
Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-1

C H A P T E R

CHAPTER 0TRIO BASIC COMMANDS

8-2 Trio BASIC Commands

Trio Motion Technology

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-3

Motion and Axis Commands . 13
ACC . 13
ADD_DAC . 14
ADDAX . 16
AXIS . 19
BACKLASH . 20
BASE . 21
CAM . 22
CAMBOX . 27
CANCEL . 36
CONNECT . 38
DATUM . 40
DEC . 44
DEFPOS . 45
DISABLE_GROUP . 47
ENCODER_RATIO . 50
FORWARD . 52
MHELICAL . 54
MHELICALSP . 57
MOVE . 57
MOVEABS . 59
MOVEABSSP . 62
MOVECIRC . 63
MOVECIRCSP . 65
MOVELINK . 66
MOVEMODIFY . 71
MOVESP . 75
MSPHERICAL . 75
MOVETANG . 77
RAPIDSTOP . 80
REGIST . 83
REGIST_SPEED . 87
REVERSE . 88
STEP_RATIO . 90

Input / Output Commands . 92
AIN . 92
AIN0..3 / AINBI0..3 . 93
AOUT0...3 . 93
CHANNEL_READ . 93
CHANNEL_WRITE . 94
CHR . 94
CLOSE . 95
CURSOR . 95

8-4 Trio BASIC Commands

Trio Motion Technology

DEFKEY . 95
ENABLE_OP . 96
FILE . 96
FLAG . 98
FLAGS . 99
GET . 99
GET# .100
HEX .101
IN()/IN .101
INPUT .102
INPUTS0 / INPUTS1 .103
INVERT_IN .103
KEY .103
LINPUT .104
OP .105
OPEN .107
PRINT .108
PRINT# .109
PSWITCH .110
READ_OP() .112
READPACKET .112
SEND .113
SETCOM .114
TIMER .116

Program Loops and Structures . 118
BASICERROR .118
ELSE .118
ELSEIF .118
ENDIF .119
FOR..TO.. STEP..NEXT. .120
GOSUB .121
GOTO .122
NEXT .122
ON.. GOSUB .122
ON.. GOTO .123
REPEAT.. UNTIL .123
RETURN .124
THEN .124
TO .124
UNTIL .125
WA .125
WAIT IDLE .126
WAIT LOADED .126

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-5

WAIT UNTIL .126
WEND .127
WHILE .127

System Parameters and Commands 128
ADDRESS .128
APPENDPROG .128
AUTORUN .128
AXISVALUES .129
BATTERY_LOW .129
BOOT_LOADER .130
BREAK_ADD .130
BREAK_DELETE .130
BREAK_LIST .131
BREAK_RESET .131
CAN .131
CANIO_ADDRESS .133
CANIO_ENABLE .134
CANIO_STATUS. .134
CANOPEN_OP_RATE .135
CHECKSUM .135
CLEAR .135
CLEAR_PARAMS .136
COMMSERROR .136
COMMSTYPE .137
COMPILE .137
CONTROL .138
COPY .138
DATE .139
DATE$.140
DAY .140
DAY$.140
DEL .140
DEVICENET .141
DIR .142
DISPLAY .142
DLINK .143
EDIT .147
EDPROG .147
EPROM .148
ERROR_AXIS .149
ETHERNET .149
ETHERNET_IP .151
EX .151

8-6 Trio BASIC Commands

Trio Motion Technology

EXECUTE .152
FB_SET .152
FB_STATUS .153
FEATURE_ENABLE .153
FLASHVR .154
FRAME .155
FREE .156
HALT .156
HLM_COMMAND .157
HLM_READ. .159
HLM_STATUS .160
HLM_TIMEOUT .160
HLM_WRITE .161
HLS_MODEL .162
HLS_NODE .162
INCLUDE .163
INITIALISE .163
LAST_AXIS .164
LIST .164
LIST_GLOBAL .164
LOAD_PROJECT .165
LOADSYSTEM .165
LOCK .166
MC_TABLE .167
MC_VR .167
MOTION_ERROR .167
MPE .167
N_ANA_OUT .168
NAIO .169
NETSTAT .169
NEW .169
NIO .170
PEEK .170
POKE .170
PORT .170
POWER_UP . 171
PROCESS .171
PROFIBUS .171
PROTOCOL .172
REMOTE .172
RENAME .172
RS232_SPEED_MODE .173
RUN .173
RUNTYPE .174

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-7

SCOPE .175
SCOPE_POS .176
SELECT .176
SERCOS .176
SERCOS_PHASE .181
SERIAL_NUMBER .182
SERVO_PERIOD .182
SLOT .182
STEP .183
STEPLINE .183
STOP .184
STICK_READ .184
STICK_WRITE .185
STORE .186
SYNC_TIMER .187
TABLE . 187
TABLEVALUES .188
TIME . 189
TIME$.189
TRIGGER .189
TROFF .190
TRON .190
TSIZE .190
UNLOCK .191
USB .191
USB_HEARTBEAT .192
USB_STALL .193
VERSION .193
VIEW .193
VR .194
VRSTRING .195
WDOG .195
WDOGB .196
: .196
’ .197
.197
$.198
BITREV8 .198
ERROR_LINE .198
INDEVICE .199
LOOKUP .199
OUTDEVICE .200
PMOVE .200
PROC .200

8-8 Trio BASIC Commands

Trio Motion Technology

PROC_LINE .201
PROC_MODE .201
PROC_STATUS .201
PROCNUMBER .202
RESET .202
RUN_ERROR .202
SHIFTR .202
STRTOD .203
TABLE_POINTER .204
TICKS .206

Mathematical Operations and Commands 207
+ Add .207
- Subtract .207
* Multiply .208
/ Divide .208
^ Power .209
= Equals .209
<> Not Equal. .209
> Greater Than .210
>= Greater Than or Equal .210
< Less Than .211
<= Less Than or Equal .211
ABS .212
ACOS .212
AND .212
ASIN .213
ATAN .214
ATAN2 .214
B_SPLINE .214
CLEAR_BIT .217
CONSTANT .217
COS .218
CRC16 .218
EXP .219
FRAC .219
GLOBAL .219
IEEE_IN .220
IEEE_OUT .220
INT .221
INTEGER_READ/INTEGER_WRITE . 222
LN .222
MOD .223
NOT .223

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-9

OR .223
READ_BIT .224
SET_BIT .225
SGN .225
SIN .225
SQR .227
TAN .227
XOR .227

Constants . 229
OFF .229
ON .229
FALSE .229
PI .229
TRUE .230

Axis Parameters . 231
ACCEL .231
ADDAX_AXIS .231
AFF_GAIN .231
ATYPE .232
AXIS_ADDRESS .234
AXIS_ENABLE .234
AXIS_MODE .235
AXISSTATUS .235
BACKLASH_DIST .236
BOOST .237
CAN_ENABLE .237
CLOSE_WIN .237
CLUTCH_RATE .237
CREEP .238
D_GAIN .238
D_ZONE_MIN .239
D_ZONE_MAX .239
DAC .240
DAC_OUT .240
DAC_SCALE .241
DATUM_IN .241
DECEL .242
DEMAND_EDGES .242
DEMAND_SPEED . 242
DPOS .242
DRIVE_CLEAR .243
DRIVE_CONTROL .243

8-10 Trio BASIC Commands

Trio Motion Technology

DRIVE_ENABLE .244
DRIVE_EPROM .244
DRIVE_HOME .244
DRIVE_INPUTS .244
DRIVE_INTERFACE .245
DRIVE_MODE .245
DRIVE_MONITOR .245
DRIVE_READ .246
DRIVE_RESET .246
DRIVE_STATUS .246
DRIVE_WRITE .247
ENCODER .247
ENCODER_BITS .247
ENCODER_CONTROL .248
ENCODER_ID .249
ENCODER_READ .249
ENCODER_STATUS .249
ENCODER_TURNS .249
ENCODER_WRITE .250
ENDMOVE .250
ENDMOVE_BUFFER2. 50
ENDMOVE_SPEED .251
ERRORMASK .251
FAST_JOG .252
FASTDEC .252
FE .252
FE_LATCH .252
FE_LIMIT .253
FE_LIMIT_MODE .253
FE_RANGE .253
FEGRAD .254
FEMIN .254
FHOLD_IN .254
FHSPEED .255
FORCE_SPEED .255
FS_LIMIT .256
FULL_SP_RADIUS . 256
FWD_IN .257
FWD_JOG .257
I_GAIN .257
INVERT_STEP .258
JOGSPEED .258
LIMIT_BUFFERED .258
LINKAX .259

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-11

MARK .259
MARKB .259
MERGE .260
MICROSTEP .260
MOVES_BUFFERED .261
MPOS .261
MSPEED . 262
MTYPE .262
NTYPE .263
OFFPOS .263
OPEN_WIN .264
OUTLIMIT . 264
OV_GAIN .265
P_GAIN .265
PP_STEP .266
REG_POS .266
REMAIN .267
REP_DIST .268
REP_OPTION .268
REV_IN .268
REV_JOG .269
RS_LIMIT .269
SERVO .269
SPEED .270
SPHERE_CENTRE .270
SRAMP .270
TANG_DIRECTION .271
TRANS_DPOS .271
UNITS .272
VECTOR_BUFFERED .272
VERIFY .273
VFF_GAIN .274
VP_SPEED .274

8-12 Trio BASIC Commands

Trio Motion Technology

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-13
Motion and Axis Commands

Motion and Axis Commands

ACC
Type: Axis Command

Syntax: ACC(rate)
Description: Sets both the acceleration and deceleration rate simultaneously.

This command is provided to aid compatibility with older Trio controllers. Use the
ACCEL and DECEL axis parameters in new programs.

Parameters:

Example 1: Move an axis at a given speed and using the same rates for both acceleration and
deceleration.

ACC(120) 'set accel and decel to 120 units/sec/sec
SPEED=14.5 'set programmed speed to 14.5 units/sec
MOVE(200) 'start a relative move with distance of 200

Example 2: Changing the ACC whilst motion is in progress.

SPEED=100000 'set required target speed (units/sec)
ACC(1000) 'set initial acc rate
FORWARD
WAIT UNTIL VP_SPEED>5000 'wait for acutal speed to exceed 5000
ACC(100000) 'change to high acc rate
WAIT UNTIL SPEED=VP_SPEED 'wait until final speed is reached
WAIT UNTIL IN(2)=OFF
CANCEL

rate: The acceleration rate in UNITS/SEC/SEC.

8-14 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

ADD_DAC
Type: Axis Command

Syntax: ADD_DAC(axis)

Description: Adds the output from the 5-term servo control block of a secondary axis to the out-
put of the base axis. The resulting DAC_OUT is then the sum of the two control loop
outputs.

The ADD_DAC command is provided to allow a secondary encoder to be used on a
servo axis to implement dual feedback control. This would typically be used in appli-
cations such as a roll-feed where you need a secondary encoder to compensate for
slippage.

Parameters:

Example 1: Use ADD_DAC to add the output of a measuring wheel to the servo motor axis control-
ling a roll-feed. Set up the servo motor axis as usual with encoder feedback from
the motor drive. The measuring wheel axis must also be set up as a servo by setting
the AYTPE to 2. This is so that the software will perform the servo control calcual-
tions on that axis.

It is necessary for the two axes to be controlled by a common demand position.
Typically this would be achieved by running the moves on a virtual axis and using
ADDAX to produce a matching DPOS on BOTH axes. The servo gains are then set up on
BOTH axes, and the output summed on to one physical output using ADD_DAC. If the
required demand positions on both axes are not identical due to a difference in res-
olution between the 2 feedback devices, ENCODER_RATIO can be used on one axis to
produce matching UNITS.

axis: Number of the second axis, who’s output will be added to the
current axis.
-1 will terminate the ADD_DAC link.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-15
Motion and Axis Commands

BASE(1)
'match the encoder counts per linear distance of the 2 axes
ENCODER_RATIO(counts_per_mm2, counts_per_mm1)
UNITS AXIS(1) = counts_per_mm1
UNITS AXIS(2) = counts_per_mm1 ‘ units MUST be the same
ADD_DAC(2) 'Combine axis(2) DAC_OUT with axis(1)
ADDAX(1) AXIS(2) 'Superimpose axis 1 demand on axis 2

'the axes are now set up and ready to move
MOVE(1200)
WAIT IDLE

AXIS 2

(MEASURING WHEEL)

AXIS 1

(SERVO MOTOR)

8-16 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

ADDAX
Type: Axis Command

Syntax: ADDAX(axis)
Description: The ADDAX command is used to superimpose 2 or more movements to build up a

more complex movement profile:

The ADDAX command takes the demand position changes from the specified axis and
adds them to any movements running on the axis to which the command is issued.
The specified axis can be any axis and does not have to physically exist in the sys-
tem. After the ADDAX command has been issued the link between the two axes
remains until broken and any further moves on the specified axis will be added to
the base axis.

The ADDAX command therefore allows an axis to perform the moves specified on
TWO axes added together. When the axis parameter SERVO is set to OFF on an axis
with an encoder interface the measured position MPOS is copied into the demand
position DPOS. This allows ADDAX to be used to sum encoder inputs.

Parameter:

Note: The ADDAX command sums the movements in encoder edge units.

Example 1: UNITS AXIS(0)=1000
UNITS AXIS(1)=20
'Superimpose axis 1 on axis 0
ADDAX(1) AXIS(0)

 MOVE(1) AXIS(0)
MOVE(2) AXIS(1)
'Axis 0 will move 1*1000+2*20=1040 edges

axis: Axis to superimpose.
-1 breaks the link with the other axis.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-17
Motion and Axis Commands

Example 2: Pieces are placed randomly onto a continuously moving belt and further along the
line are transferred to a second flighted belt. A detection system gives an indication
as to whether a piece is in front of or behind its nominal position, and how far.

expected=2000 'sets expected position
BASE(0)
ADDAX(1)
CONNECT(1,2) 'continuous geared connection to flighted belt
REPEAT
 GOSUB getoffset 'get offset to apply
 MOVE(offset) AXIS(1) 'make correcting move on virtual axis
UNTIL IN(2)=OFF 'repeat until stop signal on input 2
RAPIDSTOP
ADDAX(-1) 'clear ADDAX connection
STOP

getoffset: 'sub routine to register the position of the
'piece and calculate the offset

BASE(0)
REGIST(3)
WAIT UNTIL MARK
seenat=REG_POS
offset=expected-seenat
RETURN

Axis 0 in this example is connected to the second conveyor’s encoder and a superim-
posed MOVE on axis 1 is used to apply offsets

+

Motion Programmed on AXIS 1

Motion Programmed on AXIS 0

Physical AXIS 0

8-18 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 3: An XY marking machine must mark boxes as they move along a conveyor. Using CON-
NECT enables the X marking axis to follow the conveyor. A virtual axis is used to pro-
gram the marking absolute positions; this is then superimposed onto the X axis using
ADDAX.

 ATYPE AXIS(3)=0 'set axis 3 as virtual axis
 SERVO AXIS(3)=ON
 DEFPOS(0) AXIS(3)
 ADDAX (3)AXIS(0) 'connect axis 3 requirement to axis 0
 WHILE IN(2)=ON
 REGIST(3) 'registration input detects a box on the conveyor
 WAIT UNTIL MARK OR IN(2)=OFF
 IF MARK THEN
 CONNECT(1,2) AXIS(0)'connect axis 0 to the moving belt
 BASE(3,1) 'set the drawing motion to axis 3 and 1
 'Draw the M
 MOVEABS(1200,0)'move A > B
 MOVEABS(600,1500)'move B > C
 MOVEABS(1200,3000)' move C > D
 MOVEABS(0,0)'move D > E
 WAIT IDLE
 BASE(0)
 CANCEL 'stop axis 0 from folowing the belt
 WAIT IDLE
 MOVEABS(0) 'move axis 0 to home position
 ENDIF
 WEND
CANCEL

MOTOR

AXIS 0 ENCODER

AXIS 2

R AXIS 0

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-19
Motion and Axis Commands

AXIS

Type: Modifier

Syntax: AXIS(expression)
Description: Assigns ONE command or axis parameter operation to a particular axis.

If it is required to change the axis used in every subsequent command, the BASE
command should be used instead.

Parameters:

Example 1: The command line has a default base axis of 0. To print the measured position of
axis 3 to the terminal in Motion Perfect, you must add the axis number after the
parameter name.

>>PRINT MPOS AXIS(3)

Example 2: The base axis is 0, but it is required to start moves on other axes as well as the base
axis.

MOVE(450) 'Start a move on the base axis (axis 0)
MOVE(300) AXIS(2) 'Start a move on axis 2
MOVEABS(120) AXIS(5) 'Start an absolute move on axis 5

R AXIS 0
AXIS 0

AXIS 1

ENCODER

AXIS 2

Expression: Any valid Trio BASIC expression. The result of the expression
should be a valid integer axis number.

8-20 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 3: Set up the repeat distance and repeat option on axis 3, then return to using the base
axis for all later commands.

REP_DIST AXIS(3)=100
REP_OPTION AXIS(3)=1
SPEED=2.30 'set speed accel and decel on the BASE axis
ACCEL=5.35
DECEL=8.55

See Also: BASE()

BACKLASH
Type: Motion Command

Syntax: BACKLASH(on/off, distance, speed, accel)
Description: This axis function allows the parameters for the backlash compensation to be

loaded. The backlash compensation is achieved by applying an offset move when the
motor demand is in one direction, then reversing the offset move when the motor
demand is in the opposite direction. These moves are superimposed on the com-
manded axis movements.

Parameters:

The backlash compensation is applied after a reversal of the direction of change of
the DPOS parameter.
The backlash compensation can be seen in the TRANS_DPOS axis parameter. This is
effectively DPOS + backlash compensation.

Example 1: 'Apply backlash compensation on axes 0 and 1:

BACKLASH(ON,0.5,10,50) AXIS(0)
BACKLASH(ON,0.4,8,50) AXIS(1)

on/off: Control flag: ON to enable backlash.

distance: The distance to be offset in user units.

speed: The speed at which is the compensation move is applied in user
units.

accel: The accel/decel rate at which is compensation move is applied
in user units.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-21
Motion and Axis Commands

BASE
Type: Motion Command

Syntax: BASE(axis no<,second axis><,third axis>...)
Alternate Format: BA(...)

Description: The BASE command is used to direct all subsequent motion commands and axis
parameter read/writes to a particular axis, or group of axes. The default setting is a
sequence: zero, one, two...

Each process has its own BASE group of axes and each program can set BASE
values independently.

The Trio BASIC program is separate from the MOTION GENERATOR program which
controls motion in the axes. The motion generator has separate functions for each
axis, so each axis is capable of being programmed with its own speed, acceleration,
etc. and moving independently and simultaneously OR they can be linked together
by interpolation or linked moves.

Parameters:

Example 1: Set up calibration units, speed and acceleration factors for axes 1 and 2.

BASE(1)
UNITS=2000 'unit conversion factor
SPEED=100 'Set speed axis 1 (units/sec)
ACCEL=5000 'acceleration rate (units/sec/sec)
BASE(2)
UNITS=2000 'unit conversion factor
SPEED=125 'Set speed axis 2
ACCEL=10000 'acceleration rate

Example 2: Set up an interpolated move to run on axes; 0 (x), 6 (y) and 4 (z). Axis 0 will move
100 units, axis 0 will move -23.1 and axis 4 will move 1250 units. The axes will move
along the resultant path at the speed and acceleration set for axis 0.

BASE(0,6,4)
SPEED=120
ACCEL=2000
DECEL=2500

axis numbers: The number of the axis or axes to become the new base axis
array, i.e. the axis/axes to send the motion commands to or
the first axis in a multi axis command.

8-22 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

MOVE(100,-23.1,1250)

Note 1: The BASE command sets an internal array of axes held for each process. The default
array for each process is 0,1,2...up to the number of controller axes. If the BASE
command does not specify all the axes, the BASE command will “fill in” the remain-
ing values automatically. Firstly it will fill in any remaining axes above the last
declared value, then it will fill in any remaining axes in sequence:

'Set BASE array on a 16 axis MC224 controller
BASE(2,6,10)

This will set the internal array of 16 axes to:

2,6,10,11,12,13,14,15,0,1,3,4,5,7,8,9

Note 2: Command line process ONLY; the BASE array may be seen by typing BASE with no
parameters. For example on an MC206X with 8 axes:

>>BASE
(0,2,3,1,4,5,6,7)
>>

See Also: AXIS()
The AXIS() command also redirects commands to different axes but applies to just
a single command, and to a single axis.

CAM

Type: Axis Command

Syntax: CAM(start point, end point, table multiplier, distance)
Description: The CAM command is used to generate movement of an axis according to a table of

POSITIONS which define a movement profile. The table of values is specified with
the TABLE command. The movement may be defined with any number of points from
3 up to the maximum table size available. The controller interpolates between the
values in the table to allow small numbers of points to define a smooth profile.

Parameters: start point: The cam table may be used to hold several profiles and/or
other information. To allow freedom of use each command
specifies where to start in the table.

end point: Specifies end of values in table. Note that 2 or more CAM()
commands executing simultaneously can use the same val-
ues in the table.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-23
Motion and Axis Commands

Note : When the CAM command is executing, the ENDMOVE parameter is set to the end of the
PREVIOUS move

Example1: Motion is required to follow the POSITION equation:

t(x) = x*25 + 10000(1-cos(x))
Where x is in degrees. This example table provides a simple oscillation superimposed
with a constant speed. To load the table and cycle it continuously the program would
be:

FOR deg=0 TO 360 STEP 20 'loop to fill in the table
rad = deg * 2 * PI/360 'convert degrees to radians
x = deg * 25 + 10000 * (1-COS(rad))
TABLE(deg/20,x) 'place value of x in table

NEXT deg

WHILE IN(2)=ON 'repeat cam motion while input 2 is on
CAM(0,18,1,200)
WAIT IDLE

WEND

Note: The subroutine camtable loads the data into the cam TABLE, as shown in the graph
below.

table multiplier: The table values are absolute positions from the start of
the motion and are normally specified in encoder edges.
The table multiplier may be set to any value to scale the
values in the table.

distance: The distance parameter relates the speed of the axis to the
time taken to complete the cam profile. The time taken
can be calculated using the current axis speed and this dis-
tance parameter (which are in user units).

For example the system is being programmed in mm and
the speed is set to 10mm/sec. If it is required to take 10
seconds to complete the profile a distance of 100mm
should be specified. The speed may be changed at any
time to any value as with other motion commands. The
SPEED is ramped up to using the current ACCEL value. To
obtain a CAM shape where ACCEL has no effect the value
should be set to at least 1000 times the SPEED value
(assuming the default SERVO_PERIOD of 1ms).

8-24 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 2: A masked wheel is used to create a stencil for a laser to shine through for use in a
printing system for the ten numerical digits. The required digits are transmitted
through port 1 serial port to the controller as ASCII text.

The encoder used has 4000 edges per revolution and so must move 400 between
each position. The cam table goes from 0 to 1, which means that the CAM multiplier
needs to be a multiple of 400 to move between the positions.

The wheel is required to move to the pre-set positions every 0.25 seconds. The
speed is set to 10000 edges/second, and we want the profile to be complete in 0.25
seconds. So multiplying the axis speed by the required completion time
(10000 x 0.25) gives the distance parameter equals 2500.

 GOSUB profile_gen
 WHILE IN(2)=ON
 WAIT UNTIL KEY#1 'Waits for character on port 1
 GET#1,k
 IF k>47 AND k<58 THEN 'check for valid ASCII character

Table
Position

Degrees Value

1 0 0

2 20 1103

3 40 3340

4 60 6500

5 80 10263

6 100 14236

7 120 18000

8 140 21160

9 160 23396

10 180 24500

11 200 24396

12 220 23160

13 240 21000

14 260 18236

15 280 15263

16 300 12500

17 320 10340

18 340 9103

19 360 9000

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-25
Motion and Axis Commands

 position=(k-48)*400 'convert to absolute position
 multiplier=position-offset 'calculate relative movement
 'check if it is shorter to move in reverse direction
 IF multiplier>2000 THEN
 multiplier=multiplier-4000
 ELSEIF multiplier<-2000 THEN
 multiplier=multiplier+4000
 ENDIF
 CAM(0,200,multiplier,2500) 'set the CAM movment
 WAIT IDLE
 OP(15,ON) 'trigger the laser flash
 WA(20)
 OP(15,OFF)
 offset=(k-48)*400 'calculates current absolute position
 ENDIF
 WEND

profile_gen:
num_p=201
scale=1.0
FOR p=0 TO num_p-1

TABLE(p,((-SIN(PI*2*p/num_p)/(PI*2))+p/num_p)*scale)
NEXT p
RETURN

1 0 3 6 5 2
1

0 2
3

4

5
6

7

8
9

0
1

0

LASER

LASER

MOTOR

OP(15)

TRIGGER

8-26 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 3: A suction pick and place system must vary its speed depending on the load carried.
The mechanism has a load cell which inputs to the controller on the analogue chan-
nel (AIN).

The move profile is fixed, but the time taken to complete this move must be varied
depending on the AIN. The AIN value varies from 100 to 800, which has to result in a
move time of 1 to 8 seconds. If the speed is set to 10000 units per second and the
required time is 1 to 8 seconds, then the distance parameter must range from 10000
to 80000. (distance = speed x time)

The return trip can be completed in 0.5 seconds and so the distance value of 5000 is
fixed for the return movement. The Multiplier is set to -1 to reverse the motion.

GOSUB profile_gen 'loads the cam profile into the table
SPEED=10000:ACCEL=SPEED*1000:DECEL=SPEED*1000
WHILE IN(2)=ON
 OP(15,ON) 'turn on suction
 load=AIN(0) 'capture load value
 distance = 100*load 'calculate the distance parameter
 CAM(0,200,50,distance) 'move 50mm forward in time calculated
 WAIT IDLE
 OP(15,OFF) 'turn off suction
 WA(100)
 CAM(0,200,-50,5000) 'move back to pick up position
WEND

profile_gen:
num_p=201
scale=400 'set scale so that multiplier is in mm
FOR p=0 TO num_p-1

TABLE(p,((-SIN(PI*2*p/num_p)/(PI*2))+p/num_p)*scale)
NEXT p
RETURN

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-27
Motion and Axis Commands

CAMBOX
Type: Axis Command

Syntax: CAMBOX(start point, end point, table multiplier, link distance ,
link axis[, link options][, link pos])

Description: The CAMBOX command is used to generate movement of an axis according to a table
of POSITIONS which define the movement profile. The motion is linked to the meas-
ured motion of another axis to form a continuously variable software gearbox. The
table of values is specified with the TABLE command. The movement may be defined
with any number of points from 3 up to the maximum table size available. The con-
troller interpolates between the values in the table to allow small numbers of points
to define a smooth profile.

Parameters: start point: The cam table may be used to hold several profiles and/or
other information. To allow freedom of use each command
specifies where to start in the table.

 end point: Specifies end of values in table. Note that 2 or more CAMBOX
commands executing simultaneously can use the same values
in the table.

 table
 multiplier:

The table values are positions relative to the start of the
motion and are specified in encoder edges or steps. The table
multiplier may be set to any value to scale the values in the
table.

 link
 distance:

The link distance specifies the distance the link axis must move
to complete the specified output movement. The link distance
is in the user units of the link axis and should always be speci-
fied as a positive distance.

 link axis: This parameter specifies the axis to link to.

8-28 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Note: When the CAMBOX command is executing the ENDMOVE parameter is set to the end of
the PREVIOUS move. The REMAIN axis parameter holds the remainder of the distance
on the link axis.

Parameters 6 and 7; link options and link pos, are optional.

Example 1: ' Subroutine to generate a SIN shape speed profile
' Uses: p is loop counter
' num_p is number of points stored in tables pos 0..num_p
' scale is distance travelled scale factor

profile_gen:
num_p=30
scale=2000
FOR p=0 TO num_p

TABLE(p,((-SIN(PI*2*p/num_p)/(PI*2))+p/num_p)*scale)
NEXT p
RETURN

link options: Bit Values:

1 - link commences exactly when registration event occurs on
link axis

2 - link commences at an absolute position on link axis (see
link pos)

4 - CAMBOX repeats automatically and bi-directionally when
this bit is set. (This mode can be cleared by setting bit 1 of the
REP_OPTION axis parameter)

8 - PATTERN mode. Advanced use of cambox: allows multiple
scale values to be used. Normally combined with the automatic
repeat mode. See example 4.

32 - Link is only active during a positive move on the link axis.

Note:

The start options (1 and 2) may be combined with the repeat-
options (4 and 8).

 link pos: This parameter is the absolute position where the CAMBOX link
is to be started when parameter 6 is set to 2.
Link pos cannot be at or within one servo_period’s worth of
movement of the REP_DIST position.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-29
Motion and Axis Commands

This graph plots TABLE contents against table array position. This corresponds to
motor POSITION against link POSITION when called using CAMBOX. The SPEED of the
motor will correspond to the derivative of the position curve above:

Speed Curve

Example 2: A pair of rollers feeds plastic film into a machine. The feed is syncronised to a mas-
ter encoder and is activated when the master reaches a position held in the variable
“start”. This example uses the table points 0...30 generated in Example 1:

0

500

1000

1500

2000

0 3 6 9 12 15 18 21 24 27 30

0

40

80

120

160

0 3 6 9 12 15 18 21 24 27 30

8-30 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

start=1000
FORWARD AXIS(1)
WHILE IN(2)=OFF

CAMBOX(0,30,800,80,15,2,start)
WA(10)
WAIT UNTIL MTYPE=0 OR IN(2)=ON

WEND
CANCEL
CANCEL AXIS(1)
WAIT IDLE

Note:

MOTOR

AXIS 0

 0 The start of the profile shape in the TABLE

 30 The end of the profile shape in the TABLE

 800 This scales the TABLE values. Each CAMBOX motion would therefore
total 800*2000 encoder edges steps.

 80 The distance on the product conveyor to link the motion to. The units
for this parameter are the programmed distance units on the link axis.

 15 This specifies the axis to link to.

 2 This is the link option setting - Start at absolute position on the link
axis.

 “start” variable “start”. The motion will execute when the position “start” is
reaches on axis 15.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-31
Motion and Axis Commands

Example 3: A motor on Axis 0 is required to emulate a rotating mechanical CAM. The position is
linked to motion on axis 3. The “shape” of the motion profile is held in TABLE values
1000..1035.

The table values represent the mechanical cam but are scaled to range from 0-4000

TABLE(1000,0,0,167,500,999,1665,2664,3330,3497,3497)
TABLE(1010,3164,2914,2830,2831,2997,3164,3596,3830,3996,3996)
TABLE(1020,3830,3497,3330,3164,3164,3164,3330,3467,3467,3164)
TABLE(1030,2831,1998,1166,666,333,0)

BASE(3)
MOVEABS(130)
WAIT IDLE
'start the continuously repeating cambox
CAMBOX(1000,1035,1,360,3,4) AXIS(0)
FORWARD 'start camshaft axis
WAIT UNTIL IN(2)=OFF
REP_OPTION = 2 'cancel repeating mode by setting bit 1
WAIT IDLE AXIS(0) 'waits for cam cycle to finish
CANCEL 'stop camshaft axis
WAIT IDLE

Note: The system software resets bit 1 of REP_OPTION after the repeating mode has been
cancelled.

8-32 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

CAMBOX Pattern Mode:
Description: Setting bit 3 (value 8) of the link options parameter enables the CAMBOX pattern

mode. This mode enables a sequence of scale values to be cycled automatically. This
is normally combined with the automatic repeat mode, so the options parameter
should be set to 12. This diagram shows a typical repeating pattern which can be
automated with the CAMBOX pattern mode:

The parameters for this mode are treated differently to the standard CAMBOX func-
tion

CAMBOX(start, end, control block pointer, link dist, link axis,
options)

12

25

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-33
Motion and Axis Commands

The start and end parameters specify the basic shape profile ONLY. The pattern
sequence is specified in a separate section of the TABLE memory. There is a new
TABLE block defined: The “Control Block”. This block of seven TABLE values defines
the pattern position, repeat controls etc. The block is fixed at 7 values long.

Therefore in this mode only there are 3 independently positioned TABLE blocks used
to define the required motion:

 SHAPE BLOCK This is directly pointed to by the CAMBOX command as in any
CAMBOX.

