
Motion Coordinator Technical Reference Manual

Programming 7-1

C H A P T E R

CHAPTER 0PROGRAMMING

7-2 Programming

Trio Motion Technology

Motion Coordinator Technical Reference Manual

Programming 7-3
What is a program?

What is a program?
The traditional description of a program is a task that you want the computer (the
Motion Coordinator) to perform. The task is described using statements written in
the Trio BASIC language which the Motion Coordinator can understand.

A program is simply a list of instructions to the Motion Coordinator, some of these
instructions have a dedicated function to be performed by the controller, others
control the program flow, the sequence in which instructions are actually
executed.

Statements in your program must be written using a set of rules known as 'Syntax'.
You must follow these rules if you are to write Trio BASIC programs. Trio BASIC
instructions are divided into the following types:

• Instructions
• Program Flow
• Controller Specific

• Identifiers
• Labels
• Data Storage

Controlling the Sequence of Events
In order to write a program we must break the function of our system down into
logical operations which the controller must perform. As we are not able to solve
every problem in a purely linear manner, we need more control of the ‘flow’ of
the program instructions, for example to make a decision and decide whether or
not certain instructions need to be executed, or to perform a certain task several
times. In programming terms we refer to these concepts as SEQUENCE,
SELECTION and ITERATION.

7-4 Programming
Sequence

Trio Motion Technology

Sequence
The ability to process a series of instructions, in a logical order, and to control the
flow by branching to another part of the program.

Normally, a program executes statements in sequence starting at the top. In
order to branch between different sections of the program we need to be able to
identify specific sections of the code. Labels are used as place markers to indicate
the start of a routine, or the target for the ‘branch’ instructions, GOTO and GOSUB.

It is useful to split your program up into a series of routines, each of which
handles a particular funtion of the machine. The GOSUB command will jump to a
label and continue from its new location. When the program encounters a RETURN
command, the program will jump back to the GOSUB from where it originally
came. Take the following example:

PRINT "Hello"
GOSUB a_subroutine
STOP

a_subroutine:
PRINT "World"

RETURN

The program will print the "Hello" text to the terminal window, then jump to the
line of the program labelled ‘a_subroutine’ and continue execution. The next
command it finds will print "World". The RETURN command then returns the
program to the point it left, where it then proceeds onto the next command after
the GOSUB command which in this case is the STOP command, which halts the
execution of the program.

The GOTO command does not remember where it jumped from and will continue
running from its new location permanently. This might be used for example, if we
have a certain process which needs to be performed when shutting down a
machine, we might jump directly to that routine:

i.e. GOTO shut_down

Trio BASIC instructions:

Labels, GOTO, GOSUB, RETURN, STOP

Motion Coordinator Technical Reference Manual

Programming 7-5
Selection

Selection
Commands that enable us to selectively execute instructions depending on
certain criteria being met.

Example: IF we have made a complete batch THEN stop the machine

Trio BASIC Instructions:

IF … THEN … ELSEIF … ENDIF
ON ... GOTO
ON ... GOSUB

Iteration
To repeatedly execute one or more commands automatically, either for a
specified number of times, or until a certain condition is met or event occurs.

Example REPEAT
GOSUB index_conveyor

UNTIL IN(product_sensor)=ON

Trio BASIC instructions:

FOR … TO … STEP … NEXT
REPEAT … UNTIL
WHILE … WEND

FOR..NEXT Statements
The FOR .. NEXT commands are used to create a finite loop in which a variable is
incremented or decremented from a value to a value.

Example: FOR t=1 TO 5
 PRINT t;" ";
NEXT t
PRINT "Done"

The output to the screen would read:

1.0000 2.0000 3.0000 4.0000 5.0000

7-6 Programming
Iteration

Trio Motion Technology

The program would set the variable t to a value of 1 and then go to the next line
to PRINT. After the print, the NEXT command would return the program to the FOR
command and increment the value of T to make it 2. When the PRINT command is
used again, the value of T has changed and a new value is printed. This continues
until T has gone from 1 through to 5, then the loop ends and the program is
permitted to continue. The next command after the NEXT statement prints "Done"
to the screen slowing the program has left the loop.

