are periodic messages such as speed commands or position signals.

There are 3 types of synchronous messages:

- Synchro message (m_sc)
- Control message (m_cmd)

• Feedback message (m_fb)

The Motion Coordinator sends a synchro message (m_sc) once per servo period to the amplifiers. On receipt of the m_sc, each amplifier sends its position message (m_fb) back to the Motion Coordinator. After reception of the positions, the Motion Coordinator sends the speed command messages (m_cmd) to the amplifiers.

4 – Asynchronous Messages:

These messages are used for the transmission of parameters between the Motion Coordinator and amplifiers. The transfer is initiated by the Motion Coordinator sending a m_request message which contains request type, amplifier address and any data to be written. A response message is sent by the amplifier either to confirm the transfer or to reply with any data requested.

Command Name	Cmd. byte	Description
Amplifier mode	40	Defines the amplifier operation mode (position, speed or torque)
Cycle time	41	Defines the cycle time of the Motion Coordinator. This value is necessary for the interpolation of position commands. (position mode not supported by Trio)
Configuration	42	Defines the configuration of the control (m_cmd) and feedback (m_fb) meesages.
Error threshold	43	Defines the error triggering threshold of the CANbus when the control synchro message (m_sc) or the control message (m_cmd) are missing.
Position resolution	50	Defines the feedback position resolution
Address	51	Used to check for the presence on the bus of the amplifier with this address.
Version	52	Returns the version number of the amplifier software and the amplifier manufacturer code.
Status	53	Returns the amplifier status
Speed/current mon	54	Returns the actual speed value and the actual current reading from the drive.
Rotation reversal	60	This command allows the reversal of the rotation direction with regard to the

Table of Asynchronous commands.

		input command. It also reverses the position feedback.
Maximum speed	61	Sets the maximum speed and speed scaling of the drive.
Absolute position	62	Returns the position value.
Position reset	63	Resets the position sent by the amplifier.
Position error	64	Returns the actual following error value when drive is in position mode.
Position error limit	65	Defines the position error alarm threshold value.
Motor parameters	71	Defines motor phase, resolver adjustment and number of pole pairs
Phase lead	72	Defines the phase lead in degrees per rpm
Maxumum current	76	Defines the current limit value for the motor
Rated current	77	Defines the rated current for the motor
l ² t mode	78	Defines the mode 0 = limit, 1 = trip
Current limit	79	Defines the current limitation of the motor with regard to the value set by command 76 (max current). Values are 0 to 32767 (0 to 100%)
Poportional gain	81	Defines the proportional gain (KP2) of the speed loop.
Integral gain	82	Defines the integral gain (KI) of the speed loop.
Position gain	83	Defines the proportional gain of the position loop.
Anticipating term	84	Defines the value of KF which amplifies the derivative of successive position commands and applies the result as a velocity feed-forward term to reduce following errors.
Acceleration ramp	85	Defines the acceleration and deceleration ramp time of the motor.
Low pass filter	86	Defines the cut-off frequency of the first order filter acting on the current control. This value defines the required bandwidth.
Enable	91	Enable the amplifier
Disable	92	Disable the amplifier
Set defaults	93	Return all parameters to their default setting
Save to EEPROM	94	Save all amplifier parameters to EEPROM.
Auto-phasing	95	Starts the auto-phasing procedure to detect the number of pole pairs, the motor phase order and resolver offest.
Auto-tuning	96	Starts the auto-tune procedure to set up the speed loop.

5 – Message Structure:

Synchronous messages have their CAN identifier made up as follows:

Synchro Messages : m_sc

Identifier m_scg1= 030h Identifier m_srg1 = 040h

Command Messages : m_cmd Identifier = 10 9 8 7 6 5 4 3 2 1 0 Ad3 Ad2 Ad0 0 0 0 1 1 0 Ad1 0 [Ad3 Ad2 Ad1 Ad0] is the amplifier address (1 to 15) Length of message is programmable Feedback Messages : m_fb Identifier = 10 9 5 3 2 0 8 7 6 4 0 0 0 0 1 1 1 Ad3 Ad2 Ad1 Ad0

[Ad3 Ad2 Ad1 Ad0] is the amplifier address (1 to 15) Length of message is programmable

Asynchronous messages have a single identifier allocated to request and another for reply. All amplifiers use the same identifiers, amplifier address selection is performed in the message body.

Message m_request:

Identifier = 0A0h

Message m_response:

Identifier = 0B0h

The data contained in asynchronous messages depends on the command number. Bytes 0 and 1 contain the command number, the target amplifier address and whether the operation is a read or a write.

Message m_request : Motion Coordinator to amplifier

Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x0A0	Cmd	Acc	Data	Data	Data	Data	Data	Data

Byte 1 : Access Mode

7	6	5	4	3	2	1	0
L/E	Т	0	0	Ad3	Ad2	Ad1	Ad0

L/E = 0 Read parameter

L/E = 1 Write parameter

T = 0 Target amplifier in defined by Ad3, Ad2, Ad1 and Ad0

T = 1 Broadcast to all amplifiers

Message m_response : Amplifier to Motion Coordinator

Identifier	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x0B0	Cmd	Ad	Data	Data	Data	Data	Data	Data

Byte 1 : Slave Address

7	6	5	4	3	2	1	0
0	0	0	0	Ad3	Ad2	Ad1	Ad0