 CONTROL BLOCK This is pointed to by the third CAMBOX parameter in this
options mode only. It is of fixed length (7 table values). It is
important to note that the control block is modified during
the CAMBOX operation. It must therefore be re-initialised
prior to each use.

 PATTERN BLOCK The start and end of this are pointed to by 2 of the CONTROL
BLOCK values. The pattern sequence is a sequence of scale
factors for the SHAPE.

8-34 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Control Block Parameters

Note: READ/WRITE values can be written to by the user program during the pattern CAMBOX
execution.

Example 4: A quilt stitching machine runs a feed cycle which stiches a plain pattern before
starting a patterned stitch. The plain pattern should run for 1000 cycles prior to run-
ning a pattern continuously until requested to stop at the end of the pattern. The
cam profile controls the motion of the needle bar between moves and the pattern
table controls the distance of the move to make the pattern.

The same shape is used for the initialisation cycles and the pattern. This shape is
held in TABLE values 100..150

The running pattern sequence is held in TABLE values 1000..4999

The initialisation pattern is a single value held in TABLE(160)

The initialisation control block is held in TABLE(200)..TABLE(206)

R/W Description

0 CURRENT
POSITION

R The current position within the TABLE of the pattern
sequence. This value should be initialised to the START
PATTERN number.

1 FORCE POSITION R/W Normally this value is -1. If at the end of a SHAPE the user
program has written a value into this TABLE position the
pattern will continue at this position. The system software
will then write -1 into this position. The value written
should be inside the pattern such that the value:
CB(2)<=CB(1)<=CB(3)

2 START PATTERN R The position in the TABLE of the first pattern value.

3 END PATTERN R The position in the TABLE of the final pattern value

4 REPEAT
POSITION

R/W The current pattern repeat number. Initialise this number
to 0. The number will increment when the pattern repeats
if the link axis motion is in a positive direction. The
number will decrement when the pattern repeats if the
link axis motion is in a negative direction. Note that the
counter runs starting at zero: 0,1,2,3…

5 REPEAT COUNT R/W Required number of pattern repeats. If -1 the pattern
repeats endlessly. The number should be positive. When
the ABSOLUTE value of CB(4) reaches CB(5) the CAMBOX
finishes if CB(6)=-1. The value can be set to 0 to terminate
the CAMBOX at the end of the current pattern. See note
below, next page, on REPEAT COUNT in the case of
negative motion on the link axis.

6 NEXT CONTROL
BLOCK

R/W If set to -1 the pattern will finish when the required
number of repeats are done. Alternatively a new control
block pointer can be used to point to a further control
block.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-35
Motion and Axis Commands

The running control block is held in TABLE(300)..TABLE(306)

' Set up Initialisation control block:
TABLE(200,160,-1,160,160,0,1000,300)

' Set up running control block:
TABLE(300,1000,-1,1000,4999,0,-1,-1)

' Run whole lot with single CAMBOX:
' Third parameter is pointer to first control block

CAMBOX(100,150,200,5000,1,20)
WAIT UNTIL IN(7)=OFF

TABLE(305,0) ' Set zero repeats: This will stop at end of pattern

Note: Negative motion on link axis:
The axis the CAMBOX is linked to may be running in a positive or negative direction.
In the case of a negative direction link the pattern will execute in reverse. In the
case where a certain number of pattern repeats is specified with a negative direc-
tion link, the first control block will produce one repeat less than expected. This is
because the CAMBOX loads a zero link position which immediately goes negative on
the next servo cycle triggering a REPEAT COUNT. This effect only occurs when the
CAMBOX is loaded, not on transitions from CONTROL BLOCK to CONTROL BLOCK. This
effect can easily be compensated for either by increasing the required number of
repeats, or setting the initial value of REPEAT POSITION to 1.

AXIS 1

AXIS 0

8-36 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

CANCEL
Type: Motion Command

Syntax: CANCEL / CANCEL(1)
Alternate Format: CA

Description: Cancels a move on an axis or an interpolating axis group. Velocity profiled moves,
for example; FORWARD, REVERSE, MOVE, MOVEABS, MOVECIRC, MHELICAL, MOVE-
MODIFY, will be ramped down at the programmed deceleration rate then terminated.
Other move types will be terminated immediately.

CANCEL(1) clears a buffered move, leaving the current executing movement intact.

Note: Cancel will only cancel the presently executing move. If further moves are buffered
they will then be loaded and the axis will not stop.

Example 1: Move the base axis forward at the progammed SPEED, wait for 10 seconds, then slow
down and stop the axis at the programmed DECEL rate.

FORWARD
WA(10000)
CANCEL' stop movement after 10 seconds

Example 2: A flying shear uses a sequence of MOVELINKs to make the base axis follow a refer-
ence encoder on axis 4. When the shear returns to the top position an input is trig-
gered, this removes the buffered MOVELINK and replace with a decelrating MOVELINK
to ramp down the slave (base) axis.

0 5 10

TIME (SECS)

V

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-37
Motion and Axis Commands

ref_axis = 4
REPEAT
 MOVELINK(100,100,0,0,ref_axis)
 WAIT LOADED 'make sure the NTYPE buffer is empty each time
UNTIL IN(5)=ON
CANCEL(1) 'cancel the movelink in the NTYPE buffer
MOVELINK(100,200,0,200,ref_axis) ‘ deceleration ramp
CANCEL 'cancel the main movelink, this starts the decel

Example 3: Two axes are connected with a ratio of 1:2. Axis 0 is cancelled after 1 second, then
axis 1 is cancelled when the speed drops to a specified level. Following the first can-
cel axis 1 will decelerate at the DECEL rate. When axis 1’s CONNECT is cancelled it
will stop instantly.

 BASE(0)
 SPEED=10000
 FORWARD
 CONNECT(0.5,0) AXIS(1)
 WA(1000)
 CANCEL
 WAIT UNTIL VP_SPEED<=7500
 CANCEL AXIS(1)

See also: RAPIDSTOP.

0

5000

10000

15000

AXIS 0

AXIS 1

1000 MSEC

7500

8-38 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

CONNECT
Type: Axis Command

Syntax: CONNECT(ratio , driving axis)
Alternate Format: CO(...)

Description: CONNECT the demand position of the base axis to the measured movements of the
driving axes to produce an electronic gearbox.
The ratio can be changed at any time by issuing another CONNECT command which
will automatically update the ratio without the previous CONNECT being cancelled.
The command can be cancelled with a CANCEL or RAPIDSTOP command

Parameters:

Note: To achieve an exact connection of fractional ratio’s of values such as 1024/3072.
The MOVELINK command can be used with the continuous repeat link option set to
ON.

Example 1: In a press feed a roller is required to rotate at a speed one quarter of the measured
rate from an encoder mounted on the incoming conveyor. The roller is wired to the
master axis 0. The reference encoder is connected to axis 1.

BASE(0)
SERVO=ON
CONNECT(0.25,1)

ratio: This parameter holds the number of edges the base axis is required
to move per increment of the driving axis. The ratio value can be
either positive or negative and has sixteen bit fractional resolution.
The ratio is always specified as an encoder edge ratio.

driving
axis:

This parameter specifies the axis to link to.

0 1

CONNECT(1,1) CONNECT(0.5,1) CONNECT(2,1)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-39
Motion and Axis Commands

Example 2: A machine has an automatic feed on axis 1 which must move at a set ratio to axis
0. This ratio is selected using inputs 0-2 to select a particular “gear”, this ratio
can be updated every 100msec. Combinations of inputs will select intermediate
gear ratios. For example 1 ON and 2 ON gives a ratio of 6:1.

BASE(1)
FORWARD AXIS(0)
WHILE IN(3)=ON

WA(100)
gear = IN(0,2)
CONNECT(gear,0)

WEND
RAPIDSTOP 'cancel the FORWARD and the CONNECT

Example 3: Axis 0 is required to run a continuous forward, axis 1 must connect to this but
without the step change in speed that would be caused by simply calling the
CONNECT. CLUTCH_RATE is used along with an initial and final connect ratio of zero
to get the required motion.
 FORWARD AXIS(0)
 BASE(1)
 CONNECT(0,0) 'set intitial ratio to zero
 CLUTCH_RATE=0.5 'set clutch rate
 CONNECT(2,0) 'apply the required connect ratio
 WA(8000)
 CONNECT(0,0) 'apply zero ratio to disconnect
 WA(4000) 'wait for deceleration to complete
 CANCEL 'cancel connect

1:1 2:1 4:1

8-40 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

DATUM
Type: Command

Syntax: DATUM(sequence no)
Description: Performs one of 6 datuming sequences to locate an axis to an absolute position. The

creep speed used in the sequences is set using CREEP. The programmed speed is set
with the SPEED command.

DATUM(0) is a special case used for resetting the system after an axis critical error.
It leaves the positions unchanged.

Parameter:

0

5

10

15

AXIS 1

AXIS 0

4 SEC

CONNECT (2,0)

8 SEC

CONNECT (0,0)

12 SEC

CANCEL

Seq. Description

0 DATUM(0) clears the following error exceeded FE_LIMIT condition for ALL axes
by setting these bits in AXISSTATUS to zero:
BIT 1 Following Error Warning
BIT 2 Remote Drive Comms Error
BIT 3 Remote Drive Error
BIT 8 Following Error Limit Exceeded
BIT 11 Cancelling Move
For stepper axes with position verification, the current measured position of ALL
axes are set as demand position. FE is therefore set to zero. DATUM(0) must
only be used after the WDOG is set to OFF, otherwise there will be unpredictable
effects on the motion.

1 The axis moves at creep speed forward till the Z marker is encountered. The
Demand position is then reset to zero and the Measured position corrected so as
to maintain the following error.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-41
Motion and Axis Commands

Note: The datuming input set with the DATUM_IN which is active low so is set when the
input is OFF. This is similar to the FWD, REV and FHOLD inputs which are designed to
be “fail-safe”.

Example 1: A production line is forced to stop if something jams the product belt, this causes a
motion error. The obstacle has to be removed, then a reset switch is pressed to
restart the line.

 FORWARD 'start production line
 WHILE IN(2)=ON
 IF MOTION_ERROR=0 THEN
 OP(8,ON) 'green light on; line is in motion
 ELSE
 OP(8, OFF)
 GOSUB error_correct
 ENDIF
 WEND
 CANCEL
 STOP

error_correct:
 REPEAT

2 The axis moves at creep speed in reverse till the Z marker is encountered. The
Demand position is then reset to zero and the Measured position corrected so as
to maintain the following error.

3 The axis moves at the programmed speed forward until the datum switch is
reached. The axis then moves backwards at creep speed until the datum switch is
reset. The Demand position is then reset to zero and the Measured position
corrected so as to maintain the following error.

4 The axis moves at the programmed speed reverse until the datum switch is
reached. The axis then moves at creep speed forward until the datum switch is
reset. The Demand position is then reset to zero and the Measured position
corrected so as to maintain the following error.

5 The axis moves at programmed speed forward until the datum switch is reached.
The axis then reverses at creep speed until the datum switch is reset. It then
continues in reverse at creep speed looking for the Z marker on the motor. The
demand position where the Z input was seen is then set to zero and the measured
position corrected so as to maintain the following error.

6 The axis moves at programmed speed reverse until the datum switch is reached.
The axis then moves forward at creep speed until the datum switch is reset. It
then continues forward at creep speed looking for the Z marker on the motor. The
demand position where the Z input was seen is then set to zero and the measured
position corrected so as to maintain the following error.

7 Clear AXISSTATUS error bits for the BASE axis only. Otherwise the action is the
same as DATUM(0).

Seq. Description

8-42 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

 OP(10,ON)
 WA(250)
 OP(10,OFF) 'flash red light to show crash
 WA(250)
 UNTIL IN(1)=OFF
 DATUM(0) 'reset axis status errors
 SERVO=ON 'turn the servo back on
 WDOG=ON 'turn on the watchdog
 OP(9,ON) 'sound siren that line will restart
 WA(1000)
 OP(9,OFF)
 FORWARD 'restart motion
RETURN

Example 2: An axis requires its position to be defined by the Z marker. This position should be
set to zero and then the axis should move to this position. Using the datum 1 the
zero point is set on the Z mark, but the axis starts to decelerate at this point so
stops after the mark. A move is then used to bring it back to the Z position.

 SERVO=ON
 WDOG=ON
 CREEP=1000 'set the search speed
 SPEED=5000 'set the return speed
 DATUM(1) 'register on Z mark and sets this to datum
 WAIT IDLE
MOVEABS (0) 'moves to datum position

RESET

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-43
Motion and Axis Commands

Example 3: A machine must home to its limit switch which is found at the rear of the travel
before operation. This can be achieved through using DATUM(4) which moves in
reverse to find the switch.

SERVO=ON
WDOG=ON
REV_IN=-1 'temporarily turn off the limit switch function
DATUM_IN=5 'sets input 5 for registration
SPEED=5000 'set speed, for quick location of limit switch
CREEP=500 'set creep speed for slow move to find edge of switch
DATUM(4) 'find “edge” at creep speed and stop
WAIT IDLE
DATUM_IN=-1
REV_IN=5 'restore input 5 as a limit switch again

0

5

10

15

0

Z MARK
MOVE

0

5

10

15

0 SWITCH

8-44 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 4: A similar machine to Example 3 must locate a home switch, which is at the forward
end of travel, and then move backwards to the next Z marker and set this as the
datum. This is done using DATUM(5) which moves forwards at speed to locate the
switch, then reverses at creep to the Z marker. A final move is then needed, if
required, as in Example 2 to move to the datum Z marker.

SERVO=ON
WDOG=ON
DATUM_IN=7 'sets input 7 as home switch
SPEED=5000 'set speed, for quick location of switch
CREEP=500 'set creep speed for slow move to find edge of switch
DATUM(5) 'start the homing sequence
WAIT IDLE

DEC
Type: Axis Command

Syntax: DEC(rate)
Description: Sets the deceleration rate for an axis. Different rates may be set for each axis. The

DEC command is included to maintain compatibility with older controllers. Axis
Parameter DECEL provides the same functionality and is the preferred method for
setting the decleration rate.

Parameters:

0

5

10

15

0

Z MARK
SWITCH

rate: The deceleration rate in UNITS/SEC/SEC.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-45
Motion and Axis Commands

Note: ACC sets both the acceleration and the deceleration rates to the same value. As DEC
sets only the deceleration rate, you must use DEC after the ACC command in the pro-
gram in order to make acceleration and deceleration rates different.

See Also: ACCEL and DECEL axis parameters.

Example 1: Initialising an axis to use different rates for acceleration and deceleration, then
processing a move.

 ACC(120) 'set accel and decel to 120 units/sec/sec
 DEC(90) 'set deccel to 90 units/sec/sec
 SPEED=14.5 'set programmed speed to 14.5 units/sec

MOVE(500) 'start a relative move with distance of 500

DEFPOS
Type: Function

Syntax: DEFPOS(pos1 [,pos2[, pos3[, pos4.....]]])
Alternate Format: DP(pos1 [,pos2[, pos3[, pos4]]])

Description: Defines the current position(s) as a new absolute value. The value pos# is placed in
DPOS, while MPOS is adjusted to maintain the FE value. This function is completed
after the next servo-cycle. OFFPOS is set non-zero when the DEFPOS begins execu-
tion and OFFPOS returns to 0 when the DPOS and MPOS have been updated. DEFPOS
may be used at any time, even whilst a move is in progress, but its normal function is
to set the position values of a group of axes which are stationary.

Parameters:

As many parameters as axes on the system may be specified.

See Also: OFFPOS which performs a relative adjustment of position.

Example 1: After homing 2 axes, it is required to change the DPOS values so that the “home”
positions are not zero, but some defined positions instead.

DATUM(5) AXIS(1) 'home both axes. At the end of the DATUM
DATUM(4) AXIS(3) 'procedure, the positions will be 0,0.
WAIT IDLE AXIS(1)
WAIT IDLE AXIS(3)
BASE(1,3) 'set up the BASE array
DEFPOS(-10,-35) 'define positions of the axes to be -10 and -35

pos1: Absolute position to set on current base axis in user units.

pos2: Abs. position to set on the next axis in BASE array in user units.

pos3: Abs. position to set on the next axis in BASE array in user units.

8-46 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 2: Define the axis position to be 10, then start an absolute move, but make sure the
axis has updated the position before loading the MOVEABS.

DEFPOS(10.0)
WAIT UNTIL OFFPOS=0' Ensures DEFPOS is complete before next line
MOVEABS(25.03)

PROXIMITY SENSOR

DEFPOS -10

DEFPOS -35

15.03
25.03

10

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-47
Motion and Axis Commands

Example 3: From the Motion Perfect terminal, quickly set the DPOS values of the first four axes
to 0.

>>BASE(0)
>>DP(0,0,0,0)
>>

DISABLE_GROUP
Type: Function

Syntax: DISABLE_GROUP(axis1 [,axis2[, axis3[, axis4.....]]])
Description: Used to create a group of axes which will be disabled if there is a motion error in one

or more of the group. After the group is created, when an error occurs all the axes
in the group will have their AXIS_ENABLE set to OFF and SERVO set to OFF. Multiple
groups can be made, although one axis cannot belong to more than one group.

All groupings will be cleared with the command DISABLE_GROUP(-1).

Parameters:

Note: As many parameters as axes on the system may be specified.

Example 1: A machine has 2 functionally separate parts, which have their own emergency stop
and operator protection guarding. If there is an error on one part of the machine,
the other part can remain running while the cause of the error is removed and the
axis group re-started. We need to set up 2 separate axis groupings.

DISABLE_GROUP(-1) 'remove any previous axis groupings
DISABLE_GROUP(0,1,2,6) 'group axes 0 to 2 and 6
DISABLE_GROUP(3,4,5,7) 'group axes 3 to 5 and 7

AXIS 0 1 2 3

DPOS 12 168 37 21

AXIS 0 1 2 3

DPOS 0 0 0 0

BEFORE AFTER

axis1: Axis number of first axis in group.

axis2: Axis number of second axis in group.

axisN: Axis number of Nth axis in group.

8-48 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

WDOG=ON 'turn on the enable relay and the remote drive enable

FOR ax=0 TO 7
 AXIS_ENABLE AXIS(ax)=ON 'enable the 8 axes
 SERVO AXIS(ax)=ON 'start position loop servo for each axis
NEXT ax

Example 2: Two conveyors operated by the same Motion Coordinator are required to run inde-
pendently so that if one has a “jam” it will not stop the second conveyor.

DISABLE_GROUP(0) 'put axis 0 in its own group
DISABLE_GROUP(1) 'put axis 1 in another group

GOSUB group_enable0
GOSUB group_enable1
WDOG=ON

FORWARD AXIS(0)
FORWARD AXIS(1)

WHILE TRUE
 IF AXIS_ENABLE AXIS(0)=0 THEN
 PRINT "motion error axis 0"
 reset_0_flag=1
 ENDIF
 IF AXIS_ENABLE AXIS(1)=0 THEN
 PRINT "motion error axis 1"
 reset_1_flag=1
 ENDIF
 IF reset_0_flag=1 AND IN(0)=ON THEN
 GOSUB group_enable0
 FORWARD AXIS(0)
 reset_0_flag=0
 ENDIF
 IF reset_1_flag=1 AND IN(1)=ON THEN
 GOSUB group_enable1
 FORWARD AXIS(1)
 reset_1_flag=0
 ENDIF
WEND

group_enable0:
 BASE(0)
 DATUM(7) ' clear motion error on axis 0
 WA(10)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-49
Motion and Axis Commands

 AXIS_ENABLE=ON
 SERVO=ON
RETURN
group_enable1:
 BASE(1)
 DATUM(7) ' clear motion error on axis 0
 WA(10)
 AXIS_ENABLE=ON
 SERVO=ON
RETURN

Example 3: One group of axes in a machine require resetting, without affecting the remaining
axes, if a motion error occurs. This should be done manually by clearing the cause
of the error, pressing a button to clear the controllers’ error flags and re-enabling
the motion.

 DISABLE_GROUP(-1) 'remove any previous axis groupings
 DISABLE_GROUP(0,1,2) 'group axes 0 to 2
 GOSUB group_enable 'enable the axes and clear errors
 WDOG=ON

 SPEED=1000
 FORWARD

RESET

0

1

1
RESET

0

AXIS 1

AXIS 0

8-50 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

WHILE IN(2)=ON
 'check axis 0, but all axes in the group will disable together
 IF AXIS_ENABLE =0 THEN
 PRINT "Motion error in group 0"
 PRINT "Press input 0 to reset"
 IF IN(0)=0 THEN 'checks if reset button is pressed
 GOSUB group_enable 'clear errors and enable axis
 FORWARD 'restarts the motion
 ENDIF
 ENDIF
 WEND
 STOP 'stop program running into sub routine

group_enable: 'Clear group errors and enable axes
 DATUM(0) 'clear any motion errors
 WA(10)
 FOR axis_no=0 TO 2
 AXIS_ENABLE AXIS(axis_no)=ON 'enable axes
 SERVO AXIS(axis_no)=ON 'start position loop servo
 NEXT axis_no
 RETURN

See Also: AXIS_ENABLE for enabling remote axes.

Note: For use with SERCOS and MECHATROLINK only.

ENCODER_RATIO
Type: Function

Syntax: ENCODER_RATIO(mpos_count, input_count)
Description: This command allows the incoming encoder count to be scaled by a non integer

ratio, using the following ratio;

MPOS = (mpos_count / input_count) x encoder_edges_input

ENCODER_RATIO affects the number of edges within the servo loop at a low level and
it will be necessary to change the position loop gains to maintain perfomance and
stablilty. Unlike the UNITS parameter, which only affects the scaling seen by the
user programs, ENCODER_RATIO affects all motion commands including MOVECIRC
and CAMBOX.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-51
Motion and Axis Commands

Parameters:

Note 1: Large ratios should be avoided as they will lead to either loss of resolution or much
reduced smoothness in the motion. The actual physical encoder count is the basic
resolution of the axis and use of this command may reduce the ability of the Motion
Coordinator to accurately achieve all positions.

Note 2: ENCODER_RATIO does not replace UNITS. Only use ENCODER_RATIO where absolutely
necessary. PP_STEP and ENCODER_RATIO cannot be used at the same time on the
same axis.

Example 1: A rotary table has a servo motor connected directly to its centre of rotation. An
encoder is mounted to the rear of the servo motor and returns a value of 8192
counts per rev. The application requires the table to be calibrated in degrees so
that each degree is an integer number of counts.

‘ 7200 is a value close to the encoder resolution, but can be
divided
‘ by an integer to give degrees. (7200 / 20 = 360)
ENCODER_RATIO(7200,8192)
UNITS = 20 ‘ axis calibrated in degrees, resolution = 0.05 deg.

Example 2: An X-Y system has 2 different gearboxes on its vertical and horizontal axes. The
software needs to use interpolated moves, including MOVECIRC and MUST therefore
have UNITS on the 2 axes set the same. Axis 3 (X) is 409 counts per mm and axis 4
(Y) has 560 counts per mm. So as to use the maximum resolution available, set both
axes to be 560 counts per mm with the ENCODER_RATIO command.

ENCODER_RATIO(560,409) AXIS(3) 'axis 3 is now 560 counts/mm
UNITS AXIS(3) = 56 'X axis calibrated in mm x 10
UNTIS AXIS(4) = 56 'Y axis calibrated in mm x 10
MOVECIRC(200,100,100,0,1) 'move axes in a semicircle

mpos_count : A number between 0 and 16777215 which defines the
numerator of the above function.

input_count: A number between 0 and 16777215 which defines the
denominator of the above function.

8-52 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

FORWARD
Type: Axis Command

Syntax: FORWARD

Alternate Format: FO
Description: Sets continuous forward movement. The axis accelerates at the programmed ACCEL

rate and continues moving at the SPEED value until either a CANEL or RAPIDSTOP
command are encountered. It then declerates to a stop at the programmed DECEL
rate.
If the axis reaches either the forward limit switch or forward soft limit, the FORWARD
will be cancelled and the axis will decelerate to a stop.

Example 1: Run an axis forwards. When an input signal is detected on input 12, bring the axis to
a stop.

FORWARD
' wait for stop signal
WAIT UNTIL IN(12)=ON
CANCEL
WAIT IDLE

IN(12)
NC

AXIS 0

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-53
Motion and Axis Commands

Example 2: Move an axis forwards until it hits the end limit switch, then move it in the reverse
direction for 25 cm.

BASE(3)
FWD_IN=7 'limit switch connected to input 7
FORWARD
WAIT IDLE ' wait for motion to stop on the switch
MOVE(-25.0)
WAIT IDLE

Example 3: A machine that applies lids to cartons uses a simulated line shaft. This example sets
up a virtual axis running forward, this is to simulate the line shaft. Axis 0 is then
CONNECTed to this to run the conveyor. Axis 1 controls a vacuum roller that feeds
the lids on to the cartons using the MOVELINK control.

 BASE(4)
 ATYPE=0 'Set axis 4 to virtual axis
 REP_OPTION=1
 SERVO=ON
 FORWARD 'starts line shaft
 BASE(0)
 CONNECT(-1,4) 'Connects base 0 to virtual axis in reverse
 WHILE IN(2)=ON
 BASE(1)
 'Links axis 1 to the shaft in reverse direction
 MOVELINK(-4000,2000,0,0,4,2,1000)
 WAIT IDLE
 WEND
 RAPIDSTOP

12CM

IN(7)
NCAXIS 3

8-54 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

MHELICAL
Type: Motion Command.

Syntax: MHELICAL(end1,end2,centre1,centre2,direction,distance3,[mode])
Alternate Format: MH()

Description: Performs a helical move.
Moves 2 orthogonal axes in such a way as to produce a circular arc at the tool point
with a simultaneous linear move on a third axis. The first 5 parameters are similar to
those of an MOVECIRC() command. The sixth parameter defines the simultaneous
linear move. End1 and centre1 are on the current BASE axis. End2 and centre2 are
on the second axis. The first 4 distance parameters are scaled according to the cur-
rent unit conversion factor for the BASE axis. The sixth parameter uses its own axis
units.

Parameters:

Example1: The command sequence follows a rounded rectangle path with axis 1 and 2. Axis 3 is
the tool rotation so that the tool is always perpendicular to the product. The UNITS
for axis 3 are set such that the axis is calibrated in degrees.

REP_DIST AXIS(3)=360
REP_OPTION AXIS(3)=ON

'all 3 axes must be homed before starting
MERGE=ON
MOVEABS(360) AXIS(3) 'point axis 3 in correct starting direction
WAIT IDLE AXIS(3)
MOVE(0,12)

end1: position on BASE axis to finish at.

end2: position on next axis in BASE array to finish at.

centre1: position on BASE axis about which to move.

centre2: position on next axis in BASE array about which to move.

direction: The “direction” is a software switch which determines whether
the arc is interpolated in a clockwise or anti- clockwise direction.
The parameter is set to 1 or 0. See MOVECIRC.

distance3: The distance to move on the third axis in the BASE array axis in
user units

mode: 0 = Interpolate the 3rd axis with the main 2 axes when calcualting
path speed. (True helical path)

1 = Interpolate only the first 2 axes for path speed, but move the
3rd axis in coordination with the other 2 axes. (Circular path with
following 3rd axis)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-55
Motion and Axis Commands

MHELICAL(3,3,3,0,1,90)
MOVE(16,0)
MHELICAL(3,-3,0,-3,1,90)
MOVE(0,-6)
MHELICAL(-3,-3,-3,0,1,90)
MOVE(-2,0)
MHELICAL(-3,3,0,3,1,90)

Exapmle 2: A PVC cutter uses 2 axis similar to a xy plotter, a third axis is used to control the cut-
ting angle of the knife. To keep the resultant cutting speed for the x and y axis the
same when cutting curves, mode 1 is applied to the helical command.

BASE(0,1,2) : MERGE=ON 'merge moves into one continuous movement
MOVE(50,0)
MHELICAL(0,-6,0,-3,1,180,1)
MOVE(-22,0)
WAIT IDLE
MOVE(-90) AXIS(2) 'rotate the knife after stopping at corner
WAIT IDLE AXIS(2)

r3

AXIS 1

AXIS 0

AXIS 2

8-56 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

MOVE(0,-50)
MHELICAL(-6,0,-3,0,1,180,1)
MOVE(0,50)
WAIT IDLE 'pause again to rotate the knife
MOVE(-90) AXIS(2)
WAIT IDLE AXIS(2)
MOVE(-22,0)
MHELICAL(0,6,0,3,1,180,1)
WAIT IDLE

AXIS 1

AXIS 0

AXIS 2

+

+

+

START

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-57
Motion and Axis Commands

MHELICALSP
Type: Motion Command.

Only available in system software versions where “LookAhead” is enabled.

Syntax: MHELICALSP(end1,end2,centre1,centre2,direction,distance3,[mode])

Description: Performs a helical move the same as MHELICAL and additionally allows vector speed
to be changed when using multiple moves in the look-ahead buffer. Uses additional
axis parameters FORCE_SPEED and ENDMOVE_SPEED.

Example: In a series of buffered moves using the look ahead buffer with MERGE=ON a helical
move is required where the incoming vector speed is 40 units/second and the finish-
ing vector speed is 20 units/second.

FORCE_SPEED=40
ENDMOVE_SPEED=20
MHELICALSP(100,100,0,100,1,100)

For more information see MHELICAL.

MOVE
Type: Motion Command

Syntax: MOVE(distance1 [,distance2 [,distance3 [,distance4...]]])
Alternate Format: MO()

Description: Incremental move. One axis or multiple axes move at the programmed speed and
acceleration for a distance specified as an increment from the end of the last speci-
fied move. The first parameter in the list is sent to the BASE axis, the second to the
next axis in the BASE array, and so on.

In the multi-axis form, the speed and acceleration employed for the movement are
taken from the first axis in the BASE group. The speeds of each axis are controlled so
as to make the resulting vector of the movement run at the SPEED setting.

Uninterpolated, unsynchronised multi-axis motion can be achieved by simply placing
MOVE commands on each axis independently. If needed, the target axis for an indi-
vidual MOVE can be specified using the AXIS() command. This overrides the BASE
axis setting for one MOVE only.

The distance values specified are scaled using the unit conversion factor axis param-

8-58 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

eter; UNITS. Therefore if, for example, an axis has 400 encoder edges/mm and
UNITS for that axis are 400, the command MOVE(12.5) would move 12.5 mm. When
MERGE is set to ON, individual moves in the same axis group are merged together to
make a continuous path movement.

Parameters:

The maximum number of parameters is the number of axes on the controller

Example 1: A system is working with a unit conversion factor of 1 and has a 1000 line encoder.
Note that a 1000 line encoder gives 4000 edges/turn.

MOVE(40000) ‘ move 10 turns on the motor.

Example 2: Axes 3, 4 and 5 are to move independently (without interpolation). Each axis will
move at its own programmed SPEED, ACCEL and DECEL etc.

'setup axis speed and enable
BASE(3)
SPEED=5000
ACCEL=100000
DECEL=150000
SERVO=ON
BASE(4)
SPEED=5000
ACCEL=150000
DECEL=560000
SERVO=ON
BASE(5)
SPEED=2000
ACCEL=320000
DECEL=352000
SERVO=ON
WDOG=ON
MOVE(10) AXIS(5) 'start moves
MOVE(10) AXIS(4)
MOVE(10) AXIS(3)
WAIT IDLE AXIS(5) 'wait for moves to finish
WAIT IDLE AXIS(4)
WAIT IDLE AXIS(3)

distance1: distance to move on base axis from current position.

distance2: distance to move on next axis in BASE array from current position.]

[distance3: distance to move on next axis in BASE array from current position.]

[distance4: distance to move on next axis in BASE array from current position.]

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-59
Motion and Axis Commands

Example 3: An X-Y plotter can write text at any position
within its working envelope. Individual charac-
ters are defined as a sequence of moves relative
to a start point so that the same commands may
be used regardless of the plot origin. The com-
mand subroutine for the letter ‘M’ might be:

write_m:
MOVE(0,12) 'move A > B
MOVE(3,-6) 'move B > C
MOVE(3,6) 'move C > D
MOVE(0,-12)'move D > E
RETURN

MOVEABS
Type: Motion Command.