You can also use for-next loops to create a loop within a loop, as the following
example shows:

FOR a=1 TO 5
 PRINT "MAIN A=";a
 FOR b=1 TO 10
 PRINT "LITTLE B=";b
 NEXT b
NEXT a

The FOR..NEXT statement loops the main A variable from 1 to 5, but for every
loop of A the FOR..NEXT statement inside the first loop must also loop its variable
B from 1 to 10. This is known as a nested loop as the loop in the middle is nested
inside an outer loop..

Such loops are especially useful for working on array data by using the variables
that increment as position indexes for the arrays. As an example, we could
perform a sequence of absolute moves like this:

FOR y=12 TO 1 STEP-1
FOR x=10 to 120 STEP10

MOVEABS(x,y)
NEXT x

NEXT y

As can be seen,the for-next loop can count down as well as step in value, insted
of simply incrementing the loop counter.

Motion Coordinator Technical Reference Manual

Programming 7-7
Controller Functions

Controller Functions
The specific commands, which instruct the processor to perform a predefined
function or operation. Each instruction will be assigned its own reserved word in
the language.

For example the PRINT instruction in Trio BASIC is used to display a message or
numeric value on the computer screen or another output device, such as a
printer.

Instructions vary in complexity and will take a variety of formats. Some will be a
single keyword with a clearly defined function, such as CANCEL or STOP, whereas
others may take one or more parameters which affect the operation of the
command.

examples:

Identifiers
Identifiers are the names which the programmer uses to identify (!) things in the
program. There are essentially two main types of user-defined identifier, Labels
and Variables.

Labels
Labels are used to provide a place-marker in a program. Not only does this make
the code more readable, it also enables us to direct the flow of our program to a
specific place.

In Trio BASIC, labels are defined by placing a name at the start of the line,
followed by a colon (:).

e.g. start:
enter_password:
error_handler:

Variables
Variables are storage locations for numeric values. they are called variables as
they can be changed at any time. Just like labels, variables can often be given a
user-defined name. Anywhere a number is required a variable can be used. Only
the first charactors of each variable name are used to identify the unique
variable. For example; Micromanipulator1 is the same as Micromanipulator2

WA(1000) wait for a specified time (in milliseconds)

PRINT “Hello” Display the word “hello” on the terminal screen

GOTO show redirect the program to the part labelled show

7-8 Programming
Expressions

Trio Motion Technology

Note: Only up to 16 charactors may be used for variable names.

Example: batch_size=10
would assign a value of 10 to a variable called “batch_size”. Then anywhere in
the program that needs to know the value stored can read this value by name.

Trio BASIC has three different variable types:

If the controller features a battery backed memory, VR() variables and TABLE
memory will be retained when the power is off. For controllers without a battery,
e.g., the MC302X, the FLASHVR() command is provided to store the values in flash
eprom memory.

Expressions
An expression is defined as any calculation or logical function which has to be
evaluated. An expression may be used anywhere a number is required, or a
logical (TRUE/FALSE) decision. In the case of logical expressions, TRUE is deemed
to be any non-zero result.

In programming, the component parts of an expression are known as operands and
operators. The operands are the values, either specific numbers, or variables.
The operators are those functions or actions which act on the operands.

named variables These are LOCAL variables - i.e. they are only valid within
the task they are defined.

Each process can define up to 1024 named variables .

Example:

a=123
SPEED=user_speed
PRINT #3,”Length = “;prod_length[2]

VR() variables The controller has a global array of 1024 VR() variables
which are shared between tasks (1024 on MC206).

Example:

VR(2)=123.4567

TABLE memory The TABLE memory is a large array of up to 256k entries
depending on the controller type. Normally used to store
profiles for the CAM/CAMBOX commands.

