
Page 1 of 4 TN30_18 - CANopen to Elmo.doc

A P P L I C A T I O N N O T E
Doc No.: TN30-18
Date: February 2, 2004
Version: 1.0
Subject: CANopen communication to Elmo Harmonica Digital Servo Drive

OVERVIEW:
A simple implementation of CANopen communication to an Elmo Harmonica digital servo drive is provided
by the "ELMO_CAN.BAS" TrioBASIC program. A number of the Harmonica software commands are
implemented that allow setting of drive motion parameters, reading drive inputs, and initiating motion. This
document describes setting up and using the example program, and provides some details of the CiA DS
301 CANopen protocol used. It is provided for example purposes and no guarantee is made as to its
suitability for any particular application.

Additional information can be found in the "Elmo Motion Control CANopen DS 301 Implementation Guide",
"Harmonica Command Reference Manual", and "Harmonica Installation Guide", which can be downloaded
from www.elmomc.com .

SETUP:
1. The Harmonica drive must be configured as normal using the Elmo Composer software; this would

include any servo loop tuning. The drive should be set to operate in "Single Loop Position Control"
mode (UM=5). For CAN communication the CAN-ID should be set to 1 (PP[13]=1), and the CAN baud
rate should be set to 500KHz (PP[14]=1).

2. Make the CAN bus connection between the Trio Motion Coordinator and the Harmonica drive.
Reference the "Harmonica Installation Guide" page 3-15 and the "Trio Motion Technology Technical
Reference Manual" for wiring details.

3. Load the "ELMO_CAN.BAS" program file into the Trio Motion Coordinator.

OPERATION:
Once the above setup is complete the "ELMO_CAN.BAS" program can be executed.

The MotionPerfect VR Viewer Window can be used to set and view the VR() variables used by the program.
The VR() variables used are setup by the "vrbase" program variable. The program uses VR(vrbase)
through VR(vrbase + 18).

The MotionPerfect Terminal Window Channel 5 can also be opened to see program debug messages.

Shannon Way 1000 Gamma Drive
Tewkesbury Suite 206
Gloucester GL20 8ND Pittsburgh, PA 15238
Ph: 011.44.1684.292333 Ph: 412.968.9744
Fx: 011.44.1684.297929 Fx: 412.968.9746

www.triomotion.com

Page 2 of 4 TN30_18 - CANopen to Elmo.doc

The Harmonica software commands implemented are shown in the table below:

Harmonica
Command Description VR() Variable Setting VR() Variable Operations

MO Motor enable/disable VR(mo_cmd) =1 enables motor, =0 disables motor

BG Begin motion VR(bg_cmd) =1 begins motion

ST Stop motion VR(st_cmd) =1 stops motion

IP Read Input Port bits VR(ip_cmd) =1 reads input port bits

JV Set Jog Velocity VR(jv_cmd) =value sets jog velocity to value

PR Set Position Relative VR(pr_cmd) =value sets relative move distance to value

SP Set Speed VR(sp_cmd) =value sets move speed to value

AC Set Acceleration VR(ac_cmd) =value sets move acceleration to value

DC Set Deceleration VR(dc_cmd) =value sets move deceleration to value

The example program can be expanded to implement additional Harmonica commands and communicate
to multiple drives on a CAN network.

CANopen Protocol Details:
In this example the PDO2 Transmit buffer (TPDO2) and PDO2 Receive buffer (RPDO2) are used to
manipulate the Harmonica drive. This allows the use of any of the Harmonica software commands via the
CAN bus. The Harmonica software commands are two letter characters. The TPDO2 message format to
the Harmonica drive simply uses the ASCII code numbers for these two characters, along with some data
bytes. The RPDO2 reply message from the Harmonica drive follows a similar format.

Much of the following information is taken from the "Elmo Motion Control CANopen DS 301 Implementation
Guide".

In the Harmonica drive, TPDO2 is mapped by default to the transmit binary interpreter object (0x2012) and
RPDO2 is mapped by default to the receive binary interpreter object (0x2013). TPDO2 is transmitted as an
unsynchronized "Binary Interpreter complete" event. These can be used for setting and retrieving all
numerical data from the Harmonica drive.

The binary interpreter supports three types of commands:

1. Set Value
These commands are 8 bytes in length. The transmitted message includes either the reflections of the
Set command or an error code, if a failure has occurred.