Syntax: MOVEABS(position1[, position2[, position3[, position4...]]])
Alternate Format: MA()

Description: Absolute position move. Move one axis or multiple axes to position(s) referenced
with respect to the zero (home) position. The first parameter in the list is sent to
the axis specified with the AXIS command or to the current BASE axis, the second to
the next axis, and so on.

In the multi-axis form, the speed, acceleration and deceleration employed for the
movement are taken from the first axis in the BASE group. The speeds of each axis
are controlled so as to make the resulting vector of the movement run at the SPEED
setting.

Uninterpolated, unsynchronised multi-axis motion can be achieved by simply placing
MOVEABS commands on each axis independently. If needed, the target axis for an
individual MOVEABS can be specified using the AXIS() command. This overrides the
BASE axis setting for one MOVEABS only.

The values specified are scaled using the unit conversion factor axis parameter;
UNITS. Therefore if, for example, an axis has 400 encoder edges/mm the UNITS for
that axis is 400. The command MOVEABS(6)would then move to a position 6 mm
from the zero position. When MERGE is set to ON, absolute and relative moves are
merged together to make a continuous path movement.

Parameters:

A

B

C

D

E

position1: position to move to on base axis.

position2: position to move to on next axis in BASE array.

8-60 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Note1: The MOVEABS command can interpolate up to the full number of axes available on
the controller.

Note2: The position of the axes’ zero(home) positions can be changed by the commands:
OFFPOS, DEFPOS, REP_DIST, REP_OPTION, and DATUM.

Example 1: A machine must move to one of 3 positions depending on the selection made by 2
switches. The options are home, position 1 and position 2 where both switches are
off, first switch on and second switch on respectively. Position 2 has priority over
position 1.

 'define absolute positions
 home=1000
 position_1=2000
 position_2=3000

 WHILE IN(run_switch)=ON
 IF IN(6)=ON THEN 'switch 6 selects position 2
 MOVEABS(position_2)
 WAIT IDLE
 ELSEIF IN(7)=ON THEN 'switch 7 selects position 1
 MOVEABS(position_1)
 WAIT IDLE
 ELSE
 MOVEABS(home)
 WAIT IDLE
 ENDIF
 WEND

position3: position to move to on next axis in BASE array.

position4: position to move to on next axis in BASE array

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-61
Motion and Axis Commands

Example 2: An X-Y plotter has a pen carousel whose position is fixed relative to the plotter abso-
lute zero position. To change pen an absolute move to the carousel position will find
the target irrespective of the plot position when commanded.

MOVEABS(28.5,350) 'move to just outside the pen holder area
WAIT IDLE
SPEED = pen_pickup_speed
MOVEABS(20.5,350) 'move in to pick up the pen

Example 3: A pallet consists of a 6 by 8 grid in which gas canisters are inserted 185mm apart by
a packaging machine. The canisters are picked up from a fixed point. The first posi-
tion in the pallet is defined as position 0,0 using the DEFPOS() command. The part
of the program to position the canisters in the pallet is:

FOR x=0 TO 5
 FOR y=0 TO 7
 MOVEABS(-340,-516.5) 'move to pick-up point
 WAIT IDLE
 GOSUB pick 'call pick up subroutine
 PRINT “Move to Position: “;x*6+y+1
 MOVEABS(x*185,y*185) 'move to position in grid
 WAIT IDLE
 GOSUB place 'call place down subroutine
 NEXT y
NEXT x

1
HOME

8-62 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

MOVEABSSP
Type: Motion Command.

Only available in system software versions where “LookAhead” is enabled.

Syntax: MOVEABSSP(position1[, position2[, position3[, position4]]])
Description: Works as MOVEABS and additionally allows vector speed to be changed when using

multiple moves in the look ahead buffer when MERGE=ON, using additional parame-
ters FORCE_SPEED and ENDMOVE_SPEED.

Parameters:

Note: Absolute moves are converted to incremental moves as they enter the buffer.
This is essential as the vector length is required to calculate the start of
deceleration. It should be noted that if any move in the buffer is cancelled by
the programmer, the absolute position will not be achieved.

0,0 AXIS 1

AXIS 0

position1: position to move to on base axis.

position2: position to move to on next axis in BASE array.

position3: position to move to on next axis in BASE array.

position4: position to move to on next axis in BASE array

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-63
Motion and Axis Commands

Example 1: In a series of buffered moves using the look ahead buffer with MERGE=ON, an absolute
move is required where the incoming vector speed is 40units/second and the finish-
ing vector speed is 20 units/second.

FORCE_SPEED=40
ENDMOVE_SPEED=20
MOVEABSSP(100,100)

Only Available in Look-Ahead mode.
For more information see MOVEABS.

MOVECIRC
Type: Motion Command.

Syntax: MOVECIRC(end1, end2, centre1, centre2, direction)
Alternate Format: MC()

Description: Moves 2 orthogonal axes in such a way as to produce a circular arc at the tool point.
The length and radius of the arc are defined by the five parameters in the command
line. The move parameters are always relative to the end of the last specified
move. This is the start position on the circle circumference. Axis 1 is the current
BASE axis. Axis 2 is the next axis in the BASE array. The first 4 distance parameters
are scaled according to the current unit conversion factor for the BASE axis.

Parameters: end1: position on BASE axis to finish at.

end2: position on next axis in BASE array to finish at.

centre1: position on BASE about which to move.

centre2: position on next axis in BASE array about which to move.

direction: The “direction” is a software switch which determines whether the
arc is interpolated in a clockwise or anti- clockwise direction.

2

1
DIRECTION = 1

2

1
DIRECTION = 0

8-64 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Note 1: In order for the MOVECIRC() command to be correctly executed, the two axes
generating the circular arc must have the same number of encoder pulses/
linear axis distance. If this is not the case it is possible to adjust the encoder
scales in many cases by using ENCODER_RATIO or STEP_RATIO.

Note 2: If the end point specified is not on the circular arc. The arc will end at the
angle specified by a line between the centre and the end point.

Note 3: Neither axis may cross the set absolute repeat distance (REP_DIST) during a
MOVECIRC. Doing so may cause one or both axes to jump or for their FE value
to exceed FE_LIMIT.

Example 1: The command sequence to plot the letter ‘0’ might be:

MOVE(0,6) 'move A -> B
MOVECIRC(3,3,3,0,1) ' move B -> C
MOVE(2,0) 'move C -> D
MOVECIRC(3,-3,0,-3,1) ' move D -> E
MOVE(0,-6) 'move E -> F
MOVECIRC(-3,-3,-3,0,1)' move F -> G
MOVE(-2,0) 'move G -> H
MOVECIRC(-3,3,0,3,1) ' move H -> A

Example 2: A machine is required to drop chemicals into test tubes. The nozzle can move up and
down as well as along its rail. The most efficient motion is for the nozzle to move in
an arc between the test tubes.

 BASE(0,1)
 MOVEABS(0,5) 'move to position above first tube
 MOVEABS(0,0) 'lower for first drop
 WAIT IDLE
 OP(15,ON) 'apply dropper

SPECIFIED END POINT

ACTUAL END POINT

A

B

C D

E

F

GH

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-65
Motion and Axis Commands

 WA(20)
 OP(15,OFF)
 FOR x=0 TO 5
 MOVECIRC(5,0,2.5,0,1) 'arc between the test tubes
 WAIT IDLE
 OP(15,ON) 'Apply dropper
 WA(20)
 OP(15,OFF)
 NEXT x
 MOVECIRC(5,5,5,0,1) 'move to rest position)

MOVECIRCSP
Type: Motion Command.

Only available in system software versions where “LookAhead” is enabled.

Syntax: MOVECIRCSP(end1, end2, centre1, centre2, direction)
Description: Works as MOVECIRC and additionally allows vector speed to be changed when using

multiple moves in the look ahead buffer when MERGE=ON, using additional parame-
ters FORCE_SPEED and ENDMOVE_SPEED.

Example 1: In a series of buffered moves using the look ahead buffer with MERGE=ON, a circular
move is required where the incoming vector speed is 40units/second and the finish-
ing vector speed is 20 units/second.

FORCE_SPEED=40
ENDMOVE_SPEED=20

(0,5)

END

AXIS 0

A
X

IS
 1

8-66 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

MOVECIRCSP(100,100,0,100,1)

Note: Only available in Look-Ahead version.
For more information see MOVECIRC.

MOVELINK
Type: Motion Command.

Syntax: MOVELINK (distance, link dist, link acc, link dec, link axis[,
link options][, link pos]).

Alternate Format: ML()
Description: The linked move command is designed for controlling movements such as:

• Synchronization to conveyors
• Flying shears
• Thread chasing, tapping etc.
• Coil winding

The motion consists of a linear movement with separately variable acceleration and
deceleration phases linked via a software gearbox to the MEASURED position (MPOS)
of another axis.

Parameters: distance: incremental distance in user units to be moved on the current
base axis, as a result of the measured movement on the
“input” axis which drives the move.

link dist: positive incremental distance in user units which is required to
be measured on the “link” axis to result in the motion on the
base axis.

link acc: positive incremental distance in user units on the input axis
over which the base axis accelerates.

link dec: positive incremental distance in user units on the input axis
over which the base axis decelerates.

N.B. If the sum of parameter 3 and parameter 4 is greater than
parameter 2, they are both reduced in proportion until they
equal parameter 2.

link axis: Specifies the axis to “link” to. It should be set to a value
between 0 and the number of available axes.

link options: 1 link commences exactly when registration event occurs on
link axis.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-67
Motion and Axis Commands

Note 1: The command uses the BASE() and AXIS(), and unit conversion factors in a similar
way to other move commands.

Note 2: The “link” axis may move in either direction to drive the output motion. The link
distances specified are always positive.

2 link commences at an absolute position on link axis (see
link start parameter)

4 MOVELINK repeats automatically and bi-directional when
this bit is set. (This mode can be cleared by setting bit 1 of
the REP_OPTION axis parameter)

32 Link is only active during positive moves on the link axis.

link pos: This parameter is the absolute position where the MOVELINK
link is to be started when parameter 6 is set to 2.

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

INPUT AXIS MEASURED POSITION

O
U

T
P
U

T
 P

O
S
IT

IO
N

MOVELINK (75,100,0,0,link axis)

8-68 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 1: A flying shear cuts a long sheet of paper into cards every 160 m whilst moving at the
speed of the material. The shear is able to travel up to 1.2 metres of which 1m is
used in this example. The paper distance is measured by an encoder, the unit con-
version factor being set to give units of metres on both axes: (Note that axis 7 is the
link axis)

WHILE IN(2)=ON
MOVELINK(0,150,0,0,7) ' dwell (no movement) for 150m
MOVELINK(0.3,0.6,0.6,0,7) ' accelerate to paper speed
MOVELINK(0.7,1.0,0,0.6,7) ' track the paper then decelerate
WAIT LOADED ' wait until acceleration movelink is finished
OP(8,ON) ' activate cutter
MOVELINK(-1.0,8.4,0.5,0.5,7) ' retract cutter back to start
WAIT LOADED
OP(8,OFF) ' deactivate cutter at end of outward stroke

WEND

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

INPUT AXIS MEASURED POSITION
O

U
T

P
U

T
 P

O
S
IT

IO
N

MOVELINK (75,100,25,15,link axis)

PARAMETER 3 PARAMETER 4

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-69
Motion and Axis Commands

In this program the controller firstly waits for the roll to feed out 150m in the first
line. After this distance the shear accelerates up to match the speed of the paper,
moves at the same speed then decelerates to a stop within the 1m stroke. This
movement is specified using two separate MOVELINK commands. This allows the pro-
gram to wait for the next move buffer to be clear, NTYPE=0, which indicates that the
acceleration phase is complete. Note that the distances on the measurement axis
(link distance in each MOVELINK command): 150, 0.8, 1.0 and 8.2 add up to 160m.
To ensure that speed and positions of the cutter and paper match during the cut
process the parameters of the MOVELINK command must be correct: It is normally
easiest to consider the acceleration, constant speed and deceleration phases sepa-
rately then combine them as required:

Rule 1: In an acceleration phase to a matching speed the link distance should be twice the
movement distance. The acceleration phase could therefore be specified alone as:

MOVELINK(0.3,0.6,0.6,0,1)' move is all accel

Rule 2: In a constant speed phase with matching speed the two axes travel the same dis-
tance so distance to move should equal the link distance. The constant speed phase
could therefore be specified as:

MOVELINK(0.4,0.4,0,0,1)' all constant speed

The deceleration phase is set in this case to match the acceleration:

MOVELINK(0.3,0.6,0,0.6,1)' all decel

ENCODER (AXIS 7)

SERVO MOTOR

(AXIS 0)

LEAD SCREW

8-70 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

The movements of each phase could now be added to give the total movement.

MOVELINK(1,1.6,0.6,0.6,1)' Same as 3 moves above

But in the example above, the acceleration phase is kept separate:

MOVELINK(0.3,0.6,0.6,0,1)
MOVELINK(0.7,1.0,0,0.6,1)

This allows the output to be switched on at the end of the acceleration phase.

Example 2: Exact Ratio Gearbox

MOVELINK can be used to create an exact ratio gearbox between two axes. Suppose
it is required to create gearbox link of 4000/3072. This ratio is inexact (1.30208333)
and if entered into a CONNECT command the axes will slowly creep out of synchroni-
sation. Setting the “link option” to 4 allows a continuously repeating MOVELINK to
eliminate this problem:

MOVELINK(4000,3072,0,0,linkaxis,4)

Example 3: Coil Winding

In this example the unit conversion factors UNITS are set so that the payout move-
ments are in mm and the spindle position is measured in revolutions. The payout eye
therefore moves 50mm over 25 revolutions of the spindle with the command
MOVELINK(50,25,0,0,linkax). If it were desired to accelerate up over the first
spindle revolution and decelerate over the final 3 the command would be
MOVELINK(50,25,1,3,linkax).

OP(motor,ON) '- Switch spindle motor on
FOR layer=1 TO 10

MOVELINK(50,25,0,0,1)
MOVELINK(-50,25,0,0,1)

NEXT layer
WAIT IDLE
OP(motor,OFF)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-71
Motion and Axis Commands

MOVEMODIFY
Type: Axis Command.

Syntax: MOVEMODIFY(absolute position)
Alternate Format: MM()

Description: This move type changes the absolute end position of the current single axis linear
move (MOVE, MOVEABS). If there is no current move or the current move is not a lin-
ear move then MOVEMODIFY is loaded as a MOVEABS.

See also: ENDMOVE

Parameters:

Example 1: A sheet of glass is fed on a conveyor and is required to be stopped 250mm after the
leading edge is sensed by a proximity switch. The proximity switch is connected to
the registration input:

ENCODER

AXIS 1

NON-SERVO

SPINDLE MOTOR

SERVO MOTOR

AXIS 0

absolute position: The absolute position to be set as the new end of move.

8-72 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

MOVE(10000) 'Start a long move on conveyor
REGIST(3) 'set up registration
WAIT UNTIL MARK 'MARK goes TRUE when sensor detects glass edge
OFFPOS = -REG_POS 'set position where mark was seen to 0
WAIT UNTIL OFFPOS=0'wait for OFFPOS to take effect
MOVEMODIFY(250) 'change move to stop at 250mm

SENSOR

SHEET GLASS

250mm

SENSOR SEEN

250mm
ORIGINAL MOVE

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-73
Motion and Axis Commands

Eample 2: A paper feed system slips. To counteract this, a proximity sensor is positioned one
third of the way into the movement. This detects at which position the paper passes
and so how much slip has occurred. The move is then modified to account for this
variation.

paper_length=4000
DEFPOS(0)
REGIST(3)
MOVE(paper_length)
WAIT UNTIL MARK
slip=REG_POS-(paper_length/3)
offset=slip*3
MOVEMODIFY(paper_length+offset)

SENSOR

MC224

SERVO DRIVE

8-74 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Eample 3: A satellite receiver sits on top of a van; it has to align correctly to the satellite from
data processed in a computer. This information is sent to the controller through the
serial link and sets VR’s 0 and 1. This information is used to control the two axes.
MOVEMODIFY is used so that the position can be continuously changed even if the pre-
vious set position has not been achieved.

 bearing=0 'set lables for VRs
 elevation=1
 UNITS AXIS(0)=360/counts_per_rev0
 UNITS AXIS(1)=360/counts_per_rev1
 WHILE IN(2)=ON
 MOVEMODIFY(VR(bearing))AXIS(0) 'adjust bearing to match VR0
 MOVEMODIFY(VR(elevation))AXIS(1) 'adjust elev to match VR1
 WA(250)
 WEND
 RAPIDSTOP 'stop movement
 WAIT IDLE AXIS(0)
 MOVEABS(0) AXIS(0) 'return to transport position
 WAIT IDLE AXIS(1)
 MOVEABS(0) AXIS (1)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-75
Motion and Axis Commands

MOVESP
Type: Motion Command

Only available in system software versions where “LookAhead” is enabled.

Syntax: MOVESP(distance1[,distance2[,distance3[,distance4]]])

Description: Works as MOVE and additionally allows vector speed to be changed when using multi-
ple moves in the look ahead buffer when MERGE=ON, using additional parameters
FORCE_SPEED and ENDMOVE_SPEED.

Parameters:

The maximum number of parameters, and therefore axes interpolated, is 4.

Example: In a series of buffered moves using the look ahead buffer with MERGE=ON, an incre-
mental move is required where the incoming vector speed is 40units/second and the
finishing vector speed is 20 units/second.

FORCE_SPEED=40
ENDMOVE_SPEED=20
MOVESP(100,100)

Note: For more information see MOVE.

MSPHERICAL
Type: Motion Command

Syntax: MSPHERICAL(endx, endy, endz, midx, midy, midz, mode)

Description: Moves the three axis group defined in BASE along a spherical path with a vector
speed determined by the SPEED set in the X axis. There are 2 modes of operation
with the option of finishing the move at an endpoint different to the start, or return-
ing to the start point to complete a circle. The path of the movement in 3D space
can be defined either by specifying a point somewhere along the path, or by specify-
ing the centre of the sphere.

distance1: distance to move on base axis from current position.

distance2: distance to move on next axis in BASE array from current position.

distance3: distance to move on next axis in BASE array from current position.

distance4: distance to move on next axis in BASE array from current position.

8-76 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Parameters:

Note: The coordinates of the mid point and end point must not be co-linear. Semi-
circles cannot be defined by using mode 1 because the sphere centre would be
co-linear with the endpoint.

Example 1: A move is needed that follows a spherical path which ends 30mm up in the Z direc-
tion:

BASE(3,4,5)
MSPHERICAL(30,0,30,8.7868,0,21.2132,0)

Example 2: A similar move that follows a spherical path but at 45 degrees to the Y axis which
ends 30mm above the XY plane:

BASE(0,1,2)
MSPHERICAL(21.2132,21.2132,30,6.2132,6.2132,21.2132,0)

endx, endy,
endz:

Mode=0 or 1: Coordinates of the end point.
Mode=2: Coordinates of a second point on the curve.

midx, midy,
midz:

Mode=0 or 2: Coordinates of a point along the path of the curve.
Mode=1 or 3: Coordinates of the sphere centre.

mode: Specifies the way the end and mid parameters are used in calculat-
ing the curve in 3D space.
0 = specify end point and mid point on curve.
1 = specify end point and centre of sphere.
2 = mid point 2 and mid point 1 are specified and the curve com-
pletes a full circle.
3 = mid point on curve and centre of sphere are specified and the
curve completes a full circle.

30

30

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-77
Motion and Axis Commands

MOVETANG
Type: Motion Command

Only available in system software versions where “LookAhead” is enabled.

Syntax: MOVETANG(absolute_position, [link_axis])

Description: Moves the axis to the required position using the programmed SPEED, ACCEL and
DECEL for the axis. The direction of movement is determined by a calculation of the
shortest path to the position assuming that the axis is rotating and that REP_DIST
has been set to PI radians (180 degrees) and that REP_OPTION=0.

Important: The REP_DIST value will depend on the UNITS value and the number of steps repre-
senting PI radians. For example if the rotary axis has 4000 pulses/turn and UNITS=1
the REP_DIST value would be 2000.

If a MOVETANG command is running and another MOVETANG is executed for the same
axis, the original command will not stop, but the endpoint will become the new
absolute position.

30

30

45º

8-78 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Parameters:

Example 1: An X-Y positioning system has a stylus which must be turned so that it is facing in the
same direction as it is travelling at all times. A tangential control routine is run in a
separate process.

BASE(0,1)
WHILE TRUE

angle=TANG_DIRECTION
MOVETANG(angle) AXIS(2)

WEND

Example 2: An X-Y positioning system has a stylus which must be turned so that it is facing in the
same direction as it is travelling at all times.

The XY axis pair are axes 4 and 5. The tangential stylus axis is 2:

MOVETANG(0,4) AXIS(2)

Example 3: An X-Y cutting table has a “pizza wheel” cutter which must be steered so that it is
always aligned with the direction of travel. The main X and Y axes are controlled by
Motion Coordinator axes 0 and 1, and the pizza wheel is turned by axis 2.

Control of the Pizza Wheel is done in a separate program from the main X-Y motion
program. In this example the steering program also does the axis initialisation.

Program TC_SETUP.BAS:

'Set up 3 axes for Tangential Control

WDOG=OFF

BASE(0)
P_GAIN=0.9
VFF_GAIN=12.85

absolute_position: The absolute position to be set as the endpoint of the move.
Value must be within the range –PI to +PI in the units of the
rotary axis. For example if the rotary axis has 4000 pulses/
turn, the UNITS value=1 and the angle required is PI/2 (90
deg) the position value would be 1000.

link_axis An optional link axis may be specified. When a link_axis is
specified the system software calculates the absolute posi-
tion required each servo cycle based on the link axis
TANG_DIRECTION. The TANG_DIRECTION is multiplied by the
REP_DIST/PI to calculate the required position. Note that
when using a link_axis the absolute_position parameter
becomes unused. The position is copied every servo cycle
until the MOVETANG is CANCELled.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-79
Motion and Axis Commands

UNITS=50 'set units for mm
SERVO=ON

BASE(1)
P_GAIN=0.9
VFF_GAIN=12.30
UNITS=50 'units must be the same for both axes
SERVO=ON

BASE(2)
UNITS=1 ' make units 1 for the setting of rep_dist
REP_DIST=2000 'encoder has 4000 edges per rev.
REP_OPTION=0
UNITS=4000/(2*PI) 'set units for Radians
SERVO=ON

WDOG=ON
' Home the 3rd axis to its Z mark
DATUM(1) AXIS(2)
WAIT IDLE
WA(10)

'start the tangential control routine
BASE(0,1) 'define the pair of axes which are for X and Y
' start the tangential control
BASE(2)
MOVETANG(0, 0) ' use axes 0 and 1 as the linked pair

Program MOTION.BAS:

'program to cut a square shape with rounded corners
MERGE=ON
SPEED=300

nobuf=FALSE 'when true, the moves are not buffered
size=120 'size of each side of the square
c=30 'size (radius) of quarter circles on each corner

DEFPOS(0,0)
WAIT UNTIL OFFPOS=0
WA(10)

MOVEABS(10,10+c)
REPEAT
 MOVE(0,size)
 MOVECIRC(c,c,c,0,1)

8-80 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(size,0)
 MOVECIRC(c,-c,0,-c,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(0,-size)
 MOVECIRC(-c,-c,-c,0,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(-size,0)
 MOVECIRC(-c,c,0,c,1)
 IF nobuf THEN WAIT IDLE:WA(2)
UNTIL FALSE

RAPIDSTOP
Type: Motion Command

Syntax: RAPIDSTOP
Alternate Format: RS

Description: Rapid Stop. The RAPIDSTOP command cancels the currently executing move on ALL
axes. Velocity profiled move types such as MOVE, MOVEABS, MHELICAL etc. will be
ramped down at the axes’ programmed DECEL rate. Others will be immediately
cancelled.

The next-move buffers and the process buffers are NOT cleared.

Example 1: Implementing a stop override button that cuts out all motion.

 CONNECT (1,0) AXIS(1) 'axis 1 follows axis 0
 BASE(0)
 REPAEAT
 MOVE(1000) AXIS (0)
 MOVE(-100000) AXIS (0)
 MOVE(100000) AXIS (0)
 UNTIL IN (2)=OFF 'stop button pressed?
 RAPIDSTOP
 WA(10) 'wait to allow running move to cancel
 RAPIDSTOP 'cancel the second buffered move
 WA(10)
 RAPIDSTOP 'cancel the third buffered move

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-81
Motion and Axis Commands

Example 2: Using RAPIDSTOP to cancel a MOVE on the main axis and a FORWARD on the second
axis. After the axes have stopped, a MOVEABS is applied to re-position the main axis.

 BASE(0)
 REGIST(3)
 FORWARD AXIS(1)
 MOVE (100000) 'apply a long move
 WAIT UNTIL MARK
 RAPIDSTOP
 WAIT IDLE 'for MOVEABS to be accurate, the axis must stop
MOVEABS(3000)

STOP

0

5

10

15

MARK

S
P
E
E
D

AXIS 0

AXIS 1

ORIGINAL

MOVE

8-82 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Example 3: Using RAPIDSTOP to break a connect, and stop motion. The connected axis stops
immediately on the RAPIDSTOP command, the forward axis decelerates at the decel
value.

BASE(0)
CONNECT(1,1)
FORWARD AXIS(1)
WAIT UNTIL VPSPEED=SPEED 'let the axis get to full speed
WA(1000)
RAPIDSTOP
WAIT IDLE AXIS(1) 'wait for axis 1 to decel
CONNECT(1,1) 're-connect axis 0
REVERSE AXIS(1)
WAIT UNTIL VPSPEED=SPEED
WA(1000)
RAPIDSTOP
WAIT IDLE AXIS(1)

-50

0

-150

-100

50

100

150

1 SECOND

S
P
E
E
D

AXIS 0

AXIS 1

TIME

0 .5 1 1.5 2 2.5 3 3.5 4

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-83
Motion and Axis Commands

REGIST
Type: Axis Command

Syntax: REGIST(mode,{distance})
Description: The regist command captures an axis position when it sees the registration input or

the Z mark on the encoder. The capture is carried out by hardware so software
delays do not affect the accuracy of the position capture. The capture is initiated by
executing the REGIST() command. If the input or Z mark is seen as specified by the
mode within the specified window the MARK parameter is set TRUE and the position is
stored in REG_POS.

On the MC206X built-in axes; 2 registration registers are provided for each axis. This
allows 2 registration sources to be captured simultaneously and their difference in
position determined. To use this dual registration mode the REGIST commands
“mode” parameter is set in the range 6..9. Two additional axis parameters
REG_POSB and MARKB hold the results of the Z mark registration in this mode.

The Enhanced Servo Daughter Board has similar functionality to the MC206X, with
the dual registration capability extended to 2 separate 24V inputs in addition to the
Z mark. Mode numbers 10 to 13 cover the use of inputs R0 and R1.

Parameters: mode: Determines the position to capture.

All registration capable products:

1 - Absolute position when Z Mark rising edge

2 - Absolute position when Z Mark falling edge

3 - Absolute position when R Input rising edge

4 - Absolute position when R Input falling edge

5 - Unused

6 - R Input rising into REG_POS & Z Mark rising into REG_POSB.

7 - R Input rising into REG_POS & Z Mark falling into REG_POSB.

8 - R Input falling into REG_POS & Z Mark rising into REG_POSB.

9 - R Input falling into REG_POS & Z Mark falling into REG_POSB

8-84 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

Note: Windowing Functions

Add 256 to the above mode values to apply inclusive windowing function:

When the windowing function is applied signals will be ignored if the axis measured
position is not in the range:

Greater than OPEN_WIN and Less than CLOSE_WIN

Add 768 to the above values to apply exclusive windowing function:

When the windowing function is applied signals will be ignored if the axis measured
position is not in the range:

Less than OPEN_WIN or Greater than CLOSE_WIN

Note: The REGIST command must be re-issued for each position capture.

Example1 : A disc used in a laser printing process requires registration to the Z marker before
printing can start. This routine locates to the Z marker, then sets that as the zero
position.

REGIST(1) 'set registration point on Z mark
FORWARD 'start movement
WAIT UNTIL MARK
CANCEL 'stops movement after Z mark
WAIT IDLE
MOVEABS (REG_POS) 'relocate to Z mark
WAIT IDLE

 DEFPOS(0) 'set zero position

P201 Enhanced Servo Daughter Board only:

10 - R0 Input rising into REG_POS & R1 Input rising into REG_POSB.

11 - R0 Input rising into REG_POS & R1 Input falling into REG_POSB.

12 - R0 Input falling into REG_POS & R1 Input rising into REG_POSB.

13 - R0 Input falling into REG_POS & R1 Input falling into REG_POSB

distance: The distance parameter is used for the pattern recognition mode
ONLY, and specifies the distance over which to record transitions

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-85
Motion and Axis Commands

Example 2: Registration with windowing

It is required to detect if a component is placed on a flighted belt so windowing is
used to avoid sensing the flights. The flights are at a pitch of 120 mm and the com-
ponent will be found between 30 and 90mm. If a component is found then an actua-
tor is fired to push it off the belt.

 REP_DIST=120 'sets repeat distance to pitch of belt flights
 REP_OPTION=ON
 OPEN_WIN=30 'sets window open position
 CLOSE_WIN=90 'sets window close position
 REGIST(4+256) 'R input registration with windowing
 FORWARD 'start the belt
 box_seen=0
 REPEAT
 WAIT UNTIL MPOS<60 'wait for centre point between flights
 WAIT UNTIL MPOS>60 'so that actuator is fired between flights
 IF box_seen=1 THEN 'was a box seen on the previous cycle?
 OP(8,ON) 'fire actuator
 WA(100)
 OP(8,OFF) 'retract actuator
 box_seen=0
 ENDIF
 IF MARK THEN box_seen=1 'set “box seen” flag
 REGIST(4+256)
 UNTIL IN(2)=OFF
 CANCEL 'stop the belt

0
1

2
3

4

5
6

7
8

9

Z MARK

SERVO MOTOR

8-86 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

 WAIT IDLE

Example 3: Dual Input Registration

A machine adds glue to the top of a box by switching output 8. It must detect the ris-
ing edge (appearance) of and the falling edge (end) of a box. Additionally it is
required that the mpos be reset to zero on the detection of the z position.

reg=6 'select registration mode 6 (rising edge R, rising edge Z)
REGIST(reg)
FORWARD
WHILE IN(2)=OFF

IF MARKB THEN 'on a Z mark mpos is reset to zero
OFFPOS=-REG_POSB
REGIST(reg)

ELSEIF MARK THEN 'on R input output 8 is toggled
IF reg=6 THEN
'select registration mode 8 (falling edge R, rising edge Z)
reg=8
OP(8,ON)

ELSE
reg=6
OP(8,OFF)

 ENDIF
REGIST(reg)

ENDIF
WEND

CANCEL

RAM

SENSOR BEAM

SENSOR

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-87
Motion and Axis Commands

REGIST_SPEED
Type: Axis Parameter (Read Only)

Description: Stores the change_of_position in user units per msec captured when MARK goes
TRUE.

In most real-world systems there are delays built into the registration circuit; the
external sensor and the input opto-isolator will have some fixed response time. As
machine speed increases, the fixed electrical delays will have an effect on the cap-
tured registration position.

REGIST_SPEED returns the value of axis speed captured at the same time as
REG_POS. The captured speed and position values can be used to calculate a regis-
tration position that does not vary with speed because of the fixed delays.

Example: fixed_delays=0.020 ' circuit delays in milliseconds
REGIST(3)
WAIT UNTIL MARK
captured_position = REG_POS-(REGIST_SPEED*fixed_delays)

Note: This parameter has the units of user_units/msec at all SERVO_PERIOD settings.

ENCODER

SENSOR

GLUE APPLICATOR

8-88 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

REVERSE
Type: Axis Command

Syntax: REVERSE
Alternate Format: RE

Description: Sets continuous reverse movement on the specified or base axis. The axis acceler-
ates at the programmed ACCEL rate and continues moving at the SPEED value until
either a CANCEL or RAPIDSTOP command are encountered. It then decelerates to a
stop at the programmed DECEL rate.
If the axis reaches either the reverse limit switch or reverse soft limit, the REVERSE
will be cancelled and the axis will decelerate to a stop.

Example 1: Run an axis in reverse. When an input signal is detected on input 5, stop the axis.

back:
REVERSE
'Wait for stop signal:
WAIT UNTIL IN(5)=ON
CANCEL
WAIT IDLE

Example 2: Run an axis in reverse. When it reaches a certain position, slow down.