Motion Coordinator Technical Reference Manual

Programming 7-9
Expressions

Example 1: You can assign the result of an expression to a variable,

num_widgets = total_length / widget_length
has three operands, num_widgets, total_length and widget_length
and two operators, = (assignment) & / (divide).

Reading the above as simple English would equate to:

Divide the variable total_ length by widget_length and assign the result to the
variable num_widgets

Example 2: you could use an expression directly:

MOVE(widget_length+10) ‘(MOVE is a Trio BASIC instruction)

Example 3: Sometimes an expression is used to make a decision..

IF batch_count = batch_size THEN GOTO batch_done

7-10 Programming
Parameters

Trio Motion Technology

Parameters
Parameters are special purpose variables, used by the system for configuration
and feedback.

Axis Parameters
Each of the axes has its own set of axis parameters which are used to achieve
many of the Motion Coordinator features. The axis parameters may be floating
point or 32 bit integer. The parameters are all set to default values on every
power up. Parameters are read from and written to like variables. The Trio BASIC
assumes the current BASE axis is the required axis unless the AXIS modifier is
used:

>>P_GAIN=2
>>P_GAIN AXIS(8)=0.25
>>? VP_SPEED AXIS(2)
A list of all the axis parameters is given in chapter 8

System Parameters
Trio BASIC holds a list of parameters which are common for the whole controller.
These parameters can be read from and written to like variables. The system
parameters are described in chapter 8. Note that as there is only one system
there is no modifier for system parameters.

Process Parameters
Trio BASIC also holds a small number of parameters which are held separately for
each PROCESS.

These are:

1) TICKS

2) PROCNUMBER

3) PMOVE

4) ERROR_LINE

5) INDEVICE / OUTDEVICE

6) BASE

The process assumed is the current process the command is using, however it is
possible to force the controller to read parameters from a specific process with
the PROC() modifier.

Example: WAIT UNTIL PMOVE PROC(14)=0

Motion Coordinator Technical Reference Manual

Programming 7-11
Parameters

Forcing priority of program execution
When a user program is running, it is known as a 'task', or a 'process'. The number
of simultaneous processes available is dependant on the controller type. When a
program is started, the Motion Coordinator will allocate it to a process
automatically to make the system easier to use. This will normally be sufficient
for most applications, especially when there are less than 4 programs in use.

Allocation of Time
For more complex applications it can be useful to allocate execution priorities to
programs. In order to do this we need to understand how the Motion Coordinator
normally allocates the available processing time:

The default servo period is 1mS. This period is internally divided into 3 time slots
of 1/3mS each, which are used internally for processing the servo functions,
communications and general 'housekeeping' tasks respectively. The remaining
time in each of these slots is used for running the user’s application programs.

Process Numbers
The processes available for programs are identified by numbers, from 1 to the
maximum available on the controller. For example, an MC224 can run 14
simultaneous programs. Process 0 is also allocated automatically to the Motion
Coordinator's command line interface / Motion Perfect connection.

Note: The maximum number of processes available is dependant on the controller type,
as shown in the table below.

The two highest numbered processes (14 and 13 in our example MC224) are
allocated a fixed time slot. These are referred to as the “fast” tasks. They should
be used for processes which require:

1ms 1ms 1ms

Table 1:

Controller Max # Processes High Priority Processes

MC302X 3 3

Euro205x 7 7,6

MC206x 7 7,6

MC224 14 14,13

7-12 Programming
Parameters

Trio Motion Technology

• Guaranteed processing every servo cycle
• A large number of calculations or processing
• Program execution which does not vary in speed as tasks are started or

stopped.

Any other processes (including the command line) share the third time slot.
Execution speed will therefore reduce as the number of programs running
increases. In practice however, a useful execution speed is still obtained.
Processes 1..12 are referred to as “standard” tasks.