2. Get Value
These commands can be 4 or 8 bytes in length. An 8 byte response includes the reflection of the
command and the resulting numerical value, and an error if a fault has occurred.

3. Execute Command
This command can be 4 or 8 bytes in length. An 8 byte response includes the reflection of the
command and the resulting numerical value, and an error if a fault has occurred.

If an interpreter command cannot be serviced for any reason, bit 6 of byte 3 of TPDO2 is set on, and byte 4
of the response contains the Elmo error code (refer to the EC command section of the "Harmonica
Command Reference Manual").

Page 3 of 4 TN30_18 - CANopen to Elmo.doc

The Trio controller (client) sends commands (RPDO2) for setting variables in 8 bytes (DLC=8). The
Harmonica (server) transmits the reply (TPDO2) as an asynchronous event of the received object.

RPDO2 Structure
RPDO2 is used to set values for the drive and query values from it. The structure of the command is as
follows:

 Bytes 0 to 3 are the header, which include the command, command index (when needed) and data type
(float or integer). Bytes 0 and 1, which represent the command character in ASCII, must be upper case.

 Bytes 4 to 7 are the data, which is always 4 bytes. The format can be integer of float. The bytes are
interpreted in little endian format.

Byte 0 1 2 3 4-7

Bits 0…7 0…7 0…7 0…5 6 7

Description First
command
character

Second
command
character

Index for array
parameter. 0 for scalar
command

See note 0: integer

1: float

Data in
little endian
format

Note - Byte 3, bit 6:
When this bit is set to 1, the drive treats the command as a "query" and not a "setting". In this case, the rest
of the data bytes are discarded and the drive replies to the command according to 4 bytes DLC. For
compatibility reasons, bytes 4 to 7 should be 0.

In array commands in which the index is used (as in IB[16]), the lowest significant bits are in byte 2 and the
most significant bits are in byte 3.

Example 1: Setting speed to 1000 (03E8 hex), Harmonica software command SP=1000.
Byte 0 1 2 3 4 5 6 7

Hex value 53 50 00 00 E8 03 00 00

Example 2: Query speed, Harmonica software command SP
Byte 0 1 2 3 4 5 6 7

Hex value 53 50 00 40 00 00 00 00

TPDO2 Structure
The Harmonica (server) replies on TPDO2 to query and set requests in 8 bytes (DLC=8). The structure of
the reply is as follows:

 Bytes 0 to 3 are the header, which includes the responding command, command index (when needed)
and data type (float or integer). It also indicates whether the response data is true data or an error code.

 Bytes 4 to 7 are the data, which is either a reflection of the host set command or an error code
according to the EC command.

Page 4 of 4 TN30_18 - CANopen to Elmo.doc

Byte 0 1 2 3 4-7

Bits 0…7 0…7 0…7 0…5 6 7

Description First
character

Second
character

Index for array
parameter. 0 for scalar
command

See note 0: integer

1: float

Data in
little endian
format

Note - Byte 3, bit 6:
When this bit is set 1 for TPDO2, the data in bytes 4 to 7 should be interpreted as an error code. Refer to
the EC command section in the "Harmonica Command Reference Manual" for details.

In array commands in which the index is used (as in IB[16]), the lowest significant bits are in byte 2 and the
most significant bits are in byte 3.

Example: If SP=1000 (03E8 hex), the Harmonica reply to the query speed command would be:
Byte 0 1 2 3 4 5 6 7

Hex value 53 50 00 00 E8 03 00 00

Execute Command
These commands are used to instruct the Harmonica to perform a sequence. The reply to these
commands is only an acknowledgement or an error code, and is always 8 bytes long. There is no data
value for executing the command. Execute commands are a unique case of RPDO2, which can be used
with a DLC or either 4 or 8 bytes.

Example: BG command to start motion.
Byte 0 1 2 3 4 5 6 7

Hex value 42 47 00 00 40 00 00 00

Success:
Byte 0 1 2 3 4 5 6 7

Hex value 42 47 00 00 00 00 00 00

Failure: error code 58 (3A hex) for "motor must be on"
Byte 0 1 2 3 4 5 6 7

Hex value 42 47 00 40 3A 00 00 00