DEFPOS(0) 'set starting position to zero
REVERSE
WAIT UNTIL MPOS<-129.45
SPEED=slow_speed
WAIT UNTIL VP_SPEED=slow_speed 'wait until the axis slows
OP(11,ON) 'turn on an output to show that speed is now slow

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-89
Motion and Axis Commands

Example 3: A joystick is used to control the speed of a platform. A deadband is required to pre-
vent oscillations from the joystick midpoint. This is achieved through setting
reverse, which sets the correct direction relative to the operator, the joystick then
adjusts the speed through analogue input 0.

 REVERSE
 WHILE IN(2)=ON
 IF AIN(0)<50 AND AIN(0)>-50 THEN 'sets a deadband in the input
 SPEED=0
 ELSE
 SPEED=AIN(0)*100 'sets speed to a scale of AIN
 ENDIF
 WEND
 CANCEL

-30

-20

-50

-40

-10

0

MPOS=-129.45
S
P
E
E
D

AXIS 0

MPOS0 -300

8-90 Trio BASIC Commands
Motion and Axis Commands

Trio Motion Technology

STEP_RATIO
Type: Axis Command

Syntax: STEP_RATIO(output_count, dpos_count)
Description: This command sets up an Integer ratio for the axis’ stepper output. Every servo-

period the number of steps is passed through the step_ratio function before it goes
to the step pulse output.

The STEP_RATIO function operates before the divide by 16 factor in the stepper
axis. This maintains the good timing resolution of the stepper output circuit.

Parameters:

Note 1: Large ratios should be avoided as they will lead to either loss of resolution or
much reduced smoothness in the motion. The actual physical step size x 16 is
the basic resolution of the axis and use of this command may reduce the ability
of the Motion Coordinator to accurately achieve all positions.

output_count: Number of counts to output for the given dpos_count value.
Range: 0 to 16777215.

dpos_count: Change in DPOS value for corresponding output count.
Range: 0 to 16777215.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-91
Motion and Axis Commands

Note 2: STEP_RATIO does not replace UNITS. Do not use STEP_RATIO to remove the x16
factor on the stepper axis as this will lead to poor step frequency control.

Example 1: Two axes are set up as X and Y but the axes’ steps per mm are not the same. Inter-
polated moves require identical UNITS values on both axes in order to keep the path
speed constant and for MOVECIRC to work correctly. The axis with the lower resolu-
tion is changed to match the higher step resolution axis so as to maintain the best
accuracy for both axes.

'Axis 0: 500 counts per mm (31.25 steps per mm)
'Axis 1: 800 counts per mm (50.00 steps per mm)

BASE(0)
STEP_RATIO(500,800)
UNITS = 800
BASE(1)

 UNITS = 800

Example 2: A stepper motor has 400 steps per revolution and the installation requires that it is
controlled in degrees. As there are 360 dgrees in one revolution, it would be
better from the programmer’s point of view if there are 360 counts per revolution.

BASE(2)
STEP_RATIO(400, 360)

'Note: this has reduced resolution of the stepper axis
MOVE(360*16) 'move 1 revolution

Example 3: Remove the step ratio from an axis.

BASE(0)
STEP_RATIO(1, 1)

8-92 Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

Input / Output Commands

AIN
Type: Function

Syntax: AIN(analogue chan)
Description Reads a value from an analogue input. A variety of analogue input modules may be

connected to the Motion Coordinator and some Motion Coordinators have one or
two analogue inputs built-in. The value returned is the decimal equivalent of the
binary number read from the A to D converter.

Parameters:

Example: The speed of a production line is to be governed by the rate at which material is fed
onto it. The material feed is via a lazy loop arrangement which is fitted with an
ultra-sonic height sensing device. The output of the ultra-sonic sensor is in the range
0V to 4V where the output is at 4V when the loop is at its longest.

MOVE(-5000)
REPEAT

a=AIN(1)
IF a<0 THEN a=0
SPEED=a*0.25

UNTIL MTYPE=0

The analogue input value is checked to ensure it is above zero even though it always
should be positive. This is to allow for any noise on the incoming signal which could
make the value negative and cause an error because a negative speed is not valid for
any move type except FORWARD or REVERSE.

analogue chan: analogue input channel number 0...71

0 to 31:
32 to 39:

40 to 71:

P325 CAN Analog input channels.
Analogue inputs built-in to the Motion Coordinator.
including when P184 is fitted to Euro209 and PCI208.
P225 Analog Input Daugther Board.

Resolution Biploar / Unipolar / Scale

MC206X:
Euro295x:
MC224:
P325:
P225:

10 bit
12 bit
12 bit
12 bit
16 bit

Unipolar, 0 - 12V, 0 - 1023
Unipolar, 0-10V
Unipolar, 0 - 10V
Bipolar, -10V - +10V, -2048 - +2047
Unipolar, 0 - 10V, 0 - 65535

MC302-k Analogue input of Servodrive

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-93
Input / Output Commands

Note: Speed of analogue response depends on which module it comes from. P325 updates
at 10msec, P225 at the selected SERVO_PERIOD and built-in analogue ports at 1
msec.

If no P325 CAN Analog modules are fitted, AIN(0) and AIN(1) will read the built-in
channels so as to maintain compatibility with previous versions.

AIN0..3 / AINBI0..3
Type: System Parameter

Description: These system parameters duplicate the AIN() command.

They provide the value of the analogue input channels in system parameter format
to allow the SCOPE function (Which can only store parameters) to read the analogue
inputs.

AOUT0...3
Type: Reserved Keyword

CHANNEL_READ
Type: Command

Syntax: CHANNEL_READ(<channel>,<buffer_base>,<buffer_size>[,<delimiter_bas
e>,<delimiter_size>[,<escape_character>[,<crc>]]])

Description: CHANNEL_READ will read bytes from the channel and store them into the VR data
starting at buffer_base.

CHANNEL_READ will stop when it has read buffer_size bytes, the channel is empty, or
the character read from the channel is specified in the delimiter buffer.

If the escape character received then the next character is not interpreted. This
allows delimiter characters to be received without stopping the CHANNEL_READ.

The calculated CRC will be stored in the VR(<crc>)

Parameters: <channel> Communication or file channel.

<buffer_base> Number of the first VR for the buffer.

<buffer_size> Size of the buffer.

8-94 Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

CHANNEL_WRITE
Type: Command

Syntax: CHANNEL_WRITE(<channel>,<buffer_base>,<buffer_size>)
Description: CHANNEL_WRITE will send buffer_size bytes from the VR data starting at buffer_base

to the channel

Parameters:

CHR
Type: Command

Description: The CHR(x) command is used to send individual ASCII characters which are referred
to by number. PRINT CHR(x); is equivalent to PUT(x) in some other versions of
BASIC.

Example: >>PRINT CHR(65);
A
PRINT #1,CHR($32);CHR(71);CHR(75);

<delimiter_base> Position in the VR data to the start of the delimiter list.

<delimiter_size> Size of the delimiter list.

<escape_character> When this character is received the following character is
not interpreted.

<crc> Position in the VR data where the CRC will be stored.

<channel> Communication or file channel.

<buffer_base> Position in the VR data to the start of the buffer.

<buffer_size> Size of the buffer.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-95
Input / Output Commands

CLOSE
Type: Command

Syntax: CLOSE #<channel>
Description: CLOSE will close the file on the specified channel.
Parameters:

CURSOR
Type: Command

Description: The CURSOR command is used in a print statement to position the cursor on the Trio
membrane keypad and mini-membrane keypad. CURSOR(0), CURSOR(20), CUR-
SOR(40), CURSOR(60) are the start of the 4 lines of the 4 line display. CURSOR(0)
and CURSOR(20) are the start of the 2 line display.

Example: PRINT#4,CURSOR(60);">Bottom line";

DEFKEY
Type: Command

Syntax: DEFKEY(key no, keyvalue1, [keyvalue2, [keyvalue3 ..]])
Description: Under most circumstances this command is not required and it is recommended that

the values of keys are input using a GET#4 sequence. A GET#4 sequence does not use
the DEFKEY table. In this example a number representing which key has been
pressed is put in the variable k:

GET#4,k

<channel> The TrioBASIC I/O channel to be associated with the file. It is in the
range 40 to 44.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

40 41 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

4 Line Display as featured on the Membrane Keypad

8-96 Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

The DEFKEY command can be used to re-define what numbers are to be put in the
variable when a key is pressed on a MEMBRANE keypad or Mini-Membrane keypad
interfaced using an FO-VFKB module. To use the DEFKEY table the values are read
using GET#3:

GET#3,k
The key numbers of the membrane keypad are shown in chapter 5 of this manual. To
each of these key numbers is assigned a value by the DEFKEY command that is
returned by a GET#3 command.

Parameters:

Example: The command DEFKEY (33,13) would therefore be used to generate 13 when the
first key on row 3 of a pad was pressed. Note DEFKEY can only be used to redefine
input on channel#3.

ENABLE_OP
Type: Reserved Keyword

FILE
Type: Function

Syntax: FILE <function> [<parameters>]
Description: This command enables the user to manage the data on the SDCARD.
Parameters: The parameters depend on the function

key no: start key number

keyvalue1: value returned by start key through a GET#3 command.

keyvalue2..
keyvalue11:

values returned by successive keys through a GET#3 command.

“CD” “<directory>” Change to the given directory. There is one active direc-
tory on the controller all SDCARD commands are relative
to this directory.

“DEL” “<file>” Delete the given file inside the current directory.

“DETECT” Returns TRUE if an SDCARD is detected correctly.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-97
Input / Output Commands

“DIR” Print the contents of the current directory to the current
output channel.

“FIND_FIRST” <type>
<VR>

Initialises the internal FIND structures and locates the
first directory entry of the given type. If a directory
entry is found then the function returns TRUE and the VR
variable at index vr is the start of the VRSTRING that
contains the name of the directory entry. If no directory
entry is found or there is an error initialising the internal
FIND structures then the function returns FALSE.

Valid values for type are:

0.FILE or DIRECTORY

1.FILE

2.DIRECTORY

“FIND_NEXT” <VR> Finds the next directory entry of the type given in the
corresponding FIND_FIRST command. If a directory
entry is found then the function returns TRUE and the VR
variable at index vr is the start of the VRSTRING that
contains the name of the directory entry. If no directory
entry is found or there is an error initialising the internal
FIND structures then the function returns FALSE.

“FIND_PREV” <VR> Finds the previous directory entry of the type given in
the corresponding FIND_FIRST command. If a directory
entry is found then the function returns TRUE and the VR
variable at index vr is the start of the VRSTRING that
contains the name of the directory entry. If no directory
entry is found or there is an error initialising the internal
FIND structures then the function returns FALSE.

“LOAD_PROGRAM”
“<name>”

Load the given program into the internal RAM on the
Motion Coordinator. Only .BAS files are handled at the
moment.

“LOAD_PROJECT”
“<name>”

Read the given MotionPerfect project file and load all
the programmes into internal RAM on the Motion Coordi-
nator.

“RD” “<directory>” Delete the given directory inside the current directory.

“MD” “<directory>” Create the given directory inside the current directory.

“PWD” Prints the path of the current directory to the current
output channel.

8-98 Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

FLAG
Type: Command/Function

Syntax: FLAG(flag no [,value])
Description: The FLAG command is used to set and read a bank of 24 flag bits. The FLAG command

can be used with one or two parameters. With one parameter specified the status of
the given flag bit is returned. With two parameters specified the given flag is set to
the value of the second parameter. The FLAG command is provided to aid compati-
bility with earlier controllers and is not recommended for new programs.

Parameters:

Example 1: FLAG(21,ON)' Set flag bit 21 ON

 “SAVE_PROGRAM”
“<name>”

Save the given program to the corresponding file on the
SDCARD inside the current directory. Only .BAS files are
handled at the moment.

“SAVE_PROJECT”
“<name>”

Create a Motion Perfect project with the given name
inside the current directory. This implies creating the
directory and the corresponding project and program
files within this directory.

“TYPE” “<file>” Read the contents of the file inside the current directory
and print it to the current output channel.

flag no: The flag number is a value from 0..23.

value: If specified this is the state to set the given flag to i.e. ON or OFF.
This can also be written as 1 or 0.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-99
Input / Output Commands

FLAGS
Type: Command/Function

Syntax: FLAGS([value])
Description: Read/Set the FLAGS as a block. The FLAGS command is provided to aid compatibility

with earlier controllers and is not recommended for new programs. The 24 flag bits
can be read with FLAGS and set with FLAGS(value).

Parameters:

Example: Set Flags 1,4 and 7 ON, all others OFF

FLAGS(146)’ 2 + 16 + 128

Example 2: Test if FLAG 3 is set.

IF (FLAGS and 8) <>0 then GOSUB somewhere

GET
Type: Command.

Description: Waits for the arrival of a single character on the default serial port 0. The ASCII
value of the character is assigned to the variable specified. The user program will
wait until a character is available.

Example: GET k

value: The decimal equivalent of the bit pattern to set the flags to

Bit # 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1

8-100Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

GET#
Type: Command

Description: Functions as GET but the input device is specified as part of the command. The
device specified is valid only for the duration of the command.

Parameters

Example: GET#3,k 'Just for this command input taken from fibre optic

Note: Channels 5 to 9 are logical channels which are superimposed on to Serial Port A by
Motion Perfect.

Example 2: Get a key in a user menu routine

REPEAT
 PRINT #kpd,CHR(12);CHR(14);CHR(20);
 PRINT #kpd,CURSOR(00);"<=|General Setup1|=>";
 PRINT #kpd,CURSOR(20);"Cut Length : ";VR(clength)
 GET #kpd,option
 IF option=lastmenu OR option=f1 THEN RETURN
 IF option=menu_l2 THEN GOSUB set_cut_length
UNTIL TRUE

n: 0 Serial port 0
1 Serial port 1
2 Serial port 2
3 Fibre optic port (value returned defined by DEFKEY)

4 Fibre optic port (returns raw keycode of key pressed)
5 Motion Perfect user channel
6 Motion Perfect user channel
7 Motion Perfect user channel
8 Used for Motion Perfect internal operations
9 Used for Motion Perfect internal operations
10+ Fibre optic network data

x: Variable

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-101
Input / Output Commands

HEX
Type: Command

Description: The HEX command is used in a print statement to output a number in hexadecimal
format.

Example: PRINT#5,HEX(IN(8,16))

IN()/IN
Type: Function.

Syntax: IN(input no<,final input>)/IN
Description: Returns the value of digital inputs. If called with no parameters, IN returns the

binary sum of the first 24 inputs (if connected). If called with one parameter whose
value is less than the highest input channel, it returns the value (1 or 0) of that par-
ticular input channel. If called with 2 parameters IN() returns in binary sum of the
group of inputs. In the 2 parameter case the inputs should be less than 24 apart.

Parameters:

Example 1: In this example a single input is tested:

test:
WAIT UNTIL IN(4)=ON
GOSUB place

Example 2: Move to the distance set on a thumb wheel multiplied by a factor. The thumb wheel
is connected to inputs 4,5,6,7 and gives output in BCD.

WHILE TRUE
MOVEABS(IN(4,7)*1.5467)
WAIT IDLE

WEND

Note how the move command is constructed:

Step 1: IN(4,7) will get a number 0..15
Step 2: multiply by 1.5467 to get required distance
Step 3: absolute MOVE by this distance

Note: IN is equivalent to IN(0,23)

input no: input to return the value of/start of input group

<final input>: last input of group

8-102Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

Example: Test if either input 2 or 3 is ON.

If (IN and 12) <> 0 THEN GOTO start
'(Bit 2 = 4 + Bit 3 = 8) so mask = 12

INPUT
Type: Command.

Description: Waits for a string to be received on the current input device, terminated with a car-
riage return <CR>. If the string is valid its numeric value is assigned to the specified
variable. If an invalid string is entered it is ignored, an error message displayed and
input repeated. Multiple inputs may be requested on one line, separated by com-
mas, or on multiple lines, separated by <CR>.

Example1: INPUT num
PRINT "BATCH COUNT=";num[0]
On terminal:

123 <CR>
BATCH COUNT=123

Example2: getlen:
PRINT ENTER LENGTH AND WIDTH ?";
INPUT VR(11),VR(12)

This will display on terminal:
ENTER LENGTH AND WIDTH ? 1200,1500 <CR>

Note: This command will not work with the serial input device set to 3 or 4, i.e. the fibre
optic port, as the received codes are not ASCII 0..9. It is also not possible for a pro-
gram to use the serial port 0 as the command line process will remove the charac-
ters. Programs needing a “terminal” style interface should use one of the channel 6
to channel 7 ports if using Motion Perfect.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-103
Input / Output Commands

INPUTS0 / INPUTS1
Type: System Parameter

Description: The INPUTS0 parameter holds 24 Volt Input channels 0..15 as a system parameter.
INPUTS1 parameter holds 24 Volt Input channels 16..31 as a system parameter. Read-
ing the inputs using these system parameters is not normally required. The IN(x,y)
command should be used instead. They are made available in this format to make
the input channels accessible to the SCOPE command which can only store parame-
ters.

INVERT_IN
Type: Command.

Syntax: INVERT_IN(input,on/off)
Description: The INVERT_IN command allows the input channels to be individually inverted in

software. This is important as these input channels can be assigned to activate func-
tions such as feedhold. The INVERT_IN function sets the inversion for one channel
ON or OFF.

Example1: >>? IN(3)
0.0000
>>INVERT_IN(3,ON)
>>? IN(3)
1.0000
>>

KEY
Type: Function.

Description: Returns TRUE or FALSE depending on whether a character has been received on an
input device or not. This command does not read the character but allows the pro-
gram to test if any character has arrived. A true result will be reset when the char-
acter is read with GET.

The KEY command checks the channel specified by INDEVICE or by a # channel
number.
On all controllers except the MC302X, add 100 to the channel number to return the
number of characters in the buffer.
On the MC302, the Key# channel returns the number of characters in the buffer.

8-104Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

Input device:

Example 1: main:
IF KEY#1 THEN GOSUB read

...
read:

GET#1 k
RETURN

Example 2: To test for a character received from the fibre optic network:

IF KEY#4 THEN GET#4,ch

LINPUT
Type: Command

Syntax: LINPUT variable
Description: Waits for an input string and stores the ASCII values of the string in an array of varia-

bles starting at a specified numbered variable. The string must be terminated with a
carriage return <CR> which is also stored. The string is not echoed by the controller.

Parameters: None.

Example: LINPUT VR(0)

Now entering: START<CR> will give:

Chan Input device:-

0 Serial port 0

1 Serial port 1

2 Serial Port 2

3 Fibre optic port (value returned defined by DEFKEY)

4 Fibre optic port (returns raw keycode of key pressed)

5 Motion Perfect user channel

6 Motion Perfect user channel

7 Motion Perfect user channel

8 Used for Motion Perfect internal operations

9 Used for Motion Perfect internal operations

10 Fibre optic network data

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-105
Input / Output Commands

OP
Type: Command/Function.

Syntax: OP[([output no,] value)]
Description: Sets output(s) and allows the state of the first 24 outputs to be read back. The com-

mand has three different forms depending on the number of parameters. A single
output channel may be set with the 2 parameter command. The first parameter is
the channel number 8-95 and the second is the value to be set 0 or 1.

If the command is used with 1 parameter the parameter is used to simultaneously
set the first 24 outputs with the binary pattern of the number. If the command is
used with no parameters the first 24 outputs are read back. This allows multiple out-
puts to be set without corrupting others which are not to be changed. (See example
3).

Note: The first 8 outputs (0 to 7) do not physically exist on the Motion Coordinator so if
they are written to nothing will happen and if they are read back they will always
return 0.

Parameters:

Example 1: OP(44,1)
This is equivalent to OP(44,ON)

Example 2: OP (18*256)
This sets the bit pattern 10010 on the first 5 physical outputs, outputs 13-31 would
be cleared. Note how the bit pattern is shifted 8 bits by multiplying by 256 to set the
first available outputs as 0 to 7 do not exist.

VR(1) 84 ASCII 'T'

VR(2) 65 ASCII 'A'

VR(3) 82 ASCII 'R'

VR(4) 84 ASCII 'T'

VR(5) 13 ASCII carriage return

output no: Output number to set.

value: Output value to be set. 0/1 for 2 parameter command, decimal
equivalent of binary number to set on outputs for one parameter
command

8-106Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

Example 3: read_output:
VR(0)=OP
'SET OUTPUTS 8..15 ON SIMULTANEOUSLY
VR(0)=VR(0) AND $FF00
OP(VR(0))

Note how this example can also be written:

'SET OUTPUTS 8..15 ON SIMULTANEOUSLY
OP(OP AND $FF00)

See also READ_OP()

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-107
Input / Output Commands

OPEN
Type: Command

Syntax: OPEN #<channel> AS “<name>” for <access>
Description: OPEN will open the specified file for the given access type and assign it to the

specified TrioBASIC I/O channel. Once the file has been opened then it can be
manipulated by the standard TrioBASIC channel commands. If the file is opened
with read access then the GET, INPUT, LINPUT, KEY commands can be used on the
channel. If the file is opened with write access then the PRINT command can be
used on the channel.

Parameters: <channel> The TrioBASIC I/O channel to be associated with the file. It is in the
range 40 to 44.

<access> The operations permitted on the file. The valid access types are:

INPUT

The file will be opened for reading. When the end of the file is
reached KEY will return FALSE, and the GET and INPUT functions
will fail.

OUTPUT

The file will be opened for writing. If the file does not exist then it
will be created. If the file does exist then it will be overwritten.

FIFO_READ

The file will be opened for reading and will be managed as a circu-
lar buffer. This is only valid for files stored in internal RAM.

FIFO_WRITE(<size>)

The file will be opened for writing and will be managed as a circular
buffer. This is only valid for files in internal RAM. If the file does not
exist it will be created <size> bytes long. If the file does exist then
it must be of type FIFO and the size parameter is ignored.

<name> Name of the file to be opened.
The format is “[memory:]filename” where memory is either RAM
or SD. If the prefix is omitted or is RAM: then filename refers to an
internal RAM directory entry. If the prefix is SD: then filename
refers to an SDCARD directory entry.

8-108Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

PRINT
Type: Command.

Description: The PRINT command allows the Trio BASIC program to output a series of characters
to either the serial ports or to the fibre optic port (if fitted). The PRINT command
can output parameters, fixed ascii strings, and single ascii characters. Multiple items
to be printed can be put on the same PRINT line provided they are separated by a
comma or semi-colon. The comma and semi-colon are used to control the format of
strings to be output.

Example 1: PRINT "CAPITALS and lower case CAN BE PRINTED"

Example 2: >>PRINT 123.45,VR(1)
123.4500 1.5000
>>
Note how the comma separator forces the next item to be printed into the next tab
column. The width of the field in which a number is printed can be set with the use
of [w,x] after the number to be printed. Where w=width of column and x=number of
decimal places.

Example 3: Suppose VR(1)=6 and variab=1.5:
PRINT VR(1)[4,1],variab[6,2]
print output will be:
6.0 1.50
Note that the numbers are right justified in the field with any unused leading char-
acters being filled with spaces. If the number is too big then the field will be filled
with asterisks to signify that there was not sufficient space to display the number.
The maximum field width allowable is 127.

Example 4: length:
PRINT "DISTANCE=";mpos
DISTANCE=123.0000
Note how in this example the semi-colon separator is used. This does not tab into
the next column, allowing the programmer more freedom in where the print items
are put. The PRINT command prints variables with 4 digits after the decimal point.
The number of decimal places printed can be set by use of [x] after the item to be
printed. Where x is the number of decimal places from 1..4

params:PRINT "DISTANCE=";mpos[0];" SPEED=";v[2];
DISTANCE=123 SPEED=12.34

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-109
Input / Output Commands

Example 5: 15 PRINT "ITEM ";total" OF ";limit;CHR(13);
The CHR(x) command is used to send individual ASCII characters which are referred
to by number. The semi-colon on the end of the print line suppresses the carriage
return normally sent at the end of a print line. ASCII (13) generates CR without a line
feed so the line above would be printed on top of itself if it were the only print
statement in a program.

PRINT CHR(x); is equivalent to PUT(x) in some other versions of BASIC.

Note: The PRINT statements are normally transmitted to serial port 0. They can be redi-
rected to other output ports by using PRINT#. The PRINT statement has limits to the
size of big numbers that it can display. Max value that you can put in a variable and
then display it is: 2147483999. (The variable actually holds 2147483648)

The largest negative value is -2147483999. i.e the variable holds the value -
2147483648.

PRINT#
Type: Command

Description: This performs the same function as PRINT but the serial output device is specified as
part of the command. The device is selected for the duration of the PRINT# com-
mand only. When execution is complete the output device reverts back to that spec-
ified by the common parameter OUTDEVICE.

Parameters:

 Example: PRINT#10,"SPEED=";SPEED[6,1];

n: Output device:-
0 Serial port 0
1 Serial port 1
2 Serial port 2
3 Fibre optic port
4 Fibre optic port duplicate
5 RS-232 port A - channel 5
6 RS-232 port A - channel 6
7 RS-232 port A - channel 7
8 RS-232 port A - channel 8 - reserved for use by Motion Perfect
9 RS-232 port A - channel 9 - reserved for use by Motion Perfect

10..24 send text string to fibre optic network node 1..15

8-110Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

PSWITCH
Type: Command

Syntax: PSWITCH(sw,en,[,axis,opno,opst,setpos,rspos])
Description: The PSWITCH command allows an output to be fired when a predefined position is

reached, and to go OFF when a second position is reached. There are 16 position
switches each of which can be assigned to any axis, and can be assigned ON/OFF
positions and OUTPUT numbers.

Multiple PSWITCH’s can be assigned to a single output. The result on the output will
be the OR of the position switches and the standard BASIC OP setting.

The command must be used with all 7 parameters to enable a switch, just the first 2
parameters are required to disable a switch.

Parameters:

Example: A rotating shaft has a cam operated switch which has to be changed for different
size work pieces. There is also a proximity switch on the shaft to indicate TDC of the
machine. With a mechanical cam the change from job to job is time consuming but
this can be eased by using the PSWITCH as a software 'cam switch'. The proximity
switch is wired to input 7 and the output is fired by output 11. The shaft is control-
led by axis 0 of a 3 axis system. The motor has a 900ppr encoder. The output must be
on from 80° after TDC for a period of 120°. It can be assumed that the machine
starts from TDC.

sw: The switch number in the range 0..15

en: Switch enable -

1 or ON to enable software PSWITCH
0 or OFF to disable PSWITCH
3 to enable hardware PSWITCH
(hardware PSWITCH can only be used with a P242 daughter board
5 enable PSWITCH on DPOS

axis: Axis number which is to provide the position input in the range
0..number of axes on the controller. For a hardware PSWITCH it should
be set to the daughter board axis number.

opno: Selects the physical output to set, should be in range 8..31. For a hard-
ware PSWITCH it should be set to 0..3.

opst: Selects the state to set the output to, if 1 then output set ON else set it
OFF

setpos: The position at which output is set, in user units

rspos: The position at which output is reset, in user units

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-111
Input / Output Commands

The PSWITCH command uses the unit conversion factor to allow the positions to be
set in convenient units. So first the unit conversion factor must be calculated and
set. Each pulse on an encoder gives four edges which the controller counts, there-
fore there are 3600 edges/rev or 10 edges/°. If we set the unit conversion factor to
10 we can then work in degrees.

Next we have to determine a value for all the PSWITCH parameters.

This can all be put together to form the two lines of Trio BASIC code that set up the
position switch:

switch:
UNITS AXIS(0)=10' Set unit conversion factor (°)
REPDIST=360
REP_OPTION=ON
PSWITCH(0,ON,0,11,ON,80,200)

This program uses the repeat distance set to 360 degrees and the repeat option ON
so that the axis position will be maintained in the range 0..360 degrees.

Note: After switching the PSWITCH off, the output may remain ON if the state was ON
when the PSWITCH was switched off. The OP() command can be used to force an
output OFF:

PSWITCH(2,OFF)'Switch OFF pswitch controlling OP 14
OP(14,OFF)

sw The switch number can be any one we chose that is not in use so for the
purpose of this example we will use number 0.

en The switch must be enabled to work, therefore this must be set to 1.

axis We are told that the shaft is controlled by axis 0, thus axis is set to 0.

opno We are told that output 11 is the one to fire, so set opno to 11.

opst When the output is set it should be on so set to 1.

setpos The output is to fire at 80° after TDC hence the set position is 80 as we
are working in degrees.

rspos The output is to be on for a period of 120° after 80° therefore it goes
off at 200°. So the reset position is 200.

8-112Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

READ_OP()
Type: Function.

Syntax: READ_OP(output no[,final output])
Description: Returns the value of digital outputs. If called with one parameter whose value is less

than the highest output channel, it returns the value (1 or 0) of that particular out-
put channel. If called with 2 parameters READ_OP() returns, in binary, the sum of
the group of outputs. In the 2 parameter case the outputs should be less than 24
apart.

Parameters:

Example 1: In this example a single output is tested:

test:
WAIT UNTIL READ_OP(12)=ON
GOSUB place

Example 2: Check the group of 8 outputs and call a routine if any of them are ON.

op_bits = READ_OP(16,23)
IF op_bits<>0 THEN

GOSUB check_outputs
ENDIF

Note: READ_OP checks the state of the output logic. No actual output needs to be present for the
returned value to be ON.

In the Euro205x, READ_OP(8 ... 15) is different to IN(8 ... 15) because there are sep-
arate inputs and outputs at these addesses.

READPACKET
Type: Command

Syntax: READPACKET(port#,vr#,vr count, format)

Description: READPACKET is used to transmit numbers from an external computer into the global
variables of the Motion Coordinator over a serial communications port. The data is
transmitted from the PC in binary format with a CRC checksum. A detailed descrip-
tion of the READPACKET format can be downloaded from WWW.TRIOMOTION.COM

output no: output to return the value of/start of output group

[final output]: last output of group

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-113
Input / Output Commands

Parameters:

SEND
Type: Command

Syntax: SEND(n,type,data1[,data2])
Description: Outputs a fibre-optic network message of a specified type to a given node.

Parameters:

Example 1: Two Motion Coordinators are fibre-optic networked together. One is acting under
instruction from the other. Instructions are given by setting VR(100) to different val-
ues on the receiving Motion Coordinator. The program on the master Motion Coor-
dinator would have the following send routine:

SEND(10,1,100,value)' Set vr(100) on dest. to value

Port Number This value should be 0 or 1

VR Number This value tells the Motion Coordinator where to start set-
ting the variables in the VR() global memory array.

VR count. The number of variables to download

Format The number format for the numbers being downloaded

n: Number from 10 to 24 defining the destination node.

type: Message type:

1 - Direct variable transfer
2 - Keypad offset

data1: Message type 1: data1 is the VR variable number on the destination
Motion Coordinator.
Message type 2; data1 is the number of nodes from the keypad that the
key characters are to be sent, in the range 10..24. 10 is the next node
and 24 is the fifteenth node away from the keypad.

data2: Only used if message is type 1. In this case it contains the value for the
specified variable.

8-114Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

Example 2: Any network containing membrane keypad(s) must initialise the keypads to tell them
where to send their output and to set them into network mode. To do this a keypad
offset message is sent to the membrane keypad. Consider a network with four
nodes; 3 Motion Coordinators and 1 membrane keypad connected as follows:

 MCa ---> MCb---> MCc ---> Keypad ---> (back to MCa)

If MCa is to initialise the keypad (offset of 2 from MCa) but MCc is to receive the
keypad output (Offset of 0,1,2 from Keypad to MCc).

SEND(10+2,2,10+2)

SETCOM
Type: Command

Syntax: SETCOM(baudrate,databits,stopbits,parity,port[,mode][,variable]
[,timeout][,linetype])

Description: Permits the serial communications parameters to be set by the user.

By default the controller sets the RS232-C port to 9600 baud, 7 data bits, 2 stop bits
and even parity.

Parameters:

7

4

1

-

8

5

2

0

9

6

3

.