Programs can be forced to run on a specific process using the commands RUN or
RUNTYPE:

If equal time is required to be given to all programs, the high priority processes
(14 and 13) should NOT be used. The time available will then be divided evenly
between the remaining processes. The command line and processes 1, 2 & 3
share the remaining third. These programs and the command line use the
available time slot with equal priority

>>RUN "progname",7 Run the named program immediately on
specified task

>>RUNTYPE “progname”,ON,7 Assigns start-up mode for specified program

Motion Coordinator Technical Reference Manual

Programming 7-13
Parameters

Examples: No fast tasks, two standard tasks

No fast tasks, three standard tasks

Two fast tasks, two standard tasks

One fast task, two standard tasks

This example shows the case where there is one fast task only. This is the
exception to the rule as it is allocated BOTH 'fast' time slots.

1ms 1ms 1ms
1 2 C/L 1 2 C/L 1 2 C/L

Table 2:

1ms 1ms 1ms
1 2 3 C/L 1 2 3 C/L 1

Table 3:

1ms 1ms 1ms
14 13 1 14 13 2 14 13 C/L

Table 4:

1ms 1ms 1ms
14 1 14 2 14 C/L

Table 5:

7-14 Programming
Command Line Interface

Trio Motion Technology

Command Line Interface
A “Command Line” interface to the controller can be set up by opening a
“Terminal” window in Motion Perfect. The command line interface always uses
channel 0.

Typing Commands for Immediate Execution

When the controller is waiting for a Trio BASIC command to be typed in it prints
the prompt >>

Example: >>PRINT “HELLO”

Note: A line must always be terminated by pressing the ENTER key (<CR>)

Motion Coordinator Technical Reference Manual

Programming 7-15
Command Line Interface

Limitations of the command line
The command line interface is intended to execute single commands. It is not
possible to process multiple-statement lines or those commands which control the
sequence or 'flow' of a program.

For example, the following type of commands are not available on the command
line:

• Loop Instructions:
FOR..NEXT, WHILE..WEND, REPEAT..UNTIL

• Wait Instructions:
WA(time), WAIT UNTIL, WAIT IDLE

• Named variables:
These are local to a program

Attempting to use any of these commands on the command line may produce
unpredictable results!

Tip! The command line features a buffer of the last 10 commands used. This can
save a lot of typing on the PC. Pressing the up arrow or down arrow cycles
through the buffer.
If you find a command you do not recognise it was probably put there by
Motion Perfect!

Setting Programs to run on power up
Programs can be set to run automatically on power-up using the “Set power up
mode...” facility under the “Program” menu. This sets the RUNTYPE automatically

Example Typically only ONE program is set to run on power up. This program can then start
the others under program control:

...body of program
RUN "Prog2"
RUN "Prog3"
...body of program

After setting one or more programs to run on power up the project should be set
to “Fixed”. The programs will then be stored in flash Eprom.

7-16 Programming
Command Line Interface

Trio Motion Technology

Example Programs

Example 1 start:
TICKS=0
PRINT "Press a key"
WAIT UNTIL KEY
GET k
PRINT "You took ";-TICKS/1000;" seconds"

GOTO start

Example 2 'Set speed then move forward then back:
PRINT "EXAMPLE PROGRAM 2"
SPEED=100
ACCEL=1000
DECEL=1000
MOVE(250)
MOVEABS(0)
STOP

Note that the last line stops the program, not the motion. The first line is a
comment. It has no effect on the program execution.

Example 3 ‘Display 16 INPUTS as a row of 1’s and 0’s
REPEAT

FOR i=0 TO 15
IF IN(i)=ON THEN

PRINT "1";
ELSE

PRINT "0";
ENDIF

NEXT i
PRINT CHR (13);
‘Character 13 will do <CR> without linefeed

UNTIL 0

	Programming
	What is a program?
	Controlling the Sequence of Events

	Sequence
	Selection
	Iteration
	Controller Functions
	Identifiers
	Labels
	Variables

	Expressions
	Parameters
	Axis Parameters
	System Parameters
	Process Parameters
	Forcing priority of program execution
	Allocation of Time
	Process Numbers

	Command Line Interface
	Limitations of the command line
	Setting Programs to run on power up
	Example Programs