Y

N

CLR

Trio Motion Technology

R R R
T T T

R
T

ENCODER V+ V- R 0v

8
9
10
11
12
13
14
15

0

OK

B

STA

1
2
3
4
5
6
7

SERIAL

BAT

5 4 3 2 1

9 8 7 6

M O T I O N T E C H N O L O G Y

IO8
IO9
IO10
IO11
IO12
IO13
IO14
IO15

B

ENCODER V+ V- R 0v

8
9
10
11
12
13
14
15

0

OK

A B

STA

1
2
3
4
5
6
7

SERIAL

BAT

5 4 3 2 1

9 8 7 6

M O T I O N T E C H N O L O G Y

IO8
IO9
IO10
IO11
IO12
IO13
IO14
IO15

I 0
I 1
I 2
I 3
I 4
I 5
I 6
I 7

24v
0v

A1
A0
A-

B

ENCODER V+ V- R 0v

8
9
10
11
12
13
14
15

0

OK

A B

STA

1
2
3
4
5
6
7

SERIAL

BAT

5 4 3 2 1

9 8 7 6

M O T I O N T E C H N O L O G Y

IO8
IO9
IO10
IO11
IO12
IO13
IO14
IO15

I 0
I 1
I 2
I 3
I 4
I 5
I 6
I 7

24v
0v

A1
A0
A-

I 0
I 1
I 2
I 3
I 4
I 5
I 6
I 7

24v
0v

A1
A0
A-

B

MCa MCb MCc Keypad

 Offset from MCa 0 10 11 12

 Offset from Keypad 10 11 12 0

baudrate: 1200, 2400, 4800, 9600, 19200 or 38400

databits: 7 or 8

stopbits: 1 or 2

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-115
Input / Output Commands

Example 1: 'Set port 1 to 19200 baud, 7 data bits, 2 stop bits
'even parity and XON/XOFF enabled

SETCOM(19200,7,2,2,1,1)

Example 2: 'Set port 2 (RS485) to 9600 baud, 8 data bits, 1 stop bit
'no parity and no XON/XOFF handshake

SETCOM(9600,8,1,0,2,0)

Example 3: The Modbus protocol is initialised by setting the mode parameter of the SETCOM
instruction to 4. The ADDRESS parameter must also be set before the Modbus
protocol is activated.

'set up RS485 port at 19200 baud, 8 data, 1 stop, even parity
'and enable the MODBUS comms protocol

ADDRESS=1
SETCOM(19200,8,1,2,2,4)

Example 4: Set port 1 to receive commands from a PC running the TrioPC ActiveX component.

'set up RS232 port at 38400 baud, 8 data, 1 stop, even parity
'then start the REMOTE process which will handle the commands
'received from TrioPC.

SETCOM(38400,8,1,2,1,8)
REMOTE(0)

parity: 0 = none, 1 = odd, 2 = even

port number: 0, 1 or 2

mode: This switch is available on serial ports #1 and #2 ONLY.
0 : XON/XOFF inactive
1 : XON/XOFF active
4 : MODBUS protocol (16 bit Integer)
5 : Hostlink Slave
6 : Hostlink Master
7 : MODBUS protocol (32 bit IEEE floating point)
8 : REMOTE end of TrioPC ActiveX synchronous link
9 : MODBUS protocol (32bit long word integers)

variable: Determines the target variable array for MODBUS transfers.
0 : VR()
1 : TABLE()

Timeout Communications timeout (msec). Default is 3

linetype 0 = 4 wire Rs485, 1 = 2 wire Rs485

8-116Trio BASIC Commands
Input / Output Commands

Trio Motion Technology

TIMER
Type: Command

Syntax: TIMER(timer_no, output, pattern, time[,option])
Description: The TIMER command allows an output or a selection of outputs to be set or cleared

for a predefined period of time. There are 8 timer slots available, each can be
assigned to any of the first 32 outputs. The timer can be configured to turn the out-
put ON or OFF.

Parameters:

Example1: Use the TIMER function to flash an output when there is a motion error. The output
lamp should flash with a 50% duty cycle at 5Hz.

 WAIT UNTIL MOTION_ERROR
 WHILE MOTION_ERROR
 TIMER(0,8,1,100) 'turns ON output 8 for 100milliseconds
 WA(200) 'Waits 200 milliseconds to complete the 5Hz period
 WEND

Example2: Setting outputs 10, 12 and 13 OFF for 70 milliseconds following a registration event.
The first output is set to 10 and the pattern is set to 13 (1 0 1 1 in binary) to enable
the three outputs. Output 11 is still available for normal use. The option value is
set to 1 to turn OFF the outputs for the period, they return to an ON state after the
70 milliseconds has elapsed.

 WHILE running
 REGIST(3)
 WAIT UNTIL MARK
 TIMER(1,10,13,70,1)
 WEND

Example3: Firing output 10 for 250 milliseconds during the tracking phase of a MOVELINK Profile

 WHILE feed=ON
 MOVELINK(30,60,60,0,1)
 MOVELINK(70,100,0,60,1)
 WAIT LOADED 'Wait until the tracking phase starts

Timer_no: The timer number in the range 0-7

Output: Selects the physical output or first output in a group. This should be in
the range 0..31.

Pattern: 1 for a single output. If set to a number this represents a binary array
of outputs to be turned on

Time: The period of operation in milliseconds

Option: Inverts the output, set to 1 to turn OFF at start and ON at end.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-117
Input / Output Commands

 TIMER(2,10,1,250) 'Fire the output during the tracking phase
 MOVELINK(-100,200,50,50,1)
 WEND

8-118Trio BASIC Commands
Program Loops and Structures

Trio Motion Technology

Program Loops and Structures

BASICERROR
Type: Program Structure

Description: This command may only be used as part of an ON... GOSUB or ON... GOTO com-
mand. When used in this context it defines a routine to be run when an error occurs
in a Trio BASIC command.

Example: ON BASICERROR GOTO error_routine
....(rest of program)

error_routine:
PRINT "The error ";RUN_ERROR[0];
PRINT " occurred in line ";ERROR_LINE[0]

STOP

ELSE
Type: Program Structure

Description: This command is used as part of a multi-line IF statement.

See Also IF, THEN, ENDIF

ELSEIF
Type: Program Structure

Syntax: IF <condition1> THEN
commands

ELSEIF <condition2> THEN
commands

ELSE
commands

ENDIF
Description: The command is used within an IF .. THEN .. ENDIF. It evaluates a second (or

subsequent) condition and if TRUE it executes the commands specified, otherwise
the commands are skipped. MC206X and MC224 only.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-119
Program Loops and Structures

Parameters:

Example 1: IF IN(stop)=ON THEN
OP(8,ON)
VR(cycle_flag)=0

ELSEIF IN(start_cycle)=ON THEN
VR(cycle_flag)=1

ELSEIF IN(step1)=ON THEN
VR(cycle_flag)=99

ENDIF
Example 2: IF key_char=$31 THEN

GOSUB char_1
ELSEIF key_char=$32 THEN

GOSUB char_2
ELSEIF key_char=$33 THEN

GOSUB char_3
ELSE

PRINT “Character unknown”
ENDIF

Note: The ELSE sequence is optional. If it is not required, the ENDIF is used to mark the
end of the conditional block.

See Also IF, THEN, ELSE, ENDIF

ENDIF
Type: Program Structure

Description: The ENDIF command marks the end of a multi-line IF statement.

Example: IF count >= batchsize THEN
PRINT #3,CURSOR(20);” BATCH COMPLETE “;
GOSUB index 'Index conveyor to clear batch
count=0

ENDIF
See Also IF, THEN, ELSE

condition(s): Any logical expression.

commands: Any valid Trio BASIC commands including further IF..THEN
..{ELSEIF}..{ELSE} ENDIF sequences

8-120Trio BASIC Commands
Program Loops and Structures

Trio Motion Technology

FOR..TO.. STEP..NEXT
Type: Program Structure

Syntax: FOR variable=start TO end [STEP increment]
...
'block of commands
...

NEXT variable

Description: On entering this loop the variable is initialized to the value of start and the block of
commands is then executed.

Upon reaching the NEXT command the variable defined is incremented by the speci-
fied STEP. The STEP parameter is optional. If not defined then it is assumed to be 1.
The STEP value may be positive or negative.

If the value of the variable is less than or equal to the end parameter then the block
of commands is repeatedly executed until this is so.

Once the variable is greater than the end value the program drops out of the
FOR..NEXT LOOP.

Parameters:

Example 1: FOR opnum=10 TO 18
OP(opnum,ON)

NEXT opnum
This loop sets outputs 10 to 18 ON.

Example 2: loop:
FOR dist=5 TO -5 STEP -0.25

MOVEABS(dist)
GOSUB pick_up

NEXT dist

variable: A valid Trio BASIC variable. Either a global VR variable, or a local
variable may be used.

start: A valid Trio BASIC expression.

end: A valid Trio BASIC expression.

increment: A valid Trio BASIC expression. (Optional)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-121
Program Loops and Structures

Example 3: FOR.. NEXT statements may be nested (up to 8 deep) provided the inner FOR and
NEXT commands are both within the outer FOR..NEXT loop:

FOR x=1 TO 8
FOR y=1 TO 6

MOVEABS(x*100,y*100)
WAIT IDLE
GOSUB operation

 NEXT l2
NEXT l1

Note: FOR..NEXT loops can be nested up to 8 deep in each program.

GOSUB

Type: Program Structure

Syntax: GOSUB label
Description: Stores the position of the line after the GOSUB command and then branches to the

line specified. Upon reaching the RETURN statement, control is returned to the
stored line.

Parameters:

Example: main:
GOSUB routine1
GOSUB routine2

GOTO main

routine1:
PRINT "Measured Position=";MPOS;CHR(13);

RETURN

routine2:
PRINT "Demand Position=";DPOS;CHR(13);

RETURN
Note: Subroutines on each process can be nested up to 8 deep.

label: A valid label that occurs in the program. If the label does not exist an
error message will be displayed during structure checking at the begin-
ning of program run time and the program execution halted.

8-122Trio BASIC Commands
Program Loops and Structures

Trio Motion Technology

GOTO
Type: Program Structure

Syntax: GOTO label

Description: Identifies the next line of the program to be executed.

Parameters:

Example: loop:
PRINT "Measured Position=";MPOS;CHR(13);
WA(1000)
GOTO loop

Note: Labels may be character strings of any length. Only the first 15 characters are sig-
nificant. Alternatively line numbers may be used as labels.

NEXT
Type: Program Structure

Description: Used to mark the end of a FOR..NEXT loop. See FOR.

ON.. GOSUB
Type: Program Structure

Syntax: ON expression GOSUB label[,label[,...]]
Description: The expression is evaluated and then the integer part is used to select a label from

the list. If the expression has the value 1 then the first label is used, 2 then the sec-
ond label is used, and so on. If the value of the expression is less than 1 or greater
than the number of labels the command is stepped through with no action. Once the
label is selected a GOSUB is performed.

label: A valid label that occurs in the program. If the label does not exist an
error message will be displayed during structure checking at the begin-
ning of program run time and the program execution halted.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-123
Program Loops and Structures

Example: REPEAT
GET #3,char

UNTIL 1<=char AND char<=3
ON char GOSUB mover,stopper,change

ON.. GOTO
Type: Program Structure

Syntax: ON expression GOTO label[,label[,...]]
Description: The expression is evaluated and then the integer part is used to select a label from

the list. If the expression has the value 1 then the first label is used, 2 then the sec-
ond label is used, and so on. If the value of the expression is less than 1 or greater
than the number of labels the command is stepped through with no action. Once the
label is selected a GOTO is performed.

Example: REPEAT
GET #3,char

UNTIL 1<=char and char<=3
ON char GOTO mover,stopper,change

REPEAT.. UNTIL
Type: Program Structure

Syntax: REPEAT commands UNTIL condition
Description: The REPEAT..UNTIL construct allows a block of commands to be continuously

repeated until a condition becomes TRUE. REPEAT..UNTIL loops can be nested
without limit.

Example: A conveyor is to index 100mm at a speed of 1000mm/s wait for 0.5s and then repeat
the cycle until an external counter signals to stop by setting input 4 on.

cycle:
 SPEED=1000
 REPEAT
 MOVE(100)
 WAIT IDLE
 WA(500)
UNTIL IN(4)=ON

8-124Trio BASIC Commands
Program Loops and Structures

Trio Motion Technology

RETURN
Type: Program Structure

Description: Instructs the program to return from a subroutine. Execution continues at the line
following the GOSUB instruction.

Note: Subroutines on each process can be nested up to 8 deep.

Example: ' calculate in subroutine:
GOSUB calc
PRINT "Returned from subroutine"
STOP

calc:
x=y+z/2

RETURN

THEN
Type: Program Structure

Description: Forms part of an IF expression. See IF for further information.

Example: IF MARK THEN
offset=REG_POS

ELSE
offset=0

ENDIF

TO
Type: Program Structure

Description: Precedes the end value of a FOR..NEXT loop.

Example: FOR x=10 TO 0 STEP -1

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-125
Program Loops and Structures

UNTIL
Type: Program Structure

Description: Defines the end of a REPEAT..UNTIL multi-line loop, or part of a WAIT UNTIL struc-
ture. After the UNTIL statement is a condition which decides if program flow contin-
ues on the next line or at the REPEAT statement. REPEAT..UNTIL loops can be
nested without limit.

Example: ' This loop loads a CAMBOX move each time Input 0 comes on.
' It continues until Input 6 is switched OFF.

REPEAT
WAIT UNTIL IN(0)=OFF
WAIT UNTIL IN(0)=ON
CAMBOX(0,150,1,10000,1)

UNTIL IN(6)=OFF

WA
Type: Command

Syntax: WA(delay time)
Description: Holds up program execution for the number of milliseconds specified in the parame-

ter.

Parameters:

Example: OP(11,OFF)
WA(2000)
OP(17,ON)
'This turns output 17 off 2 seconds after switching output 11 off.

time: The number of milliseconds to wait for.

8-126Trio BASIC Commands
Program Loops and Structures

Trio Motion Technology

WAIT IDLE
Type: Command

Description: Suspends program execution until the base axis has finished executing its current
move and any further buffered move.

Note: This does not necessarily imply that the axis is stationary in a servo motor system.

Example: MOVE(100)
WAIT IDLE
PRINT "Move Done"

WAIT LOADED
Type: Command

Description: Suspends program execution until the base axis has no moves buffered ahead other
than the currently executing move

Note: This is useful for activating events at the beginning of a move, or at the end of a
move when multiple moves are buffered together.

Example: Switch output 45 ON at start of MOVE(350) and OFF at the end

MOVE(100)
MOVE(350)
WAIT LOADED
OP(45,ON)
MOVE(200)
WAIT LOADED
OP(45,OFF)

WAIT UNTIL
Type: Command

Syntax: WAIT UNTIL condition

Description: Repeatedly evaluates the condition until it is true then program execution contin-
ues.

Parameters: condition: A valid Trio BASIC logic expression.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-127
Program Loops and Structures

Example 1: WAIT UNTIL MPOS AXIS(0)>150
MOVE(100) AXIS(7)

In this example the program waits until the measured position on axis 0 exceeds 150
then starts a movement on axis 7.

Example 2: The expressions evaluated can be as complex as you like provided they follow the
Trio BASIC syntax, for example:

WAIT UNTIL DPOS AXIS(2)<=0 OR IN(1)=ON
This waits until demand position of axis 2 is less than or equal to 0 or input 1 is on.

WEND
Type: Program Structure

Description: Marks the end of a WHILE..WEND loop.

See also: WHILE

Note: WHILE..WEND loop can be nested without limit other than program size.

WHILE
Type: Program Structure

Syntax: WHILE condition
Description: The commands contained in the WHILE..WEND loop are continuously executed until

the condition becomes FALSE.

Execution then continues after the WEND.

Parameters:

Example: WHILE IN(12)=OFF
MOVE(200)
WAIT IDLE
OP(10,OFF)
MOVE(-200)
WAIT IDLE
OP(10,ON)

WEND

condition: Any valid logical Trio BASIC expression

8-128Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

System Parameters and Commands

ADDRESS
Type: System Parameter

Syntax: ADDRESS=value
Description: Sets the RS485 or Modbus multi-drop address for the board. This parameter should

be in the range of 1..32

Example: ADDRESS=5
SETCOM(19200,8,1,2,1,4)

APPENDPROG
Type: System Command (This function is used by the Motion Perfect editor)

Syntax: APPENDPROG <string>
Alternate Format: @ <string>

Description: This command appends a line to the currently selected program.

Parameters:

AUTORUN
Type: System Command

Description: Starts running all the programs that have been set to run at power up.

See Also: RUNTYPE.

Note: This command should only be used on the Command Line Terminal.

string: The text, enclosed in quotation marks, that is to be appended to the
program

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-129
System Parameters and Commands

AXISVALUES
Type: System Command

Syntax: AXISVALUES(axis,bank)
Description: Used by Motion Perfect to read axis parameters. Reads banks of axis parameters.

There are 2 banks of parameters for each axis, bank 0 displays the data that is only
changed by the Trio BASIC, bank 1 displays the data that is changed by the motion
generator.

Parameters The data is given in the format:

<Parameter><type>=<value>

BATTERY_LOW

Type: System Parameter (Read only)

Syntax: var = BATTERY_LOW
Description: For controllers fitted with non rechargeable batteries, this parameter returns the

current state of the battery condition. If BATTERY_LOW returns 1 then the battery
needs to be changed. If BATTERY_LOW returns 0 then battery condition is ok.

<Parameter> is the name of the parameter

<type> is the type of the value.

i integer

f float

c float that when changed means that the bank 0 data must be
updated

s string

c string of upper and lower case letters, where upper case letters
mean an error

<value> an integer, a float or a string depending on the type

8-130Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

BOOT_LOADER
Type: System Command

Description: This command is used to enter the boot loader software. This is not normally
required by users unless instructed by Trio or a Distributor.

BREAK_ADD
Type: System Command

Syntax: BREAK_ADD "program name" line_number
Description: Used by Motion Perfect to insert a break point into the specified program at the

specified line number.

Example: BREAK_ADD "simpletest" 8
Will add a break point at line 8 of program "simpletest"

Note 1: If there is no code at the given line number BREAK_ADD will add the breakpoint at
the next available line of code. i.e. If line 8 is empty but line 9 has "NEXT x" and a
BREAK_ADD is issued for line 8, the break point will be added to line 9.

Note 2: If a non existent line number is selected (i.e. line 50 when the program only has 40
lines), the controller will return an error.

BREAK_DELETE
Type: System Command

Syntax: BREAK_DELETE "program name" line_number
Description: Used by Motion Perfect to remove a break point from the specified program at the

specified line number.

Example: BREAK_DELETE "simpletest" 8
Will remove the break point at line 8 of program "simpletest"

Note: If a non existent line number is selected (i.e. line 50 when the program only has 40
lines), the controller will return an error.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-131
System Parameters and Commands

BREAK_LIST
Type: System Command

Syntax: BREAK_LIST "program name"
Description: Returns a list of all the break points in the given program name. Displays the line

number of the breakpoint and the code associated with that line.

Example: For a program called "simpletest" with break points inserted on lines 8 and 11;

>>BREAK_LIST "simpletest"

Program: SIMPLETEST
Line 8: SERVO=ON
Line 11: BASE(0)

BREAK_RESET
Type: System Command

Syntax: BREAK_RESET "program name"
Description: Used by Motion Perfect to remove all break points from the specified program.

Example: BREAK_RESET "simpletest"
Will remove all break points from program "simpletest"

CAN

Type: System Function

Syntax: CAN(channel,function#,{parameters},[rw])
Description: This function allows the CAN communication channels to be controlled from the Trio

BASIC programming system. All Motion Coordinator’s have a single built-in CAN
channel which is normally used for digital and analogue I/O using Trio’s I/O modules.
With up to 4 CAN daughter boards plus the built-in CAN channel the units can control
a maximum of 5 CAN channels:

8-132Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

In addition to using the CAN command to control CAN channels, Trio is introducing
specific protocol functions into the system software. These functions are dedicated
software modules which interface to particular devices. The built-in CAN channel
will automatically scan for Trio I/O modules if the system parameter CANIO_ADDRESS
is set to its default value of 32.

The Motion Coordinator CAN hardware uses the Siemens 81C91 CAN interface chip or
the OKI ML9620 interface chip. This chip can be programmed at a register level
using the CAN command if necessary. To program in this way it is necessary to obtain
a copy of the chip data sheet.

The CAN command provides access to 10 separate functions:

CAN(channel#,function#,...,[rw])

Channel:
Channel
Number:

Maximum
Baudrate:

Built-in CAN -1 500 KHz
Daughter Slot 0 0 1 Mhz
Daughter Slot 1 1 1 Mhz
Daughter Slot 2 2 1 Mhz
Daughter Slot 3 3 1 Mhz

Channel#
The channel number is in the range -1 to 3 and specifies the hardware channel

Function #:
There are 10 CAN functions 0..9:

0 Read Register: val=CAN(channel#,0,register#)

1 Write Register: CAN(channel#,1,register#,value#)

2 Initialise Baudrate: CAN(channel#,2,baudrate)

3 Check if msg received val=CAN(channel#,3,message#)

4 Set transmit request CAN(channel#,4,message#)

5 Initialise message CAN(channel#,5,message#,identifier,
length,[rw])

6 Read message CAN(channel#,6,message#,variable#)

7 Write message CAN(channel#,7,message#,byte0,byte1..)

8 Read CanOpen Object CAN(channel#,8,transbuf,recbuf,object,
subindex,variable#)

9 Write CanOpen Object CAN(channel#,9,transbuf,recbuf,format,
object,subindex,value,{valuems})

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-133
System Parameters and Commands

Notes: register# is the register number.

Baudrate: 0=1Mhz, 1=500kHz, 2=250kHz etc.

The 81C91 has 16 message buffers(0..15). The message# is which message buffer is
required to be used.

“Identifier” is the CAN identifier.

variable# is the number of the global variable to start loading the data into. The
function will load a sequence of n+1 variables. The first variable holds the identifier.
The subsequent values hold the data bytes from the can packet.

Functions 8 and 9 are only available in system software V1.62 and later.

Products based on the OKI ML9620 chip require the optional rw parameter in the
CAN(5 ..) command. rw is 0 to set up a read buffer, and 1 for a write buffer.

CANIO_ADDRESS
Type: System Parameter (Stored in FLASH Eprom)

Description: The CANIO_ADDRESS holds the address used to identify the Motion Coordinator when
using the Trio CAN I/O networking. The value is held in flash eprom in the controller
and for most systems does not need to be set from the default value of 32. The value
may be changed to a different value in the range 33..47 but in this case the Motion
Coordinator will not connect to Trio CAN-I/O modules following reset. The value of
CANIO_ADDRESS should be changed from 32 if it is required to use the built-in CAN
channel for functions other than controlling Trio CAN I/O modules.

Value Function

32 Trio CAN I/O Master 64in/64out

40 CanOpen I/O Master 64in/64out

41 CanOpen I/O Master 128in/128out

8-134Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

An additional function of CANIO_ADDRESS is to set the initial bit rate for the CANbus
port on power up. This enables the CANbus port to come online at the correct rate
when installed in factory networks like DeviceNet. Bits 8 and 9 have the following
meaning:

CANIO_ENABLE
Type: System Parameter

Description: The CANIO_ENABLE should be set OFF to completely disable use of the built-in CAN
interface by the system software. This allows users to program their own protocols
in Trio BASIC using the CAN command. The system software will set CANIO_ENABLE to
ON on power up if the CANIO_ADDRESS is set to 32 and any Trio CAN I/O or CAN ana-
log modules have been detected, otherwise it will be set to OFF.

CANIO_STATUS
Type: System Parameter

Description: A bitwise system parameter:

Bit 9 , 8 value
Decimal
value

Initialisation
Baudrate:

0 , 0 0 500 KHz
0 , 1 256 256 KHZ
1 , 0 512 125 KHz
1 , 1 768 1 MHz

Bit 0 set indicates an error from the I/O module 0,3,6 or 9

Bit 1 set indicates an error from the I/O module 1,4,7 or 10

Bit 2 set indicates an error from the I/O module 2,5,8 or 11

Bit 3 set indicates an error from the I/O module 12,13,14 or 15

Bit 4 should be set to re-initialise the CANIO network

Bit 5 is set when initialisation is complete

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-135
System Parameters and Commands

CANOPEN_OP_RATE
Type: System Parameter

Description: Used to adjust the transmission rate of CanOpen I/O PDO telegrams. Default is
5msec. Adjustable in 1msec steps.

CHECKSUM
Type: System Parameter (Read Only)

Description: The checksum parameter holds the checksum for the programs in battery backed
RAM. On power up the checksum is recalculated and compared with the previously
held value. If the checksum is incorrect the programs will not run.

CLEAR
Type: System Command

Description Sets all global (numbered) variables to 0 and sets local variables on the process on
which command is run to 0.

Note: Trio BASIC does not clear the global variables automatically following a RUN com-
mand. This allows the global variables, which are all battery-backed to be used to
hold information between program runs. Named local variables are always cleared
prior to program running. If used in a program CLEAR sets local variables in this pro-
gram only to zero as well as setting the global variables to zero.

CLEAR does not alter the program in memory.

Example: VR(0)=44:VR(10)=12.3456:VR(100)=2
PRINT VR(0),VR(10),VR(100)
CLEAR
PRINT VR(0),VR(10),VR(100)

On execution this would give an output such as:

44.0000 12.345 62.0000
0.0000 0.0000 0.0000

8-136Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

CLEAR_PARAMS
Type: System Command

Description Clears all variables and parameters stored in flash eprom to their default values. On
the MC302X CLEAR_PARAMS will erase all the VR’s stored using FLASHVR.
CLEAR_PARAMS cannot be performed if the controller is locked.

COMMSERROR
Type: System Parameter

Description: This parameter returns all the communications errors that have occurred since the
last time that it was initialised. It is a bitwise value defined as follows:

Bit Value

0 RX Buffer overrun on Network channel
1 Re-transmit buffer overrun on Network channel
2 RX structure error on Network channel
3 TX structure error on Network channel
4 Port 0 Rx data ready
5 Port 0 Rx Overrun
6 Port 0 Parity Error
7 Port 0 Rx Frame Error
8 Port 1 Rx data ready
9 Port 1 Rx Overrun
10 Port 1 Parity Error
11 Port 1 Rx Frame Error
12 Port 2 Rx data ready
13 Port 2 Rx Overrun
14 Port 2 Parity Error
15 Port 2 Rx Frame Error
16 Error FO Network port
17 Error FO Network port
18 Error FO Network port
19 Error FO Network port

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-137
System Parameters and Commands

COMMSTYPE
Type: Slot Parameter

Syntax: COMMSTYPE SLOT(slot#)
Description: This parameter returns the type of communications daughter board in a controller

slot. On the MC206X, a communications daughter board will respond with its type if
the COMMSTYPE is requested from slot(0).

COMPILE
Type: System Command

Description: Forces compilation (to intermediate code) of the currently selected program. Pro-
gram compilation is performed automatically by the system software prior to pro-
gram RUN or when another program is SELECTed. This command is not therefore
normally required.

Description

20 CAN Communications card

21 USB Communications card

22 SLM Communications card

23 Profibus Communications card

24 SERCOS Communications card

25 Ethernet Communications card

26 P184 4 Analog Out card for PCI208

27 P185 8 Analog Out card for PCI208

28 Analog Input card

29 Enhanced CAN Communications card

30 ETHERNET IP

8-138Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

CONTROL
Type: System Parameter (Read Only)

Description: The Control parameter returns the type of Motion Coordinator in the system:

Note: When the Motion Coordinator is LOCKED, 1000 is added to the above numbers. eg a
locked MC206X will return 1207.

COPY
Type: System Command

Description: Makes a copy of an existing program in memory under a new name

Example: >>COPY "prog" "newprog"
Note: Motion Perfect users should use the “Copy program...” function under the “Pro-

gram” menu.

Controller CONTROL

MC302X 293
Euro205x 255
Euro209 259
MC206X 207
PCI208 208
MC224 224

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-139
System Parameters and Commands

DATE
Type: System Parameter (MC224 Only)

Description: Returns/ Sets the current date held by the real time clock.

Syntax: WRITE:DATE=DD:MM:YY, DATE=DD:MM:YYYY

READ:d=DATE

d=DATE(0), d=DATE(1), d=DATE(2)

Parameters:

Example 1: >>DATE=20:10:98

or

>>DATE=20:10:2001
Example 2: >>PRINT DATE

36956
This prints the number representing the current day. This number is the number of
days since 1st January 1900, with 1 Jan. 1900 as 1. Trio has issued a year 2000 com-
pliance statement which describes the year 2000 issue in relation to all Trio prod-
ucts.

Example 3: >>DATE=05:08:2008
>>PRINT DATE(1);“/”;DATE(0);“/”;DATE(2) 'Prints the date in US
format.
08/05/2008

Option

none Returns the number of days since 01/01/1900

1 Returns the day of the current month

2 Returns the month of the current year

3 Returns the current year

8-140Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

DATE$
Type: Command (MC224 Only)

Description: Prints the current date DD/MM/YY as a string to the port. A 2 digit year description is
given.

Example: PRINT #3,DATE$
This will print the date in format for example: 20/10/01

DAY
Type: System Parameter (MC224 only)

Description: Returns the current day as a number 0..6, Sunday is 0. The DAY can be set by assign-
ment.

Example: >>DAY=3
>>? DAY
3.0000

DAY$
Type: System Command (MC224 only)

Description: Prints the current day as a string.

Example: >>? DAY$
Wednesday

DEL
Type: System Command

Alternate Format: RM
Syntax: DEL progname

Description: Allows the user to delete a program from memory. The command may be used with-
out a program name to delete a currently selected program.

Motion Perfect users should use “Delete program...” on Program menu.

Example: >>DEL "oldprog"

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-141
System Parameters and Commands

DEVICENET
Type: System Command

Syntax: DEVICENET(slot,func,baud,mac id,poll base,poll inlen,poll outlen)
Description: The command DEVICENET is used to start and stop the DeviceNet slave function

which is built into the Motion Coordinator.

Parameters:

Polled IO data is transferred periodically:
From PLC to [TABLE(poll_base) -> TABLE(poll_base + poll_in_len)]
To PLC from [TABLE(poll_base + poll_in_len + 1) -> TABLE(poll_base + poll_in_len +
poll_out_len)]

Example 1: 'Start the DeviceNet protocol on the built-in CAN port;
DEVICENET(-1,0,500,30,0,4,2)

Example 2: 'Stop the DeviceNet protocol on the CAN board in slot 2;
DEVICENET(2,1)

Example 3: 'Set the CAN board in slot 0 to have a baudrate of 125k bps on
power-up;
DEVICENET(0,2,125)

slot: Specifies the communications slot where the CAN daughter
board is placed. Set -1 for built-in CAN port and 0 for a CAN
daughter board in the MC206X.

func: 0 = Start the DeviceNet slave protocol on the given slot.
1 = Stop the DeviceNet protocol.
2 = Put startup baudrate into Flash EPROM

baud: Set to 125, 250 or 500 to specify the baudrate in kHz.

mac id: The ID which the Motion Coordinator will use to identify itself
on the DeviceNet network. Range 0..63.

poll base: The first TABLE location to be transfered as poll data

poll in len: Number of words to be received during poll. Range 0..4

poll out len: Number of words to be sent during poll. Range 0..4

8-142Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

DIR
Type: System Command

Alternate Format: LS
Description: Prints a list of all programs in memory, their size and their RUNTYPE. Alternative

formats:
DIR F may be used to list the programs stored in the FlashStick if present.
DIR D lists the programs stored in SD card if present.

Note: This command should only be used on the Motion Coordinator Command Line

DISPLAY
Type: System Parameter

Description: Determines the I/O channels to be displayed on the front panel LEDS.

Certain controllers, such as the Euro205x and MC206X do not have LEDs for every I/O
channel. The DISPLAY parameter may be used to select which bank of I/O should be
displayed.

The parameter default value is 0.

Parameters:

Example: DISPLAY=5
'Show outputs 8-15

0 Inputs 0-7

1 Inputs 8-15

2 Inputs 16-23

3 Inputs 24-31

4 Outputs 0-7 (unused on existing controllers)

5 Outputs 8-15

6 Outputs 16-23

7 Outputs 24-31

8 DeviceNet Status

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-143
System Parameters and Commands

DLINK
Type: System Command

Syntax: DLINK(function,…)
Description: This is a specialised command, to allow access to the SLM™ digital drive interface.

During the power sequence, when a SLM™ interface card is found, all the ASICs are
initialised, starting the communications protocol.

The axis parameters have to be initialised by the DLINK function 2 command before
the interface can be used for controlling an external drive.

Parameters:

Read a register on the SLM™ ASIC.

Parameters:

Example: >>PRINT DLINK(0,0,0,3)
117.0000
>>

Write a register on the SLM™ ASIC.

Parameters:

Function: Specifies the required function.
0 = Read a register on the SLM™ ASIC
1 = Write a register on the SLM™ ASIC
2 = Check for presence SLM module
3 = Check for presence of SLM servo drive
4 = Assign a Motion Coordinator axis to a SLM channel
5 = Read an SLM parameter
6 = Write an SLM parameter
7 = Write an SLM command
8 = Read a drive parameter
9 = Returns slot and asic number associated with an axis
10 = Read an EEPROM parameter

Function 0

Slot The communications slot in which the interface daughter board is
inserted.

ASIC The number of the ASIC to be used. Each SLM™ daughter board
has 3 ASICs. The master ASIC is 0, the first slave is 1 and the sec-
ond slave is 2.

Register The number of the register to be read.

Function 1

Slot The communications slot in which the interface
daughter board is inserted.

8-144Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Example: >>DLINK(1,0,0,1,244)
>>

Check for presence SLM module on rear of motor. Returns 1 if the SLM is answering,
otherwise it returns 0.

Parameters:

>>? DLINK(2,0,0)
1.0000
>>

Check for presence of SLM servo drive, such as MultiAx. Returns 1 if the drive is
answering, otherwise it returns 0. The current SLM software dictates that the
drive MUST be powered up after power is applied to the Motion Coordinator /
SLM.

Parameters:

Example: >>? DLINK(3,0,0)
0.0000
>>

Assign a Motion Coordinator axis to a SLM channel.

Parameters:

ASIC The number of the ASIC to be used.

Register The number of the register to be written to.

Value The value to be written.

Function 2

Slot The communications slot in which the interface
daughter board is inserted.

ASIC The number of the ASIC to be used.

Function 3

Slot The communications slot in which the interface daughter board is
inserted.

ASIC The number of the ASIC to be used.

Function 4

Slot The communications slot in which the interface daughter board is
inserted.

ASIC The number of the ASIC to be used.

Axis The axis to be associated with this drive. If this axis is already
assigned then it will fail. The ATYPE of this axis will be set to 11.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-145
System Parameters and Commands

Example: >>DLINK(4,0,0,0)

Read an SLM parameter

Parameters:

Example: >>PRINT DLINK(5,0,1)
463.0000
>>

Write an SLM parameter

Parameters:

Example:
>>DLINK(6,0,0,0)
>>

Write an SLM command. If command is successful this function returns a TRUE, oth-
erwise it returns FALSE

Parameters:

Example: >>PRINT DLINK(7,0,250)
1.0000
>>
Read a drive parameter

Function 5

Axis The axis to be associated with this drive. If this axis is out of
range, or is not of the correct type (see function 2) then the func-
tion will fail.

Parameter The number of the SLM parameter to be read. This is normally in
the range 0…127. See the drive documentation for further infor-
mation.

Function 6

Axis The axis to be associated with this drive.

Parameter The number of the SLM parameter to be read. See Function 4

Value The value to be set.

Function 7

Axis The axis to be associated with this drive.

Command The command number. (see drive documentation)

8-146Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Parameters:

Example: >>PRINT DLINK(8,0,53248)
20504.0000
>>

Return slot and asic number associated with an axis

Parameters:

Example: >>PRINT DLINK(9,2)
>>11.0000
This example is for slot 1, asic 1

Read an EEPROM parameter

Parameters:

Example: >>PRINT DLINK(10,0,29)
>>62128.0000
Returns EEPROM parameter 29, the Flux Angle

Function 8

Axis The axis to be associated with this drive.

Parameter The number of the drive parameter to be read. This must be in
the range 0…127. See the servo drive documentation for further
information.

Function 9

Axis Axis number.

Returns 10 x slot number + ASIC number.

Function 10

Axis The axis to be associated with this drive/SLM.

Parameter EEPROM parameter number. (see drive documentation)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-147
System Parameters and Commands

EDIT
Type: System Command

Syntax: EDIT [optional line sequence number]

Description: The edit command starts the built in screen editor allowing a program in the control-
ler memory to be modified using a VT100 terminal. The SELECTed program is edited.

The line sequence number may be used to specify where to start editing.

EDPROG
Type: System Command

Alternate Format: &
Description: This is a special command that may be used to manipulate the programs on the con-

troller. It is not normally used except by Motion Perfect.

It has several forms:

Quit Editor -Control K then D

Delete line -Control Y

Cursor Control -Cursor Keys

&C Print the name of the currently selected program

&<line>D Delete line <line> from the currently selected program

&<line>I,<string> Insert the text <string> in the currently selected program
at the line <line>.

Note - you should NOT enclose the string in quotes unless
they need to be inserted into the program.

&K Print the checksum of the system software

&<start>,<end>L Print the lines of the currently selected program
between <start> and <end>

&N Print the number of lines in the currently selected pro-
gram

8-148Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

EPROM
Type: System Command

Description: Stores the Trio BASIC programs in the controller in the FLASH EPROM. This informa-
tion is be retrieved on power up if the POWER_UP parameter has been set to 1. The
EPROM(n) functions are only usable on Motion Coordinators with a FlashStick
socket...

Note: This command should only be used on the command line. Motion Perfect performs
the EPROM command automatically when the Motion Coordinator is set to “Fixed”

See Also: STICK_WRITE, STICK_READ, DIR

When using the Memory Stick, users should refer to the information in the
MC206X Hardware Overview for a complete description of the Memory Stick
functionality.

&<line>R,<string> Replace the line <line> in the currently selected program
with the text <string>.

Note - you should NOT enclose the string in quotes unless
they need to be inserted into the program.

&Z,<progname> Print the CRC checksum of the specified program.

This uses the standard CCITT 16 bit generator polynomial

EPROM or EPROM(0) Stores application programs in ram into on board flash.

EPROM(1) Stores application programs in ram into FlashStick.

EPROM(2) Stores application programs in ram into the FlashStick
and marks the EPROM request flag so that the programs
are copied from the FlashStick into on board flash when
the stick is inserted into a controller which is unlocked.

EPROM(3) Deletes all programs in the FlashStick, leaves data sec-
tors intact.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-149
System Parameters and Commands

ERROR_AXIS
Type: System Parameter (Read Only)

Description: Returns the number of the axis which caused the enable WDOG relay to open when a
following error exceeded its limit.

Example: >>? ERROR_AXIS

ETHERNET
Type: System Command

Syntax: ETHERNET(read/write, slot number, function [,data])
Description: The command ETHERNET is used to read and set certain functions of the Ethernet

daughter board. The ETHERNET command should be entered on the command line
with Motion Perfect in “disconnnected” mode via the serial port 0.

Parameters: read / write: Specifies the required action.
0 = Read
1 = Write to Flash EPROM
2 = Write to RAM

slot number: The daughter board slot where the Ethernet port has been
installed. On the MC206X this is always slot 0.

8-150Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Example 1: Set the IP address, subnet mask and default gateway for the Ethernet daughter
board in slot 0.

ETHERNET(1,0,0,192,200,185,2)
ETHERNET(1,0,2,255,255,255,0)
ETHERNET(1,0,8,192,200,185,210)

Example 2: Read the firmware version number in the Ethernet daughter board in slot 2.

ETHERNET(0,2,6)
Example 3: Set the Modbus TCP port number in the Ethernet daughter board in slot 1.

ETHERNET(1,1,10,1024)
Example 4: Initialise the Modbus TCP port for floating point TABLE data. Must be entered before

the Modbus master opens the port connection.

ETHERNET(2,1,7,1)
ETHERNET(2,1,9,1)

Note: Examples 1 to 3 must be entered from the terminal. Example 4 is placed in a
startup program as the values are stored in ram.

function: Function number must be one of the following values.

0 = IP Address
1 = Static(1) or dynamic(0) addressing. (Only static addressing
is supported.)
2 = Subnet Mask
3 = MAC address
4 = Default Port Number (initialised to 23)
5 = Token Port Number (initialised to 3240)
6 = Ethernet daughter board firmware version (read only)
7 = Modbus TCP mode. Integer (0) or Floating point (1). (R)
8 = Default Gateway
9 = Data configuration. VR() variables (0) or TABLE (1). (R)
10 = Modbus TCP port number. (initialised to 502)

data: The optional data is used when changing a parameter value.

When writing to the EPROM on the Ethernet daughter board,
the new value will only be used after power has been cycled
to the controller. Any data written to RAM (R) is used straight
away.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-151
System Parameters and Commands

ETHERNET_IP
Type: System Command

Syntax: Read: ETHERNET_IP(slot, function, index, #params, vr_base_index)

Write: ETHERNET_IP(slot, function, index, param1, [param2, param3,
param4])

Description: Provides access to the memory and functions of the Anybus EIP module on the P298.

Parameters:

The Ethernet_IP function returns either TRUE (-1) or FALSE (0) to indicate the suc-
cess or otherwise of the function call.

EX
Type: System Command

Syntax: EX(processor)

Description: Software reset. Resets the controller as if it were being powered up again.

On EX the following actions occur:

• The global numbered (VR) variables remain in memory.
• The base axis array is reset to 0,1,2... on all processes
• Axis following errors are cleared
• Watchdog is set OFF
• Programs may be run depending on POWER_UP and RUNTYPE settings

slot the physical daughter board slot where the P298 is located (0 for
MC206).

function 0 = read, 1 = write.

Index memory address to be accessed.

#params number of parameters to be read consecutively from the address.
 1 = only the parameter at the address is read.
 2 = address and address+1 are read.
 3 = address > address+2 are read.
 4 = address > address+3 are read.

vr_base_index the starting index of a block of up to 4 VRs to read data into.

param1
..param4

values to be written to address, address+1, address+2, address+3.

8-152Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

• ALL axis parameters are reset.
EX may be included in a program. This can be useful following a run time error. Care
must be taken to ensure it is safe to restart the program.

Parameters:

Note: When running Motion Perfect executing an EX command is not allowed. The same
effect as an EX can be obtained by using “Reset the controller...” under the “Con-
troller” menu in Motion Perfect. To simply re-start the programs, use the AUTORUN
command.

EXECUTE
Type: System Command

Description: Used to implement the remote command execution via the Trio PC activex. For more
details see the section on using the OCX control.

FB_SET
Type: System Parameter

Description: This special parameter is available on certain Motion Coordinators only. Fieldbus
Set controls the source for the second value returned by a DeviceNet I/O poll
response. The values can be set as follows:

0 or
None:

Software resets the controller and maintains communications.

1: Software resets the controller and communications.

0 I/O Poll returns VR(0) as 16 bit Integer

1 I/O Poll returns inputs 0-15

2 I/O Poll returns inputs 16-31

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-153
System Parameters and Commands

FB_STATUS
Type: System Parameter

Description: This Read-only parameter returns the current status of the fieldbus connection. At
present, only the DeviceNet connection status is supported.

FB_STATUS returns the following values:

Example: 'Test the Polled I/O status to see if PLC is still online
IF FB_STATUS=0 THEN
'PLC link has failed; set global flag and stop motion
 RAPIDSTOP
 VR(50) = 0
ENDIF

FEATURE_ENABLE
Type: System Function

Syntax: FEATURE_ENABLE(feature number)
Description: Many Motion Coordinators, have the ability to unlock additional axes by entering a

“Feature Enable Code”. This function is used to enable protected features, such as
additional servo axes or remote CAN/SERCOS/Analogue feedback axes, of a control-
ler. It is recommended to use Motion Perfect 2 to enter and store the feature enable
codes.

Controllers with features which can be enabled in this way are fitted with a unique
security code number when manufactured. This security code number can be found
by typing FEATURE_ENABLE with no parameters:

Example 1: >>feature_enable
Security code=17980000000028
Enabled features: 0 1

If you require additional features for a controller. These can be enabled by the entry
of a password which is unique for each feature and controller security code. To
obtain a feature enable code, the feature must be ordered via the Trio website or
from a Trio distributor.

0 I/O Polling is OFF

1 I/O Polling is ON

8-154Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Example 2: In example one axes 0 and 1 are enabled for stepper operation. If axis 2 was
required to operate as a stepper axis it would be necessary to obtain the password.
For this card and this feature only the password is 5P0APT.

>>feature_enable(2)
Feature 2 Password=5P0APT
>>
>>feature_enable
Security code=17980000000028
Enabled features: 0 1 2

Note: When entering the passwords always enter the characters in upper case. Take care
to check that 0 (zero) is not confused with O and 1 (one) is not confused with I.

FLASHVR
Type: System Function

Syntax: FLASHVR(function, [flashpage, tablepage])
Description: Copies user data in RAM to the permanent flash memory.

Parameters:

Note: Where this feature is provided on controllers which do not have battery backed ram
VR() storage, each FLASHVR command generates a write to flash eprom. After 8000
writes the flash sector will be erased and the firmware writes the data into a second
sector. Each sector can be erased over 1,000,000 times. It is therefore possible to
use the FLASHVR([0 ... 1023]) command many hundreds of millions of times. It
does however have a finite life and cannot easily be replaced. Programmers MUST
allow for this fact.

function: Specifies the required action.
0 to 1023: Store single VR in Flash EPROM
-1: Store one page of TABLE to the Flash EPROM and use it to
replace the RAM table data on power-up.
-2: Stop using the EPROM copy of table during power-up.
-3: Write a page of TABLE data into flash EPROM.
-4: Read a page of flash memory into TABLE data.

flashpage: The index number (0 ... 15) of a 16k page of Flash EPROM
where the table data is to be stored to or retrieved from.

tablepage: The index number (0 ... INT(TSIZE/16384)) of the page in
table memory where the data is to be copied from or restored
to.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-155
System Parameters and Commands

The FLASHVR(-1) and FLASHVR(-2) functions can be used with all Motion Coordina-
tor’s that have system software 1.52 or later. These functions write a whole block of
data to flash memory and the programmer must ensure that they are only used occa-
sionally.

FLASHVR(-3) and FLASHVR(-4) is only available with system software 1.6411 or
later. Each “page” of table data transferred with this command is 16,384 floating
point numbers.

Example 1: VR(25)=k
FLASHVR(25) 'store one VR variable in the MC302X

Example 2: FOR v=1 to 10
FLASHVR(v) 'store a sequence of VR variables

NEXT v

Example 3: FLASHVR(-1) 'Store TABLE memory to flash EPROM
Example 4: FLASHVR(-3,5,2) 'Store TABLE page 2 to flash EPROM page 5

FRAME
Type: System Parameter

Description: Used to specify which “frame” to operate within when employing frame transforma-
tions. Frame transformations are used to allow movements to be specified in a
multi-axis coordinate frame of reference which do not correspond one-to-one with
the axes. An example is a SCARA robot arm with jointed axes. For the end tip of the
robot arm to perform straight line movements in X-Y the motors need to move in a
pattern determined by the robot’s geometry.

A number of pre-defined FRAMEs are available. Please contact your Trio distributor
for details.

A machine system can be specified with several different “frames”. The currently
active FRAME is specified with the FRAME system parameter.

The default FRAME is 0 which corresponds to a one-to-one transformation.

List Frame types:

0 - Default
1 - 2 axis SCARA robot
2 - XY single belt
3 - Double XY single belt
4 - 2 axis pick and place

8-156Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

5 - 2x2 Matrix transform
6 - Polar to Cartiesian transformation
10 - Cartesian to polar transformation
13 - Dual arm robot transformation

Note: See www.triomotion.com or your distributor for more details.

Example: FRAME=1

FREE
Type: System Parameter (Read Only)

Description: Returns the amount of program memory available for user programs.

Note: Each line takes a minimum of 4 characters (bytes) in memory. This is for the length
of this line, the length of the previous line, number of spaces at the beginning of the
line and a single command token. Additional commands need one byte per token,
most other data is held as ASCII.

The Motion Coordinator compiles programs before they are run, this means that a
little under twice the memory is required to be able to run a program.

Example 1: >>PRINT FREE
47104.0000
>>

See Also: DIR, TABLE

HALT
Type: System Command.

Description: Halts execution of all running programs. The STOP command will stop a specific pro-
gram.

Example: HALT 'Stop ALL programs
or

STOP “main”
'Stop only the program called ‘MAIN’

Note: HALT does not stop any motion. Currently executing, or buffered moves will continue
unless they are terminated with a CANCEL or RAPIDSTOP command.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-157
System Parameters and Commands

HLM_COMMAND
Type: Hostlink Command

Syntax: HLM_COMMAND(command, port[, node[, mc_area/mode[, mc_offset]]])
Description: The HLM_COMMAND command performs a specific Host Link command operation to one

or to all Host Link Slaves on the selected port. Program execution will be paused
until the response string has been received or the timeout time has elapsed. The
timeout time is specified by using the HLM_TIMEOUT parameter. The status of the
transfer can be monitored with the HLM_STATUS parameter.

Parameters: command

The selection of the Host Link operation to perform:

HLM_MREAD
(or value 0)

This performs the Host Link PC MODEL READ (MM)
command to read the CPU Unit model code. The
result is written to the MC Unit variable specified by
mc_area and mc_offset.

HLM_TEST
(or value 1)

This performs the Host Link TEST (TS) command to
check correct communication by sending string
"MCxxx TEST STRING" and checking the echoed string.
Check the HLM_STATUS parameter for the result.

HLM_ABORT
(or value 2)

This performs the Host Link ABORT (XZ) command to
abort the Host Link command that is currently being
processed. The ABORT command does not receive a
response.

HLM_INIT
(or value 3)

This performs the Host Link INITIALIZE (**) command
to initialize the transmission control procedure of all
Slave Units.

HLM_STWR
(or value 4)

This performs the Host Link STATUS WRITE (SC) com-
mand to change the operating mode of the CPU Unit.

port The specified serial port. (See specific controller specification for
numbers)

node (for HLM_MREAD, HLM_TEST, HLM_ABORT and HLM_STWR):

The Slave node number to send the Host Link command to.
Range: [0, 31].

8-158Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Note 1: When using HLM_COMMAND, be sure to set-up the Host Link Master protocol by using
the SETCOM command.

Note 2: The Host Link Master commands are required to be executed from one program task
only to avoid any multi-task timing problems.

Example 1: The following command will read the CPU Unit model code of the Host Link Slave
with node address 12 connected to the RS-232C port. The result is written to
VR(233).

HLM_COMMAND(HLM_MREAD,1,12,MC_VR,233)
If the connected Slave is a C200HX PC, then VR(233) will contain value 12 (hex) after
successfull execution.

Example 2: The following command will check the Host Link communication with the Host Link
Slave (node 23) connected to the RS-422A port.

HLM_COMMAND(HLM_TEST,2,23)
PRINT HLM_STATUS PORT(2)

If the HLM_STATUS parameter contains value zero, the communication is functional.

Example 3: The following two commands will perform the Host Link INITIALIZE and ABORT
operations on the RS-422A port 2. The Slave has node number 4.

HLM_COMMAND(HLM_INIT,2)
HLM_COMMAND(HLM_ABORT,2,4)

mode (for HLM_STWR)

The specified CPU Unit operating mode.

0 PROGRAM mode
2 MONITOR mode
3 RUN mode

mc_area (for HLM_MREAD)

The MC Unit's memory selection to write the received data to.

mc_offset (for HLM_MREAD)

The address of the specified MC Unit memory area to read from.

mc_area Data area
MC_TABLE
(or value 8)

Table variable array

MC_VR
(or value 9)

Global (VR) variable
array

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-159
System Parameters and Commands

Example 4: When data has to be written to a PC using Host Link, the CPU Unit can not be in RUN
mode. The HLM_COMMAND command can be used to set it to MONITOR mode. The Slave
has node address 0 and is connected to the RS-232C port.

HLM_COMMAND(HLM_STWR,2,0,2)

HLM_READ
Type: Hostlink Command

Syntax: HLM_READ(port,node,pc_area,pc_offset,length,mc_area,mc_offset)
Description: The HLM_READ command reads data from a Host Link Slave by sending a Host Link

command string containing the specified node of the Slave to the serial port. The
received response data will be written to either VR or Table variables. Each word of
data will be transferred to one variable. The maximum data length is 30 words (sin-
gle frame transfer). Program execution will be paused until the response string has
been received or the timeout time has elapsed. The timeout time is specified by
using the HLM_TIMEOUT parameter. The status of the transfer can be monitored with
the HLM_STATUS parameter.

Parameters: port The specified serial port. (See specific controller specification for
numbers)

node The Slave node number to send the Host Link command to.
Range: [0, 31].

pc_area The PC memory selection for the Host Link command.

pc_area Data area
Hostlink

command

PLC_DM
(or value 0)

DM RD

PLC_IR
(or value 1)

CIO/IR RR

PLC_LR
(or value 2)

LR RL

PLC_HR
(or value 3)

HR RH

PLC_AR
(or value 4)

AR RJ

PLC_EM
(or value 6)

EM RE

8-160Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Note 1: When using the HLM_READ, be sure to set-up the Host Link Master protocol by using
the SETCOM command.

Note 2: The Host Link Master commands are required to be executed from one program task
only to avoid any multi-task timing problems.

HLM_STATUS
Type: System Command.

Description: Returns the status of the Host Link serial communications.

HLM_TIMEOUT
Type: Host Link Command.

Description: Sets the timeout value for Hostlink communications.

Example: HLM-TIMEOUT = 600

Note: Default value is 500msec.

pc_offset The address of the specified PC memory area to read from.
Range: [0, 9999].

length The number of words of data to be transfered. Range: [1, 30].

mc_area The MC Unit's memory selection to write the received data to.

mc_offset The address of the specified MC Unit memory area to write to.

mc_area Data area
MC_TABLE
(or value 8)

Table variable array

MC_VR
(or value 9)

Global (VR) variable
array

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-161
System Parameters and Commands

HLM_WRITE
Type: Hostlink Command

Syntax: HLM_WRITE(port,node,pc_area,pc_offset,length,mc_area,mc_offset)
Description: The HLM_WRITE command writes data from the MC Unit to a Host Link Slave by send-

ing a Host Link command string containing the specified node of the Slave to the
serial port. The received response data will be written from either VR or Table vari-
ables. Each variable will define on word of data which will be transferred. The max-
imum data length is 29 words (single frame transfer). Program execution will be
paused until the response string has been received or the timeout time has elapsed.
The timeout time is specified by using the HLM_TIMEOUT parameter. The status of
the transfer can be monitored with the HLM_STATUS parameter.

Parameters: port The specified serial port. (See specific controller specification for
numbers)

node The Slave node number to send the Host Link command to.
Range: [0, 31].

pc_area The PC memory selection for the Host Link command.

pc_area Data area
Hostlink

command
PLC_DM
(or value 0)

DM RD

PLC_IR
(or value 1)

CIO/IR RR

PLC_LR
(or value 2)

LR RL

PLC_HR
(or value 3)

HR RH

PLC_AR
(or value 4)

AR RJ

PLC_EM
(or value 6)

EM RE

pc_offset The address of the specified PC memory area to write to.
Range: [0, 9999].

length The number of words of data to be transfered. Range: [1, 30].

8-162Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Note 1: When using the HLM_WRITE, be sure to set-up the Host Link Master protocol by using
the SETCOM command.

Note 2: The Host Link Master commands are required to be executed from one program task
only to avoid any multi-task timing problems.

Example: The following example shows how to write 25 words from MC Unit's VR addresses
200-224 to the PC EM area addresses 50-74. The PC has Slave node address 28 and is
connected to the RS-232C port.

HLM_WRITE(1, 28, PLC_EM, 50, 25, MC_VR, 200)

HLS_MODEL
Type: Hostlink Parameter

Description: Defines the model number returned to a Hostlink Master. Default value is 250.

HLS_NODE
Type: Hostlink Parameter

Description: Sets the Hostlink node number for the slave node. Used in multidrop RS485 Hostlink
networks or set to 0 for RS232 single master/slave link.

mc_area The MC Unit's memory selection to read the data from.

mc_offset The address of the specified MC Unit memory area to read from.

mc_area Data area
MC_TABLE
(or value 8)

Table variable
array

MC_VR
(or value 9)

Global (VR)
variable array

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-163
System Parameters and Commands

INCLUDE
Type: System Command.

Syntax: INCLUDE “filename”
(filename - The program to be included).

Description: The INCLUDE command resolvies all local variable definitions in the included file at
compile time and allows all the local variables to be declared “globally”. Whenever
an included program is modified, all program that depend on it are re-compiled as
well, avoiding inconsistencies.

Example: PROGRAM “T1”:

'include global definitions
INCLUDE “GLOBAL_DEFS”

'Motion commands using defined vars
FORWARD AXIS(drive_axis)
CONNECT(1, drive_axis) AXIS(link_axis)

PROGRAM “GLOBAL_DEFS”:

drive_axis=4
link_axis=1

Note: (1) Nested INCLUDEs are not allowed.
(2) The INCLUDE command must be the first BASIC statement in the program.
(3) Only variable definitions are allowed in the include file. It cannot be used as a
general subroutine with any other BASIC commands in it.
(4) Not available on the MC302 range.

INITIALISE
Type: System Command.

Description: Sets all axis, system and process parameters to their default values. The parameters
are also reset each time the controller is powered up, or when an EX (software
reset) command is performed. When using Motion Perfect a “Reset the controller..”
under the “Controller” menu performs the equivalent of an EX command

8-164Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

LAST_AXIS
Type: System Parameter

Description: In order to maximise the processor time available to BASIC, the Motion Coordinator
keeps a record of the highest axis number that is in use. This axis number is held in
the system parameter LAST_AXIS. Axes higher than LAST_AXIS are not processed.

LAST_AXIS is set automatically by the system software when an axis command is
used.

LIST
Type: System Command

Alternate Format: TYPE
Description: Prints the current SELECTed program or a specified program to channel 0.

Note: LIST is used as an immediate (command line) command only and should not be used
in programs. Use of LIST in Motion Perfect is not recommended.

LIST_GLOBAL
Type: System Command (Terminal only)

Syntax: LIST_GLOBAL
Description: When executed from the command line, (terminal channel 0) all the currently set

GLOBAL and CONSTANT parameters will be printed to the terminal.

Example: In an application where the following GLOBAL and CONSTANT have been set;

CONSTANT "cutter", 23
GLOBAL "conveyor",5
>>LIST_GLOBAL
Global VR
---------------- ----
conveyor 5
Constant Value
---------------- -------
cutter 23.0000
>>

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-165
System Parameters and Commands

LOAD_PROJECT
Type: System Command

Description: Used by Motion Perfect to load projects to the controller.

LOADSYSTEM

Type: System Command

Description: Loads new version of system software:

On the Motion Coordinator family of controllers the system software is stored in
FLASH EPROM. It is copied into RAM when the system is powered up so it can execute
faster. The system software can be re-loaded through the serial port 0 into RAM
using Motion Perfect. The command STORE is then used to transfer the updated copy
of the system software into the FLASH EPROM for use on the next power up.

To re-load the system software you will need the system software on disk supplied by
TRIO in COFF format. (Files have a.OUT suffix, for example I167.OUT)

The download sequence:

Run Motion Perfect in the usual way. Under the “Controller” menu select “Load sys-
tem software...”. Select the version of system software to be loaded and follow
the on screen instructions. The system file takes around 12 minutes to download.
When the download is complete the system performs a checksum prior to asking the
user to confirm that the file should be loaded into flash eprom. The storing process
takes around 10 seconds and must NEVER be interrupted by the power being
removed. If this final stage is interrupted the controller may have to be returned to
Trio for re-initialisation.

Note 1: All Motion Coordinator models have different system software files. The file name
indicates the controller type.

Updates can be obtained from Trio's website at WWW.TRIOMOTION.COM

Controller Type Filename
MC302X MC302Xvnnnnn.s37
Euro205X Knnn.OUT
Euro209 Qnnn.OUT
MC206X Mnnn.OUT
PCI208 Jnnn.OUT
MC224 Innn.OUT

8-166Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Note 2: Application programs should be stored on disk prior to a system software load and
MUST be reloaded following a system software load.

LOCK
Type: System Command

Syntax: LOCK(code)
Description: LOCK is designed to prevent programs from being viewed or modified by personnel

unaware of the security code. The lock code number is stored in the flash eprom.

When a Motion Coordinator is locked, it is not possible to view, edit or save any pro-
grams and command line instructions are limited to those required to execute the
program.

To unlock the Motion Coordinator, the UNLOCK command should be entered using the
same lock code number which was used originally to LOCK it.

The lock code number may be any integer and is held in encoded form. Once
LOCKed, the only way to gain full access to the Motion Coordinator is to UNLOCK it
with the correct code. For best security the lock number should be 7 digits.

Parameters:

Example: >>LOCK(5619234)
The program cannot now be modified or viewed.

>>UNLOCK(5619234)
The system is now unlocked.

Note 1: LOCK and UNLOCK are available from the Motion Coordinator menu in Motion Perfect.

 Note 2: If you forget the security code number, the Motion Coordinator may have to be
returned to your supplier to be unlocked!

Note 3: It is possible to compromise the security of the lock system. Users must consider if
the level of security is sufficient to protect their programs.

code Any integer number

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-167
System Parameters and Commands

MC_TABLE
Type: Reserved Keyword

MC_VR
Type: Reserved Keyword

MOTION_ERROR
Type: System Parameter

Description: This system parameter returns a non-zero value when a motion error has occured on
at least one axis, (normally a following error, but see ERRORMASK), and the value 0
when none of the axes has had a motion error. When there is a motion error then the
ERROR_AXIS contains the number of the first axis to have an error. When any axis has
a motion error then the watchdog relay is opened. A motion error can be cleared by
resetting the controller with an EX command (“Reset the controller..” under the
“Controller” menu in Motion Perfect), or by using the DATUM(0) command.

MPE
Type: System Command

Description: Sets the type of channel handshaking to be performed on the serial port 0. This is
normally only used by the Motion Perfect program, but can be used for user applica-
tions. There are 4 valid settings

Parameters channel type: Any valid Trio BASIC expression

0 No channel handshaking, XON/XOFF controlled by the port. When the current
output channel is changed then nothing is sent to the serial port. When there
is not enough space to store any more characters in the current input channel
then XOFF is sent even though there may be enough space in a different
channel buffer to receive more characters

8-168Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Example1: >> PRINT #5,"Hello"
Hello

Example2: MPE(1)
>> PRINT #5,"Hello"
<ESC>5Hello
<ESC>0
>>

N_ANA_OUT
Type: System Parameter (Read Only)

Description: This parameter returns the number of analogue output channels available to the
controller

1 Channel handshaking on, XON/XOFF controlled by the port. When the current
output channel is changed, the channel change sequence is sent
(<ESC><channel number>). When there is not enough space to store any more
characters in the current input channel then XOFF is sent even though there
may be enough space in a different channel buffer to receive more charac-
ters

2 Channel handshaking on, XON/XOFF controller by the channel. When the cur-
rent output channel is changed, the channel change sequence is sent
(<ESC><channel number>). When there is not enough space to store any more
characters in the current input buffer, then XOFF is sent for this channel
(<XOFF><channel number>) and characters can still be received into a dif-
ferent channel.

Whatever the MPE state, if a channel change sequence is received on serial
port A then the current input channel will be changed.

3 Channel handshaking on, XON/XOFF controller by the channel. In MPE(3)
mode the system transmits and receives using a protected packet protocol
using a 16 bit CRC.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-169
System Parameters and Commands

NAIO
Type: System Parameter

Description: Description: This parameter returns the number of analogue input channels available
to the Motion Coordinator. For example an MC224 will return 10 if there is 1 x P325
CAN module connected as it has 2 internal analogue inputs and the 8 inputs from the
P325.

If no external I/O is fitted, NAIO returns the number of Analogue inputs within the
Motion Coordinator.

NETSTAT
Type: System Parameter

Description: This parameter stores the network error status since the parameter was last cleared
by writing to it. The error types reported are:

NEW
Type: System Command

Description Deletes all the program lines in the controller memory. It also may be used to delete
the current TABLE entries.

Note:

Bit Set Error Type Value

0 TX Timeout 1
1 TX Buffer Error 2
2 RX CRC Error 4
3 RX Frame Error 8

NEW Deletes the currently selected program

NEW progname Deletes a particular program

NEW ALL Deletes all programs in memory

NEW "TABLE" Delete TABLE (In this case ONLY the program name “TABLE”
must be in quotes)

8-170Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

NIO
Type: System Parameter

Description: This parameter returns the number of inputs/outputs fitted to the system, or con-
nected on the IO expansion CAN bus.

Note: Depending on the particular controller type, there may be a number of channels
which are input only. For example, on the MC224 the first 8 channels are inputs, the
next 8 bi-directional. If an MC224 has 2 P316 CAN-16 I/O modules connected the NIO
parameter will return 48.

All channels on the CAN-16 I/O modules are bi-directional.

Though normally used as a read-only parameter, NIO can be set to any value for sim-
ulation purposes. Any I/O read or written that is not physically there, will have no
function.

PEEK
Type: System Command

Syntax: PEEK(address<,mask>)
Description: The PEEK command returns value of a memory location of the controller ANDed with

an optional mask value.

POKE
Type: System Command

Syntax: POKE(address,value)
Description: The POKE command allows a value to be entered into a memory location of the con-

troller. The POKE command can prevent normal operation of the controller and
should only be used if instructed by Trio Motion Technology.

PORT
Type: Modifier

Description: Reserved keyword.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-171
System Parameters and Commands

POWER_UP
Type: Flash EPROM stored System Parameter

Description: This parameter is used to determine whether or not programs should be read from
Flash Eprom on power up or software reset (EX).

Two values are possible:

Programs are individually selected to be run at power up with the RUNTYPE command

Note: POWER_UP is always an immediate command and therefore cannot be included in
programs.

This value is normally set by Motion Perfect. It can also be set by the Flashstick or by
the trioinit.bas file on the SD Card.

Note: When using the Memory Stick users should refer to the overview in the MC206X Hard-
ware Overview for a complete description of the Memory Stick functionality.

PROCESS
Type: System Command

Description: Displays the running status and process number for each current process.

PROFIBUS
Type: System Command

Syntax: PROFIBUS(slot,function<,register><,value>)
Description: The command PROFIBUS provides access to the registers of the SPC3 ASIC used on

the Profibus daughter board. Trio can supply sample programs using this command
to setup and control a Profibus daughter board.

0 Use the programs in battery backed RAM

1 Copy programs from the controllers Flash Eprom or Memory Stick (if present)
into RAM.

8-172Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Parameters:

PROTOCOL
Type: System Command

Description: Reserved keyword.

REMOTE
Type: System Command

Syntax: REMOTE(slot)
Description: Transfers control of a process to the remote computer via a USB interface and the

Trio OCX control. The REMOTE command is normally inserted automatically on to a
process by the system software. When a process is performing the REMOTE function
execution of BASIC statements is suspended.

Example: Set port 1 to receive commands from a PC running the TrioPC ActiveX component.

'set up RS232 port at 38400 baud, 8 data, 1 stop, even parity
'then start the REMOTE process which will handle the commands
'received from TrioPC.

SETCOM(38400,8,1,2,1,8)
REMOTE(0)

RENAME
Type: System Command

slot: Specifies the slot on the controller to be used. Set 0 for the
daughter board slot of an MC206X/Euro205x or the slot
number of an MC224.

function: Specifies the function to be performed.
0: read register
1: write register

register: The SPC3 register number to read or write

value: The value to write into an SPC3 register

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-173
System Parameters and Commands

Syntax: RENAME oldname newname

Description: Renames a program in the Motion Coordinator directory.

Example: >>RENAME car voiture

Note: Motion Perfect users should use “Rename Program...” under the “Program” menu to
perform a RENAME command.

RS232_SPEED_MODE
Type: System

Syntax: RS232_SPEED_MODE=modevalue
Description: Sets the default programming port speed on power-up.

Parameters:

Cycle the power to the Motion Coordinator after setting. High speed mode is shown
on power-up by the ok and status LEDs flashing alternately.

Note: This command dhould only be used on the command line terminal.

RUN
Type: System Command

Syntax: RUN “progname” [, process#[, interrupt#]]

Description: Runs a program on the controller.

Parameters:

Note:
Execution continues until:

• There are no more lines to execute

0 = low speed defaults (9600 baud)

1 = high speed defaults (38400 baud)

program: Name of program to be run. Must be contained within quota-
tion marks.

process#: Optional process number. If this is left off, the next available
number will be used, starting with the highest.

interrupt#: Optional value between 0 and 2 to select the exact interrupt
slot in the servo cycle that the process will run on.
PROC_MODE must be set to 1 to use this parameter.

8-174Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

• or HALT is typed at the command line. This stops all programs
• or STOP “name” is typed at the command line. This stops single program
RUN may be included in a program to run another program: e.g. RUN "CYCLE"

Example: RUN - this will run currently selected program, normally used in the terminal.

Example 2: RUN “SAUSSAGE” - this will run the named program, normally used in the
terminal

Example 3: RUN “SAUSSAGE”,3 - run the named program on a particular process, normally used
in the terminal

Example 4: RUN “MAIN”,1,2 'run 2 programs in the same interrupt slot.
RUN “HMI”,2,2
RUN “MOTION”,1,1 'run motion in it’s own interrupt slot.

RUNTYPE
Type: System Command

Syntax: >>RUNTYPE progname,autorun[,process#]

Description: Sets whether program is run automatically at power up, and which process it is to
run on. The current status of each program’s RUNTYPE is displayed when a DIR com-
mand is performed. For any program to run automatically on power-up ALL the pro-
grams on the controller must compile without errors.

Parameters:

Example: >>RUNTYPE progname,1,10
- Sets program “progname” to run automatically on power up on process 10

>>RUNTYPE "progname",0
- Sets program "progname" to manual running

Note 1: To set the RUNTYPE using Motion Perfect select the “Set Power-up mode” option in
the “Program” menu.

Note 2: The RUNTYPE information is stored into the flash EPROM only when an EPROM com-
mand is performed.

See Also: POWER_UP

program name Can be in inverted commas or without autorun

autorun 1 to run automatically,
0 for manual running

<process number> optional to force process number

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-175
System Parameters and Commands

SCOPE
Type: System Command

Syntax: SCOPE(control,period,table start,table stop,p0[,p1[,p2[,p3]]])
Description: The SCOPE command is used to program the system to automatically store up to 4

parameters every sample period. The sample period can be any multiple of the servo
period. The data stored is put in the TABLE data structure. It may then be read back
to a PC and displayed on the Motion Perfect Oscilloscope or stored to a file for fur-
ther analysis using the “Save TABLE file” option under the “File” menu.

Motion Perfect uses the SCOPE command when running the Oscilloscope function.

Parameters:

Example 1: SCOPE(ON,10,0,1000,MPOS AXIS(5), DPOS AXIS(5))
This example programs the SCOPE facility to store away the MPOS axis 5 and DPOS
axis 5 every 10 milliseconds. The MPOS will be stored in table values 0..499, the DPOS
in table values 500 to 999. The sampling does not start until the TRIGGER command
is executed.

Example 2: SCOPE(OFF)

Note 1: The SCOPE facility is a “one-shot” and needs to be re-started by the TRIGGER com-
mand each time an update of the samples is required.

Note2: Data saved to the TABLE memory by the SCOPE command is not placed in battery
backed memory so will be lost when power is removed.

ON/OFF control Set ON or OFF to control the SCOPE function. OFF implies
that the scope data is not ready. ON implies that the scope
data is loaded correctly and is ready to run when the TRIG-
GER command is executed.

Period The number of servo periods between data samples

Table start Position to start to store the data in the table array

Table stop End of table range to use

P0 first parameter to store

P1 optional second parameter to store

P2 optional third parameter to store

P3 optional fourth parameter to store

8-176Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

SCOPE_POS
Type: System Parameter (Read Only)

Description: Returns the current index position at which the SCOPE function is currently storing
its parameters.

SELECT
Type: System Command

Description: Selects the current active program for editing, running, listing etc. SELECT makes a
new program if the name entered is not a current program.

When a program is SELECTed the commands EDIT, RUN, LIST, NEW etc. assume
that the SELECTed program is the one to operate with unless a program is specified
as in for example: RUN progname

When a program is selected any previously selected program is compiled.

Note: The SELECTed program cannot be changed when programs are running.

Note 2: Motion Perfect automatically SELECTs programs when you click on their entry in the
list in the control panel.

SERCOS

Type: System Function

Syntax: SERCOS(function#,slot,{parameters})
Description: This function allows the SERCOS ring to be controlled from the Trio BASIC program-

ming system. A SERCOS ring consists of a single master and 1 or more slaves daisy-
chained together using fibre-optic cable. During initialisation the ring passes
through several ‘communication phases’ before entering the final cyclic determinis-
tic phase in which motion control is possible. In the final phase, the master trans-
mits control information and the slaves transmit status feedback information every
cycle time.

Once the SERCOS ring is running in CP4, the standard Trio BASIC motion commands
can be used.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-177
System Parameters and Commands

The Motion Coordinator SERCOS hardware uses the Sercon 816 SERCOS interface
chip which allows connection speeds up to 16Mhz. This chip can be programmed at
a register level using the SERCOS command if necessary. To program in this way it is
necessary to obtain a copy of the chip data sheet.

The SERCOS command provides access to 11 separate functions:

Parameters:

Example: >>?SERCOS(0, 0, 1, $0c)

Parameters:

Slot: The slot number is in the range 0 to 3 and specifies the hardware channel

Function: 0 Read SERCOS Asic:

1 Write SERCOS Asic:

2 Initialise command:

3 Link SERCOS drive to Axis

4 Read parameter

5 Write parameter

6 Run SERCOS procedure command

7 Check for drive present

8 Print network parameter

9 Reserved

10 SERCOS ring status

Function 0 SERCOS(0, slot, ram/reg, address)

Slot The communication slot in which the SERCOS is fitted.

ram/reg 0 = read value from RAM
1 = read value from register.

address The index address in RAM or register.

Function 1 SERCOS(1, slot, ram/reg, address, value)

Slot The communication slot in which the SERCOS is fitted.

ram/reg 0 = write value to RAM
1 = write value to register.

address The index address in RAM or register.

value Date to be written

8-178Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Example: Do not use this function without referencing the Sercon 816 data sheet.

Parameters:

Example: >>SERCOS(2, 3, 4, 16, 500)

Parameters:

Example: >>SERCOS(3, 1, 3, 5, 0) ‘links drive at address 3 to axis 5

Parameters:

Function 2 SERCOS(2, slot [,intensity [,baudrate [, period]]])

Slot The communication slot in which the SERCOS is fitted.

intensity Light transmission intensity (1 to 6). Default value is 3.

baudrate Communication data rate. Set to 2, 4, 6, 8 or 16.

period Sercos cycle time in microseconds. Accepted values are 2000,
1000, 500 and 250usec.

Function 3 SERCOS(3, slot, slave addr, axis [slave drive type])

Slot The communication slot in which the SERCOS is fitted.

slave addr Slave address of drive to be linked to an axis.

axis Axis number which will be used to control this drive.

slave drive
type

Optional parameter to set the slave drive type. All standard SER-
COS drives require the GENERIC setting. The other options below
are only required when the drive is using non-standard SERCOS
functions.
0 Generic Drive
1 Sanyo-Denki
3 Yaskawa + Trio P730
4 PacSci
5 Kollmorgen

Function 4 SERCOS(4, slot, slave address, parameter ID [, parameter size[,
element type [, list length offset, [VR start index]]])

Slot The communication slot in which the SERCOS is fitted.

slave addr SERCOS address of drive to be read.

parameter ID SERCOS parameter IDN

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-179
System Parameters and Commands

Note: This function returns the value of 2 and 4 byte parameters but prints lists to the ter-
minal in Motion Perfect unless VR start index is defined.

Example: >>SERCOS(4, 0, 5, 140, 7)'request “controller type”
>>SERCOS(4, 0, 5, 129) 'request manufacturer class 1 diagnostic

Parameters:

Example: >>SERCOS(5, 1, 7, 2, 2, 1000) 'set SERCOS cycle time
>>SERCOS(5, 0, 2, 16, 6, 51, 130) 'set IDN 16 position feedback

parameter
size

Size of parameter data expected:
2 = 2 byte parameter (default).
4 = 4 byte parameter
6 = list of parameter IDs
7 = ASCII string

element type SERCOS element type in the data block:
1 ID number
2 Name
3 Attribute
4 Units
5 Minimum Input value
6 Maximum Input value
7 Operational data (default)

List length
offset

Optional parameter to offset the list length. For drives that
return 2 extra bytes, use -2.

VR start
index

Beginning of VR array where list will be stored.

Function 5 SERCOS(5, slot , slave address, parameter ID, parameter size,
parameter value [, parameter value …])

Slot The communication slot in which the SERCOS is fitted.

slave addr SERCOS address of drive to be written.

parameter ID SERCOS parameter IDN

parameter
size

Size of parameter data to be written. 2, 4, or 6.

parameter
value

Enter one parameter for size 2 and size 4. Enter 2 to 7 parame-
ters for size 6 (list).

8-180Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Parameters:

Example: >>SERCOS(6, 0, 2, 99) ‘clear drive errors

Parameters:

Example: IF SERCOS(7, 2, 3) <0 THEN
PRINT#5, “Drive 3 on slot 2 not detected”

END IF

Parameters:

Example: >>?SERCOS(8,0, 1)

Function 6 SERCOS(6, slot , slave address, parameter ID [, time-out,[com-
mand type]])

Slot The communication slot in which the SERCOS is fitted.

slave addr SERCOS address of drive.

parameter ID SERCOS procedure command IDN.

time out Optional time out setting (msec).

command type Optional parameter to define the operation:
-1 Run & cancel operation (default value)
0 Cancel command
1 Run command

Function 7 SERCOS(7 , slot , slave address)

Slot The communication slot in which the SERCOS is fitted.

slave addr SERCOS address of drive. Returns 1 if drive detected, -1 if not
detected.

Function 8 SERCOS(8 , slot , required parameter)

Slot The communication slot in which the SERCOS is fitted.

required
parameter

This function will print the required network parameter, where
the possible ‘required parameter’ values are:
0: to print a semi-colon delimited list of ‘slave Id, axis number’
pairs for the registered network configuration (as defined using
function 3). Used in Phase 1: Returns 1 if drive is detected, 0 if no
drive detected.
1: to print the baud rate (either 2, 4, 6, or 8), and
2: to print the intensity (a number between 0 and 6).

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-181
System Parameters and Commands

Parameters:

This function checks whether the fibre optic loop is closed in phase 0. Return value
is 1 if network is closed, -1 if it is open, and –2 if there is excessive distortion on the
network.

Example: >>?SERCOS(10, 1)
IF SERCOS (10, 0) <> 1 THEN

PRINT “SERCOS ring is open or distorted”
END IF

Notes: MotionPerfect2 contains support for commissioning SERCOS rings. This tool simpli-
fies the creation of a Trio BASIC startup program which consists of SERCOS state-
ments to initialise the ring following power-on, and configure the ring in the
deterministic cyclic phase.

SERCOS_PHASE
Type: System Parameter

Syntax: SERCOS_PHASE SLOT(n) = value
Description: Sets the phase for the sercos ring attached to the daughter board in slot n.

Example 1: Set the sercos ring attached to daughter board in slot 0 to phase 3

SERCOS_PHASE SLOT(0) = 3

Example 2: Check the phase of sercos ring attached to daughter board in slot 2

IF SERCOS_PHASE SLOT(2)<>4 THEN OP(8,ON)

Function 10 SERCOS(10,<slot>)

Slot The communication slot in which the SERCOS is fitted.

8-182Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

SERIAL_NUMBER
Type: System Parameter (Read only)

Syntax: SERIAL_NUMBER
Description: Returns the unique Serial Number of the controller.

Example: For a controller with serial number 00325:

>>PRINT SERIAL_NUMBER
325.0000
>>

SERVO_PERIOD
Type: System Parameter

Description: This parameter allows the controller servo period to be specified.

SERVO_PERIOD is specified in microseconds. Only the values 2000, 1000, 500 or 250
usec may be used and the Motion Coordinator must be reset before the new servo
period will be applied.

Example: ' check controller servo_period on startup
IF SERVO_PERIOD<>250 THEN
 SERVO_PERIOD=250
 EX
ENDIF

SLOT
Type: Slot Modifier

Description: Modifier specifies the slot number for a slot parameter such as COMMSTYPE.

Example: PRINT COMMSTYPE SLOT(1)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-183
System Parameters and Commands

STEP
Type: Program Structure

Description: This optional parameter specifies a step size in a FOR..NEXT sequence. See FOR.

Example: FOR x=10 TO 100 STEP 10
MOVEABS(x) AXIS(9)
NEXT x

STEPLINE
Type: System Command

Syntax: STEPLINE {Program name}{,Process number}

Description: Steps one line in a program. This command is used by Motion Perfect to control pro-
gram stepping. It can also be entered directly from the command line or as a line in
a program with the following parameters.

Parameters:

Example 1: >>STEPLINE "conveyor"
Example 2: >>STEPLINE "maths",2

Program name: This specifies the program to be stepped. All copies of this
named program will step unless the process number is also
specified. If the program is not running it will step to the first
executable line on either the specified process or the next
available process if the next parameter is omitted. If the pro-
gram name is not supplied, either the SELECTed program will
step (if command line entry) or the program with the
STEPLINE in it will stop running and begin stepping.

Process
number:

This optional parameter determines which process number
the program will use for stepping, or, if multiple copies of the
same program exist, it is used to select the required copy for
stepping.

8-184Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

STOP
Type: Command

Description: Stops one program at the current line. A particular program may be specified or the
selected program will be assumed.

Example 1: >>STOP progname, [process_number]
Example 2: 'DO NOT EXECUTE SUBROUTINE AT label

STOP
label: PRINT var
RETURN

STICK_READ
Type: System Function

(A) Flashstick fitted

Syntax: STICK_READ(sector, table start)

Description: Copy one block of 128 values from a sector on the NexFlash FlashStick to TABLE
memory.

Parameters:

Example: IF STICK_READ(25, 1000) THEN PRINT “Stick read OK”

(B) SD Card fitted

Syntax: STICK_READ(<flash_file#>,<table_start>[,<format>])

Description: If an SDCARD is detected then the file SD<flash_file#>.BIN or SD<Flash_file#.CSV> is
opened. All the binary data in the file is read into TABLE memory. By default, if the
format parameter is left off, the data is read in IEEE floating point binary format, lit-
tle-endian, i.e. the least significant byte first.

sector: A number between 0 and 2047 that is used as a pointer to the
sector to be read from the FlashStick.

table start: The start point in the TABLE where the 128 values will be
transferred to.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-185
System Parameters and Commands

Perameters:

Example: STICK_READ (1984, 16500, 1)
‘reads the ASCII file SD1984.csv from the SD card and copies the
‘data to the table starting at TABLE(16500)

The function returns TRUE (-1) if the STICK_READ was successful and FALSE (0) if the
command failed, if for example the FlashStick or SD Card is not present.

STICK_WRITE
Type: System Function

(A) Flashstick fitted

Syntax: STICK_WRITE(sector, table start)

Description: Copy one block of 128 values from TABLE memory to a sector on the NexFlash Flash-
Stick.

Parameters:

Example: STICK_WRITE (25, 1000)
IF check = TRUE THEN PRINT “stick write ok”

(B) SD Card fitted

Syntax: STICK_WRITE(<flash_file#>,<table_start>[,<length>[,<format>]])

Description: If an SDCARD is detected then the file SD<flash_file#>.BIN or
SD<Flash_file#.CSV> is created. If this file already exists, it is overwritten.

flash_file#: A number which when appended to the characters “SD” will
form the data filename.

table start: The start point in the TABLE where the data values will be
transferred to.

format: 0 = Binary floating point format
1 = ASCII comma seperated values

sector: A number between 0 and 2047 that is used as a pointer to the
sector to be written to the FlashStick.

table start: The start point in the TABLE where the 128 values will be
transferred from.

8-186Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

If no format is specified, or <format>=0 then the data is stored in IEEE floating point
binary format little-endian, i.e. the least significant byte first, and has the exten-
sion "BIN".

If <format> is specified and non 0 then the data is stored in ASCII format and has
the extension "CSV", one value per line.

Parameters:

Example: STICK_WRITE (1501, 1000, 2000,0)
'transfers 2000 values starting at TABLE(1000) to the SD Card file
'called SD1501.BIN

The function returns TRUE (-1) if the STICK_WRITE was successful and FALSE (0) if
the command failed, if for example the FlashStickor SD Card is not present.

STORE
Type: System Command

Description: Stores an update to the system software into FLASH EPROM. This should only be nec-
essary following loading an update to the system software supplied by TRIO. See also
LOADSYSTEM.

Warning: Removing the controller power during a STORE sequence can lead to the
controller having to be returned to Trio for re-initialization.

Note: Use of STORE and LOADSYSTEM is automated for Motion Perfect users by the “Load
system software...” option in the “Controller” menu.

flash_file#: A number which when appended to the characters “SD” will
form the data filename.

table start: The start point in the TABLE where the values will be trans-
ferred from.

length: The number of the table values to be transferred.

format: 0 = Binary floating point format
1 = ASCII comma seperated values

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-187
System Parameters and Commands

SYNC_TIMER
Type: System Parameter (Write Only, MC224 Only)

Syntax: SYNC_TIMER = value
Description: SYNC_TIMER is a system parameter automatically set by the controller. In normal use

it should not be adjusted by the user, but in some cases with the MC224 and the P225
(analogue input daughter board) it needs to be changed. Please contact your Trio
Distributor or Trio directly if you need to use this parameter.

Example: ' set last axis and sync_timer
SPEED AXIS(23)=2000 'write to an axis parameter to set LAST_AXIS
to 23
SYNC_TIMER=12850 'This value is for example only (MC224 V1.67)

TABLE
Type: System Command

Syntax: TABLE(address [, data1..data20])
Description: The TABLE command is used to load and read back the internal cam table. This table

has a fixed maximum table length of 32000 points on all Motion Coordinators
EXCEPT the MC302X which has a 16000 point table length and the MC224 which has
256k. Issuing the TABLE command or running it as a program line must be done
before table points are used by a CAM or CAMBOX command. The table values are
floating point and can therefore be fractional.

The command has two forms:

(i) With 2 or more parameters the TABLE command defines a sequence of values, the
first value is the first table position.

(ii) If a single parameter is specified the table value at that entry is returned. As the
table can be written to and read from, it may be used to hold information as an
alternative to variables.

The values in the table may only be read if a value of THAT NUMBER OR GREATER has
been specified. For example, if the value of table position 1000 has been specified
e.g. TABLE(1000,1234) then TABLE(1001) will produce an error message. The high-
est TABLE which has been loaded can be read using the TSIZE parameter.

Except in the MC302X the table entries are automatically battery backed. If FLASH
Eprom storage is required it is recommended to set the values inside a program or
use the FLASHVR(-1) function. It is not normally required to delete the table but if
this necessary the DEL command can be used:

8-188Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

>>DEL "TABLE"

Parameters:

Example 1: TABLE(100,0,120,250,370,470,530)
This loads the internal table:

Example 2: >>PRINT TABLE(1000)
0.0000
>>

Note: The Oscilloscope function of Motion Perfect uses the table as a data area. The range
used can be set in the scope “Options...” screen. Care should be taken not to use a
data area in use be the Oscilloscope function.

TABLEVALUES
Type: System Command

Syntax: TABLEVALUES(first table number, last required table number,
format)

Description: Returns a list of table points starting at the number specified. There is only one for-
mat supported at the moment, and that is comma delimited text.

Parameters

Note: TABLEVALUES is provided mainly for Motion Perfect to allow for fast access to banks
of TABLE values.

address: location in the table at which to store a value or to read a
value from if only this parameter is specified.

data1..data20: the value to store in the given location and at subsequent
locations if more than one data parameter is used.

Table Entry: Value:
100 0
101 120
102 250
103 370
104 470
105 530

address: Number of the first point to be returned

number of points: Total number of points to be returned

format: Format for the list

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-189
System Parameters and Commands

TIME
Type: System Parameter (MC224 only)

Description: Returns the time from the real time clock. The time returned is the number of sec-
onds since midnight 24:00 hours.

Example 1: Sets the real time clock in 24 hour format; hh:mm:ss
'Set the real time clock

>>TIME = 13:20:00

Example 2: ‘calculate elapsed time in seconds
time1 = TIME

'wait for event
time2 = TIME
timeelapsed = time1-time2

TIME$
Type: System Command (MC224 only)

Description: Prints the current time as defined by the real time clock as a string in 24hr format.

Example: >>? TIME$
14/39/02

>>

TRIGGER
Type: System Command

Description: Starts a previously set up SCOPE command

Note: Motion Perfect uses TRIGGER automatically for its oscilloscope function.

8-190Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

TROFF
Type: System Command

Description: Suspends the trace facility started by a previous TRON command, at the current line
and resumes normal program execution. A program name can be specified or the
selected program will be assumed.

Example: >>TROFF "lines"

TRON
Type: System Command

Description: The trace on command suspends a programs execution at the current line. The pro-
gram can then be single stepped, executing one line at a time, using the STEPLINE
command.

Note: Program execution may be restarted without single stepping using TROFF.
The trace mode may be halted by issuing a STOP or HALT command.
Motion Perfect highlights lines containing TRON in its editor and debugger.

Example: TRON
MOVE(0,10)
MOVE(10,0)
TROFF
MOVE(0,-10)
MOVE(-10,0)

TSIZE
Type: System Parameter

Description: Returns one more than the highest currently defined table value.

Example: >>TABLE(1000,3400)
>>PRINT TSIZE
1001.0000

Note: TSIZE can be reset using >>DEL “TABLE” (Not applicable to MC224)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-191
System Parameters and Commands

UNLOCK
Type: System Command

Syntax: UNLOCK(code)
Description: Enables full access to a Motion Coordinator which has a security lock code applied

via the LOCK() command.

When a Motion Coordinator is locked, it is not possible to view, edit or save any pro-
grams and command line instructions may be limited to those required to execute
the program only.

To unlock the Motion Coordinator, the UNLOCK command should be entered using the
same security code number which was used originally to LOCK it.

The security code number may be any integer and is held in encoded form. Once
LOCKed, the only way to gain full access to the Motion Coordinator is to UNLOCK it
with the correct code.

Parameters:

Example: >>LOCK(561234)
The program cannot now be modified or seen.

>>UNLOCK(561234)
The system is now unlocked.

Note 1: It is not normally necessary to use the LOCK/UNLOCK commands from the command
line as the they are available directly from the Controller menu in Motion Perfect 2.

USB
Type: System Command

Syntax: USB(slot,function<,register><,value>)
Description: The command USB provides access to the registers of the USBN9602 USB controller.

It is not required to use this command as the functions are included in the Motion
Coordinator system software.

code Any integer number

8-192Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Parameters:

Example: USB(1, 3) 'manually reset the USB port
WA(200)
USB(1, 2)

USB_HEARTBEAT
Type: System Parameter

Description: Indicates that the USB Heartbeat function is operating. When the value is 1, the
heartbeat is running and if no data is received via the USB link then after 60 seconds,
the USB port in the controller will be reset automatically.

The value defaults to 0 on power-up and is automatically set to 1 when a PC opens
the USB connection. The user can disable the heartbeat function by manually set-
ting the value to 0 again.

Example 1: 'test to see if USB port is open and heartbeat is running
 IF USB_HEARTBEAT=1 THEN
 PRINT "USB port is in use"
 ENDIF

Example 2: 'turn off the usb heartbeat function from the terminal
 >>USB_HEARTBEAT = 0

slot: Specifies the slot on the controller to be used. Set 1 for the
built-in USB of the MC206X/MC224 or the slot number of a
Euro205x.

function: Specifies the function to be performed.
0: Read register
1: Write register
2: Open / initialise USB chip
3: Close USB port

register: The register number to read or write

value: The value to write into a register

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-193
System Parameters and Commands

USB_STALL
Type: System Parameter

Description: This parameter returns TRUE if the USB controller chip has its “stalled” (unable to
communicate) bit set.

VERSION

Type: System Parameter

Description: Returns the version number of the system software installed on the Motion Coordi-
nator.

Example: >>? VERSION
1.5000

VIEW

Type: System Command

Description: Lists the currently selected program in tokenised and internal compiled format.

Example: For the following program:

VR(10)=IN AND 255

the view command will give the output:

Source code: from xxx to xxx
10725: 00 15 00 29 92 95 31 30 00 93 88 64 A2 95 32 35 35 00 9B
10746: 15 00 00 00
Object code: from yyy to yyy
10750: 01 00 29 92 95 00 20 03 91 93 9A 64 95 00 00 7F 07 8E 91 9B
10771:

8-194Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

VR
Type: Variable

Syntax: VR(expression)
Description: Recall or assign to a global numbered variable. The variables hold real numbers and

can be easily used as an array or as a number of arrays. There are 1024 variable loca-
tions which are accessed as variables 0 to 250.

The numbered variables are used for several purposes in Trio BASIC. If these require-
ments are not necessary it is better to use a named variable:

The numbered variables are BATTERY BACKED (except on MC302X) and are not
cleared between power ups.- The numbered variables are globally shared between
programs and can be used for communication between programs. To avoid problems
where two processes write unexpectedly to a global variable, the programs should
be written so that only one program writes to the global variables.

The numbered variables can be changed by remote controllers on the TRIO Fibre
Optic Network, or from a master via a MODBUS or other supported network.

The numbered variables can be used for the LINPUT, READPACKET and CAN com-
mands.

Example 1: ' put value 1.2555 into VR() variable 15. Note local variable ‘val’ used to give name
to global variable:

val=15
VR(val)=1.2555

Example 2: A transfer gantry has 10 put down positions in a row. Each position may at any time
be FULL or EMPTY. VR(101) to VR(110) are used to hold an array of ten1’s or 0’s to
signal that the positions are full (1) or EMPTY (0). The gantry puts the load down in
the first free position. Part of the program to achieve this would be:

movep:
MOVEABS(115) 'MOVE TO FIRST PUT DOWN POSITION:
FOR VR(0)=101 TO 110

IF VR(VR(0))=0) THEN GOSUB load
MOVE(200)‘ 200 IS SPACING BETWEEN POSITIONS

NEXT VR(0)
PRINT "All Positions Are Full"
WAIT UNTIL IN(3)=ON

GOTO movep

load:
'PUT LOAD IN POSITION AND MARK ARRAY
OP(15,OFF)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-195
System Parameters and Commands

VR(VR(0))=1
RETURN

Note: The variables are battery-backed so the program here could be designed to store the
state of the machine when the power is off. It would of course be necessary to pro-
vide a means of resetting completely following manual intervention.

Example 3: 'Assign VR(65) to VR(0) multiplied by Axis 1 measured position
VR(65)=VR(0)*MPOS AXIS(1)
PRINT VR(65)

VRSTRING
Type: Command

Syntax: VRSTRING(vr start)
Description: Combines the contents of an array of VR() variables so that they can be printed as a

text string. All printable characters will be output and the string will terminate at
the first null character found. (i.e. VR(n) contains 0)

Parameters:

Example: PRINT #5,VRSTRING(100)

WDOG
Type: System Parameter

Description: Controls the WDOG relay contact used for enabling external drives. The WDOG=ON com-
mand MUST be issued in a program prior to executing moves. It may then be
switched ON and OFF under program control. If however a following error condition
exists on any axis the system software will override the WDOG setting and turn watch-
dog contact OFF. In addition the analogue outputs and step/direction outputs are
also disabled when WDOG=OFF.

Example: WDOG=ON
Note 1: WDOG=ON / WDOG=OFF is issued automatically by Motion Perfect when the “Drives

Enable” button is clicked on the control panel

Note 2: When the DISABLE_GROUP function is in use, the watchdog relay and WDOG remain
on if there is an axis error. In this case, the digital enable signal is removed from the
drives in that group only.

vr start: number of first VR() in the character array.

8-196Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

WDOGB
Type: System Parameter

Syntax: WDOGB=state
Description: Controls the second "watchdog" relay contact on the MC224. See WDOG for more

details.

Parameters:

Example: WDOGB=OFF' Disconnects the second WDOG relay from the first and
sets ' it state to OFF
WDOG=ON' Turns ON the first WDOG (WDOG A)

:
Type: Special Character

Description: The colon character is used to terminate labels used as destinations for GOTO and
GOSUB commands.

Labels may be character strings of any length. (The first 15 characters are signifi-
cant) Alternatively line numbers can be used. Labels must be the first item on a line
and should have no leading spaces.

Example: start:

The colon is also used to separate Trio BASIC statements on a multi-statement line.
The only limit to the number of statements on a line is the maximum of 100 charac-
ters per line (79 in system software V1.66 and lower).

Example: PRINT "THIS LINE":GET low:PRINT "DOES THREE THINGS!"
Note: The colon separator must not be used after a THEN command in a multi-line

IF..THEN construct. If a multi-statement line contains a GOTO the remaining state-
ments will not be executed:

PRINT "Hello":GOTO Routine:PRINT "Goodbye"
Goodbye will not be printed.

Similarly with GOSUB because subroutine calls return to the following line.

State

-1 WDOGB follows the state of WDOG

0 WDOGB is OFF

1 WDOGB is ON

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-197
System Parameters and Commands

’
Type: Special Character

Description: A single ' is used to mark a line as being a comment only with no execution signifi-
cance.

Note: The REM command of other BASICs is replaced by '.
Like REM statements ' must be at the beginning of the line or statement or after the
executable statement. Comments use memory space and so should be concise in
very long programs. Comments have no effect on execution speed since they are not
present in the compiled code.

Example: 'PROGRAM TO ROTATE WHEEL
turns=10
'turns contains the number of turns required
MOVE(turns)' the movement occurs here

#
Type: Special Character

Description: The # symbol is used to specify a communications channel to be used for serial
input/output commands.

Note: Communications Channels greater than 3 will only be used when the controller is
running in Motion Perfect mode (See MPE command).

Example 1: PRINT #3,”Membrane Keypad”
PRINT #2,”Port 2”

Example 2: ‘ Check membrane keypad on fibre-optic channel
IF KEY #3 THEN GET #3,k

8-198Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

$
Type: Special Character

Description: The $ symbol is used to specify that the number that follows is in hexadecimal for-
mat.

Example 1: VR(10)=$8F3B
OP($CC00)
Process Parameters and Commands

BITREV8
Type: Mathematical function

Syntax: BITREV8(byte)
Description: The BITREV8 function reverses the order of the lowest 8 bits in a variable.

Parameters:

Example: byte_in = $a3
byte_out = BITREV8(byte_in)
PRINT "Result = ";HEX(byte_out)

Result = c5

Note: MC302X, MC302-K only

ERROR_LINE
Type: Process Parameter (Read Only)

Description: Stores the number of the line which caused the last Trio BASIC error. This value is
only valid when the BASICERROR is TRUE. This parameter is held independently for
each process.

Example: >>PRINT ERROR_LINE PROC(14)

byte Any variable in which you want to reverse the lowest 8 bits.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-199
System Parameters and Commands

INDEVICE
Type: Process Parameter

Description: This parameter specifies the active input device. Specifying an INDEVICE for a proc-
ess allows the channel number for a program to set for all subsequent GET and KEY,
INPUT and LINPUT statements. (This command is not usually required - Use GET #
and KEY # etc. instead)

Example: INDEVICE=5
' Get character on channel 5:

GET k

LOOKUP
Type: Process Command

Syntax: LOOKUP(format,entry) <PROC(process#)>
Description: The LOOKUP command allows Motion Perfect to access the local variables on an exe-

cuting process. It is not normally required for BASIC programs.

Chan Input device:-

0 Serial port A
1 Serial port B
2 RS485 Port
3 Fibre optic port (value returned defined by DEFKEY)
4 Fibre optic port (returns raw keycode of key pressed)
5 Motion Perfect user channel
6 Motion Perfect user channel
7 Motion Perfect user channel
8 Used for Motion Perfect internal operations
9 Used for Motion Perfect internal operations
10 Fibre optic network data

8-200Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

Parameters:

OUTDEVICE
Type: Process Parameter

Description: The value in this parameter determines the serial output device for the PRINT com-
mand for the process. The channel numbers are the same as described in INDEVICE.

PMOVE
Type: Process Parameter

Modifier: PROC
Description: Returns 1 if the process move buffer is occupied, and 0 it is empty. When one of the

Motion Coordinator processes encounters a movement command the process loads
the movement requirements into its “process move buffer”. This can hold one move-
ment instruction for any group of axes. When the load into the process move buffer
is complete the PMOVE parameter is set to 1. When the next servo interrupt occurs
the motion generation program will load the movement into the “next move buffer”
of the required axes if these are available. When this second transfer is complete
the PMOVE parameter is cleared to 0. Each process has its own PMOVE parameter.

PROC
Type: Process Modifier

Description: Allows a process parameter from a particular process to be read or set.

Example: WAIT UNTIL PMOVE PROC(14)=0

format: 0: Prints (in binary) floating point value from an expression
1: Prints (in binary) integer value from an expression
2: Prints (in binary) local variable from a process
3: Returns to BASIC local variable from a process
4: Write

entry: Either an expression string (format=0 or 1) or the offset
number of the local variable into the processes local variable
list.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-201
System Parameters and Commands

PROC_LINE
Type: Process Parameter (Read Only)

Description: Allows the current line number of another program to be obtained with the PROC(x)
modifier.

Example: PRINT PROC_LINE PROC(2)

PROC_MODE
Type: Process Parameter

Description: Enables user control of processes and interupt slot numbers with the extended RUN
command.

Example: PROC_MODE(0) 'set “standard” multi-tasking control
 '(compatible with older system software versions)

PROC_MODE(1) 'set up advanced multi-tasking control
RUN “prog1”, 4,0 'prog 1 runs as process 4 sharing the same
RUN “prog2”, 5,0 'interrupt slot.

PROC_STATUS
Type: Process Parameter (Read Only)

Description: Returns the status of another process, referenced with the PROC(x) modifier.

Returns

Example: RUN "progname",12
WA(100) ' wait for program to start
WAIT UNTIL PROC_STATUS PROC(12)=0

' Program "progname" has now finished.

0 Process Stopped

1 Process Running

2 Process Stepping

3 Process Paused

8-202Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

PROCNUMBER
Type: Process Parameter

Description: Returns the process on which a Trio BASIC program is running. This is normally
required when multiple copies of a program are running on different processes.

Example: MOVE(length) AXIS(PROCNUMBER)

RESET
Type: Process Command

Description: Sets the value of all the local named variables of a Trio BASIC process to 0.

RUN_ERROR
Type: Process Parameter

Modifier: PROC
Description: Contains the number of the last program error that occurred on the specified proc-

ess.

Example: >>? RUN_ERROR PROC(5)
9.0000

SHIFTR
Type: Mathematical Function

Syntax: SHIFTR(variable, n)
Description: Shifts the bits in a variable to the right by 'n' number of times.

Parameters:

Example: 'Convert a 16 bit word to 2 bytes by dividing the MSByte by 256
msbyte = SHIFTR(word, 8)
lsbyte = word AND $ff

variable Any local variable or VR containing the value to be shifted.

n: number of times to shift the value.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-203
System Parameters and Commands

Notes: MC302X, MC302-K only (ARM processor based)

Use normal divide operator in MC2xx Motion Coordinators. DSP processor executes
the divide as quickly as a shift function.

STRTOD
Type: Function

Syntax: STRTOD(format,...)
Description: Converts a string into a decimal number.

Parameters: STRTOD(0,start,end) Read string starting at VR(start) and parse number until it
finds a non floating point character. VR(end) will contain
the index of the character which stops the parsing. The
number format accepted here is as follows:

<number> ::= [<sign>]<integer>[<frac-
tion>][<exponent>]

<sign> ::= +|-

<integer> ::= <digit> | <integer> <digit>

<digit> ::= ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘7’|‘8’|‘9’

<fraction> ::= ‘.’ <integer>

<exponent> ::= ‘E’ [<sign>][<integer>]

STRTOD(1,channel,co
unt,terminator)

Read string from the specified channel and parse number
until it finds a non floating point character. VR(count) will
contain the number of characters accepted. VR(termina-
tor) will contain the character that terminates the parsing.
The number format accepted here is the same as STR-
TOD(0).

8-204Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

TABLE_POINTER
Type: Axis Parameter(Read Only)

Syntax: value=TABLE_POINTER
Where value is returned of type X.Y where X is the current TABLE location and Y rep-
resents the interpolated distance between the start and end location of the current
TABLE location.

Description: The ability to adjust a CAM based profiles from within the Trio BASIC program adds
more flexibility to Trio's Motion Coordinators. Using the TABLE_POINTER command it
is possible to determine which TABLE memory location is currently being used by the
CAM allowing the user to load new CAM data into previously processed TABLE loca-
tion ready for the next CAM cycle. This is ideal for allowing a technician to finely
tune a complex process, or changing recipes on the fly whilst running.
TABLE_POINTER returns the current table location that the CAM function is using.
The returned number contains the table location and divides up the interpolated dis-
tance between the current and next TABLE location to indicate exact location.

STRTOD(2,start,end) Read string starting at VR(start) and parse number until it
finds a non integer character or a number that cannot be
represented as a 32 bit integer. VR(end) will contain the
index of the character which stops the parsing. The number
format accepted here is as follows:

<number> ::= [<sign>]<integer>

<sign> ::= +|-

<integer> ::= <digit> | <integer> <digit>

<digit> ::= ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘7’|‘8’|‘9’

STRTOD(4,start,end) Read string starting at VR(start) and parse number until it
finds a non floating point character. If the number can be
represented as a 32 bit integer then integer maths is used,
otherwise floating point maths is used. VR(end) will contain
the index of the character which stops the parsing. The
number format accepted here the same as STRTOD(0). This
avoids precision errors inherent in floating point calcula-
tions.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-205
System Parameters and Commands

Example: In this example a CAM profile is loaded into TABLE location 1000 and is setup on axis
0 and is linked to a master axis 1. A copy of the CAM table is added at location 100.
The Analogue input is then read and the CAM TABLE value is updated when the table
pointer is on the next value.

' CAM Pointer demo
' store the live table points
TABLE(1000,0,0.8808,6.5485,19.5501,39.001,60.999,80.4499,93.4515)
TABLE(1008,99.1192,100)
' Store another copy of original points
TABLE(100,0,0.8808,6.5485,19.5501,39.001,60.999,80.4499,93.4515)
TABLE(108,99.1192,100)
' Initialise axes
BASE(0)
WDOG=ON
SERVO=ON

' Set up CAM
CAMBOX(1000,1009,10,100,1, 4, 0)

' Start Master axis
BASE(1)
SERVO=ON
SPEED=10
FORWARD

' Read Analog input and scale CAM based on input
pointer=0
WHILE 1
' Read Analog Input (Answer 0-10)
scale=AIN(32)*0.01
' Detects change in table pointer
IF INT(TABLE_POINTER)<>pointer THEN
 pointer=INT(TABLE_POINTER)
 ' First value so update last value
 IF pointer=1000 THEN
 TABLE(1008,(TABLE(108)*scale))
 ' Second Value, so must update First & Last but 1 value
 ELSEIF pointer=1001 THEN
 TABLE(1000,(TABLE(100)*scale))
 TABLE(1009,(TABLE(109)*scale))
 ' Update previous value
 ELSE
 TABLE(pointer-1, (TABLE(pointer-901)*scale))
 ENDIF
ENDIF

8-206Trio BASIC Commands
System Parameters and Commands

Trio Motion Technology

WEND
STOP

TICKS
Type: Process Parameter

Description: The current count of the process clock ticks is stored in this parameter. The process
parameter is a 32 bit counter which is DECREMENTED on each servo cycle. It can
therefore be used to measure cycle times, add time delays, etc. The ticks parameter
can be written to and read.

Example: delay:
TICKS=3000
OP(9,ON)

test:
IF TICKS<=0 THEN OP(9,OFF) ELSE GOTO test

Note: TICKS is held independently for each process.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-207
Mathematical Operations and Commands

Mathematical Operations and Commands

+ Add
Type: Arithmetic operation

Syntax <expression1> + <expression2>
Description: Adds two expressions

Parameters:

Example: result=10+(2.1*9)

Trio BASIC evaluates the parentheses first giving the value 18.9 and then adds the
two expressions. Therefore result holds the value 28.9

- Subtract
Type: Arithmetic operation

Syntax <expression1> - <expression2>
Description: Subtracts expression2 from expression1

Parameters:

Example: VR(0)=10-(2.1*9)

Trio BASIC evaluates the parentheses first giving the value 18.9 and then subtracts
this from 10. Therefore VR(0) holds the value -8.9

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

8-208Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

* Multiply
Type: Arithmetic operation

Syntax <expression1> * <expression2>
Description: Multiplies expression1 by expression2

Parameters:

Example: factor=10*(2.1+9)

Trio BASIC evaluates the brackets first giving the value 11.1 and then multiplies this
by 10. Therefore factor holds the value 111

/ Divide
Type: Arithmetic operation

Syntax <expression1> / <expression2>
Description: Divides expression1 by expression2

Parameters:

Example: a=10/(2.1+9)

Trio BASIC evaluates the parentheses first giving the value 11.1 and then divides 10
by this number

Therefore a holds the value 0.9009

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-209
Mathematical Operations and Commands

^ Power
Type: Arithmetic operation

Syntax <expression1> ^ <expression2>
Description: Raises expression1 to the power of expression2

Parameters:

Example: x=2^6
PRINT x

Trio BASIC raises the first number (2) to the power of the second number (6).
Therefore x has the value of 64

= Equals
Type: Arithmetic Comparison Operation

Syntax <expression1> = <expression2>
Description: Returns TRUE if expression1 is equal to expression2, otherwise returns false.

Note: TRUE is defined as -1, and FALSE as 0

Parameters:

Example: IF IN(7)=ON THEN GOTO label

If input 7 is ON then program execution will continue at line starting “label:”

<> Not Equal
Type: Arithmetic Comparison Operation

Syntax <expression1> <> <expression2>

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

8-210Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

Description: Returns TRUE if expression1 is not equal to expression2, otherwise returns false.

Note: TRUE is defined as -1, and FALSE as 0

Parameters:

Example: IF MTYPE<>0 THEN GOTO scoop
If axis is not idle (MTYPE=0 indicates axis idle) then goto label
“scoop”

> Greater Than
Type: Arithmetic Comparison Operation

Syntax <expression1> > <expression2>
Description: Returns TRUE if expression1 is greater than expression2, otherwise returns false.

Note: TRUE is defined as -1, and FALSE as 0

Parameters:

Example 1: WAIT UNTIL MPOS>200
The program will wait until the measured position is greater than 200

Example 2: VR(0)=1>0
1 is greater than 0 and therefore VR(0) holds the value -1

>= Greater Than or Equal
Type: Arithmetic Comparison Operation

Syntax <expression1> >= <expression2>
Description: Returns TRUE if expression1 is greater than or equal to expression2, otherwise

returns false.

Note: TRUE is defined as -1, and FALSE as 0

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-211
Mathematical Operations and Commands

Parameters:

Example: IF target>=120 THEN MOVEABS(0)
If variable target holds a value greater than or equal to 120 then move to the abso-
lute position of 0.

< Less Than
 Type: Arithmetic Comparison Operation

Syntax <expression1> < <expression2>
Description: Returns TRUE if expression1 is less than expression2, otherwise returns false.

Note: TRUE is defined as -1, and FALSE as 0

Parameters:

 Example: IF AIN(1)<10 THEN GOSUB rollup
If the value returned from analogue input 1 is less than 10 then execute subroutine
“rollup”

<= Less Than or Equal
Type: Arithmetic Comparison Operation

Syntax <expression1> <= <expression2>
Description: Returns TRUE if expression1 is less than or equal to expression2, otherwise returns

false.

Note: TRUE is defined as -1, and FALSE as 0

Parameters:

Example: maybe=1<=0
1 is not less than or equal to 0 and therefore variable maybe holds the value 0

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

8-212Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

ABS
Type: Function

Syntax: ABS(expression)
Description: The ABS function converts a negative number into its positive equal. Positive num-

bers are unaltered.

Parameters:

Example: IF ABS(AIN(0))>100 THEN
PRINT "Analogue Input Outside +/-100"

ENDIF

ACOS
Type: Function

Syntax: ACOS(expression)
Description: The ACOS function returns the arc-cosine of a number which should be in the range 1

to -1. The result in radians is in the range 0..PI

Parameters:

Example: >>PRINT ACOS(-1)
3.1416

AND
Type: Logical and bitwise operator

Syntax <expression1> AND <expression2>
Description: This performs an AND function between corresponding bits of the integer part of two

valid Trio BASIC expressions.

The AND function between two bits is defined as follows:

Parameters:

Expression: Any valid Trio BASIC expression

Expression: Any valid Trio BASIC expression.

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-213
Mathematical Operations and Commands

Example 1: IF (IN(6)=ON) AND (DPOS>100) THEN tap=ON
Example 2: VR(0)=10 AND (2.1*9)

Trio BASIC evaluates the parentheses first giving the value 18.9, but as was specified
earlier, only the integer part of the number is used for the operation, therefore this
expression is equivalent to:

VR(0)=10 AND 18
AND is a bitwise operator and so the binary action taking place is:

01010
AND 10010

00010

Therefore VR(0) holds the value 2

Example 3: IF MPOS AXIS(0)>0 AND MPOS AXIS(1)>0 THEN GOTO cyc1

ASIN
Type: Mathematical Function

Syntax: ASIN(expression)
Alternate Format: ASN(expression)

Description: The ASIN function returns the arc-sine of a number which should be in the range +/-
1. The result in radians is in the range -PI/2.. +PI/2 (Numbers outside the +/-1 input
range will return zero)

Parameters:

Example: >>PRINT ASIN(-1)
-1.5708

0 1
0 0 0
1 0 1

Expression: Any valid Trio BASIC expression.

8-214Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

ATAN
Type: Mathematical Function

Syntax: ATAN(expression)
Alternate Format: ATN(expression)

Description: The ATAN function returns the arc-tangent of a number. The result in radians is in the
range -PI/2.. +PI/2

Parameters:

Example: >>PRINT ATAN(1)
0.7854

ATAN2
Type: Mathematical Function

Syntax: ATAN2(expression1,expression 2)
Description: The ATAN2 function returns the arc-tangent of the ratio expression1/expression 2.

The result in radians is in the range -PI.. +PI

Parameters:

Example: >>PRINT ATAN2(0,1)
0.0000

B_SPLINE
Type: Command

Syntax: B_SPLINE(type, {parameters})
Description: This function expands data to generate higher resolution motion profiles. It oper-

ates in two modes using either B Spline or Non Uniform Rational B Spline
(NURBS) mathematical methods.

Syntax: B_SPLINE(1, data_in, #in, data_out, #expand)
Description: Expands an existing profile stored in the TABLE area using the B Spline mathematical

function. The expansion factor is configurable and the B_SPLINE stores the
expanded profile to another area in the TABLE.

Expression: Any valid Trio BASIC expression.

Expressions: Any valid Trio BASIC expression.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-215
Mathematical Operations and Commands

This is ideally used where the source CAM profile is too coarse and needs to be
extrapolated into a greater number of points.

Parameters:

Example: B_SPLINE(1,0,10,200,10)
Expands a 10 point profile in TABLE locations 0 to 9 to a larger 100 point profile
starting at TABLE address 200.

Syntax: B_SPLINE(2, dimen, Curve_type, weight_op, points, knots,
expansion, in_data, out_data)

Description: Non Uniform Rational B-Splines, commonly referred to as NURBS, have become the
industry standard way of representing geometric surface information designed by a
CAD system. NURBS is the basis behind many 3D files such as IGES, STEP and PHIGS.

NURBS provide a unified mathematical basis for representing analytic shapes such as
conic sections and quadratic surfaces, as well as free form entities, such as car bod-
ies and ship hulls. NURBS are small for data portability and can be scaled to increase
the number of target points along a curve, increasing accuracy. A series of NURBS
are used to describe a complex shape or surface.

NURBS are represented as a series of XYZ points with knots + weightings of the knots.

Parameters:

type 1 Standard B-Spline

data_in Location in the TABLE where the source profile is stored.

#in Number of points in the source profile.

data_out Location in the TABLE where the expanded profile will be
stored.

#expand The expansion ratio of the B_SPLINE function. (i.e. if the
source profile is 100 points and #expand is set to 10 the
resulting profile will be 1000 point (100 * 10).

type 2 Non Uniform Rational B-Spline.

Dimen Defines the number of axes.
Reserved for future use must be 3.

Curve_type Classification of the type of NURBS curve.
Reserved for future use must be 3.

Weight_op Sets the weighting of the knots
0=All weighting set to 1.

points Number of data points.

knots Number of knots defined.

8-216Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

Example: type=2 '2 for NURBS
dimen=3 'must be 3 at present (X Y Z)
curve_type=3 'XYZ axes
weight_op=0 '0 sets all weights to 1.0
points=9 'number of data points
knots=13 'number of knots
expansion=5 'Expansion factor
in_data=100 'data points
out_data=1000 'table location to construct output

' Data Points:
TABLE(100,150.709,353.8857,0)
TABLE(103,104.5196,337.7142,0)
TABLE(106,320.1131,499.4647,0)
TABLE(109,449.4824,396.4945,0)
TABLE(112,595.3350,136.4910,0)
TABLE(115,156.816,96.3351,0)
TABLE(118,429.4556,313.7982,0)
TABLE(121,213.3019,375.8004,0)
TABLE(124,150.709,353.8857,0)

' Knots:
TABLE(127,0,0,0,0,146.8154,325.6644,536.0555,763.4151)
TABLE(135,910.13,38,1109.08861109.0886,1109.0886,1109.0886)

'Expand the curve, generate 5*9=45 XYZ points
'or 137 table locations
B_SPLINE(type,dimen,curve_type,weight_op,points,knots,

expansion,in_data,out_data)

expansion Defines the number of points the expanded curve will have
in the table.
Total output points = Number of points * expansion. Mini-
mum value = 3.

in_data Location of input data.
Data is stored with X0,Y0,Z0,X1,Y1,Z1...,followed by knots
data N0, N1, N2 ...

Out_data Table start location for output points stored X0, Y0, Z0 etc.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-217
Mathematical Operations and Commands

CLEAR_BIT
Type: Command

Syntax: CLEAR_BIT(bit#,vr#)
Description: CLEAR_BIT can be used to clear the value of a single bit within a VR() variable.

Example: CLEAR_BIT(6,23)
Bit 6 of VR(23) will be cleared (set to 0).

Parameters:

See also READ_BIT, SET_BIT

CONSTANT
Type: System Command

Syntax: CONSTANT “name”, value
Description: Declares the name as a constant for use both within the program containing the

CONSTANT definition and all other programs in the Motion Coordinator project.

Parameters:

Example: CONSTANT “nak”,$15
CONSTANT “start_button”,5

IF IN(start_button)=ON THEN OP(led1,ON)
IF key_char=nak THEN GOSUB no_ack_received

Note: The program containing the CONSTANT definition must be run before the name is
used in other programs. For fast startup the program should also be the ONLY proc-
ess running at power-up.

A maximum of 128 CONSTANTs can be declared (64 constants in MC302-K).

bit # Bit number within the VR. Valid range is 0 to 23

vr# VR() number to use

name: Any user-defined name containing lower case alpha, numeri-
cal or underscore (_) characters.

value The value assigned to name.

8-218Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

COS
Type: Mathematical Function

Syntax: COS(expression)
Description: Returns the COSINE of an expression. Will work for any value. Input values are in

radians.

Parameters:

Example: >>PRINT COS(0)[3]
1.000

CRC16
Type: Command

Syntax: RESULT=CRC16(MODE, POLY/DATA_SOURCE, START, END, REG)

Mode 0: CRC16(0, POLY)

Mode 1:CRC16(1, DATA_SOURCE, START, END, REG)

Description: Calculates a 16 bit CRC

Calculates the 16 bit CRC of data stored in contiguous Table Memory or VR Memory
locations.

Parameters:

Expression: Any valid Trio BASIC expression.

MODE: Specifies the mode of the command
0 – Initialises the command with the Polynomial
1 – Returns the CRC in RESULT. Will return 0 if Initialise has not
been run

POLY: Polynomial used as seed for CRC check
range 0-65535 (or 0-$FFFF)

DATA_SOURCE: Defines where the data is loaded
0 – Table Memory
1 – VR Memory

START: Start location of first byte

END: End Location of last byte

REG: Initial CRC value. Normally $0 - $FFFF

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-219
Mathematical Operations and Commands

Examples: Using Table Memory:

poly = $90d9
reginit = $ffff
CRC16(0, poly) 'Initialise internal CRC table memory
TABLE(0,1,2,3,4,5,6,7,8) ‘Load data into table memory location 0-7
calc_crc = CRC16(1,0,0,7,reginit) 'Source Data=TABLE(0..7)

Using VR Memory:

poly = $90d9
reginit = $ffff
CRC16(0, poly) 'Initialise internal CRC table memory
‘Load 6 bytes into VR memory location 0-5
for i=0 to 5
 VR(i)=i+1
Next i
calc_crc = CRC16(1,1,0,5,reginit) 'Source Data=VR(0)..VR(5)

EXP
Type: Mathematical Function

Syntax: EXP(expression)
Description: Returns the exponential value of the expression.

FRAC
Type: Mathematical Function

Syntax: FRAC(expression)
Description: Returns the fractional part of the expression.

Example: >>PRINT FRAC(1.234)
0.2340

GLOBAL
Type: System Command

Syntax: GLOBAL “name”, vr_number

8-220Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

Description: Declares the name as a reference to one of the global VR variables. The name can
then be used both within the program containing the GLOBAL definition and all other
programs in the Motion Coordinator project.

Parameters:

Example: GLOBAL “screw_pitch”,12
GLOBAL “ratio1”,534

ratio1 = 3.56
screw_pitch = 23.0
PRINT screw_pitch, ratio1

Note: The program containing the GLOBAL definition must be run before the name is used
in other programs. For fast startup the program should also be the ONLY process
running at power-up.

In programs that use the defined GLOBAL, name has the same meaning as
VR(vr_number). Do not use the syntax: VR(name).

A maximum of 128 GLOBALs can be declared (64 constants in MC302-K).

IEEE_IN
Type: Mathematical Function

Syntax: IEEE_IN(byte0,byte1,byte2,byte3)
Description: The IEEE_IN function returns the floating point number represented by 4 bytes

which typically have been received over a communications link such as Modbus.

Parameters:

Example: VR(20) = IEEE_IN(b0,b1,b2,b3)

Note: Byte 0 is the high byte of the 32 bit floating point format.

IEEE_OUT
Type: Mathematical Function

name: Any user-defined name containing lower case alpha, numeri-
cal or underscore (_) characters.

vr_number The number of the VR to be associated with name.

byte0 - 3: Any combination of 8 bit values that represents a valid IEEE
floating point number.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-221
Mathematical Operations and Commands

Syntax: byte_n = IEEE_OUT(value, n)
Description: The IEEE_OUT function returns a single byte in IEEE format extracted from the float-

ing point value for transmission over a bus sytem. The function will typically be
called 4 times to extract each byte in turn.

Parameters:

Example: a = MPOS AXIS(2)
byte0 = IEEE_OUT(a, 0)
byte1 = IEEE_OUT(a, 1)
byte2 = IEEE_OUT(a, 2)
byte3 = IEEE_OUT(a, 3)

Note: Byte 0 is the high byte of the 32 bit IEEE floating point format.

INT
Type: Mathematical Function

Syntax: INT(expression)
Description: The INT function returns the integer part of a number.

Parameters:

Example: >>PRINT INT(1.79)
1.0000
>>

Note: To round a positive number to the nearest integer value take the INT function of the
(number + 0.5)

value: Any Trio BASIC floating point variable or parameter.

n: The byte number (0 - 3) to be extracted.

expression: Any valid Trio BASIC expression.

8-222Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

INTEGER_READ/INTEGER_WRITE
Type: Command

Syntax: INTEGER_READ(<source>,<least_significant>,<most_significant>)
INTEGER_WRITE(<destination>,<least_significant>,<most_significant>)

Description: TrioBASIC handles all numbers in 32 bit floating point format. The 32 bit format has 1
bit sign, 8 bit exponent and 23 bit mantissa with an implied most significant bit. This
means that the maximum integer resolution is 24 bits. For most applications this is
sufficient, but for applications with high precision encoders very quickly we can get
beyond this 24 bit limit.

The INTEGER_READ/INTEGER_WRITE functions work around this limitation by per-
forming a low level access to the 32 bit register splitting it into 2 16 bit segments.

Parameters:

LN
Type: Mathematical Function

Syntax: LN(expression)
Description: Returns the natural logarithm of the expression.

Parameter:

<source> 2 bit value that will be read, can be VR, TABLE, or system
variable.

<destination> 32 bit value that will be written, can be VR, TABLE, or sys-
tem variable.

<least_significant> Least significant (rightmost) 16 bits, can be any valid Trio-
BASIC expression.

<most_significant> Most significant (leftmost) 16 bits, can be any valid TrioBA-
SIC expression.

expression: Any valid Trio BASIC expression.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-223
Mathematical Operations and Commands

MOD

Type: Mathematical Function

Syntax: MOD(expression)
Description: Returns the integer modulus of an expression.

Example: >>PRINT 122 MOD(13)
5.0000
>>

NOT
Type: Mathematical Function

Description: The NOT function truncates the number and inverts all the bits of the integer remain-
ing.

Parameter:

Example: PRINT 7 AND NOT(1.5)
6.0000

OR
Type: Logical and bitwise operator

Description: This performs an OR function between corresponding bits of the integer part of two
valid Trio BASIC expressions. The OR function between two bits is defined as follows:

Parameters:

Example 1: IF KEY OR IN(0)=ON THEN GOTO label

expression: Any valid Trio BASIC expression.

expression: Any valid Trio BASIC expression.

OR 0 1
0 0 1
1 1 1

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

8-224Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

Example 2: result=10 OR (2.1*9)

Trio BASIC evaluates the parentheses first giving the value 18.9, but as was specified
earlier, only the integer part of the number is used for the operation, therefore this
expression is equivalent to:

result=10 OR 18
The OR is a bitwise operator and so the binary action taking place is:

01010
OR 10010

11010

Therefore result holds the value 26

READ_BIT
Type: Command

Syntax: READ_BIT(bit#,vr#)
Description: READ_BIT can be used to test the value of a single bit within a VR() variable.

Example: res=READ_BIT(4,13)

Parameters:

See also SET_BIT, CLEAR_BIT

bit # Bit number within the VR. Valid range is 0 to 23

vr# VR() number to use

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-225
Mathematical Operations and Commands

SET_BIT
Type: Command

Syntax: SET_BIT(bit#,vr#)
Description: SET_BIT can be used to set the value of a single bit within a VR() variable. All other

bits are unchanged.

Parameters:

Example: SET_BIT(3,7)
Will set bit 3 of VR(7) to 1.

See also READ_BIT, CLEAR_BIT

SGN
Type: Mathematical Function

Syntax: SGN(expression)
Description: The SGN function returns the SIGN of a number.

Parameters:

Example: >>PRINT SGN(-1.2)
-1.0000
>>

SIN
Type: Mathematical Function

Syntax: SIN(expression)
Description: Returns the SINE of an expression. This is valid for any value in expressed in radians.

bit # Bit number within the VR. Valid range is 0 to 23

vr# VR() number to use

1 Positive non-zero

0 Zero

-1 Negative

expression: Any valid Trio BASIC expression.

8-226Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

Parameters:

Example: >>PRINT SIN(0)
0.0000

expression: Any valid Trio BASIC expression.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-227
Mathematical Operations and Commands

SQR
Type: Mathematical Function

Syntax: SQR(number)
Description: Returns the square root of a number.

Parameters:

Example: >>PRINT SQR(4)
2.0000
>>

TAN
Type: Mathematical Function

Syntax: TAN(expression)

Description: Returns the TANGENT of an expression. This is valid for any value expressed in radi-
ans.

Parameters:

Example: >>PRINT TAN(0.5)
0.5463

XOR
Type: Logical and bitwise operator

Description: This performs and exclusive or function between corresponding bits of the integer
part of two valid Trio BASIC expressions. It may therefore be used as either a bitwise
or logical condition.

The XOR function between two bits is defined as follows:

Parameters:

number: Any valid Trio BASIC number or variable.

Expression: Any valid Trio BASIC expression.

Expression1: Any valid Trio BASIC expression

Expression2: Any valid Trio BASIC expression

8-228Trio BASIC Commands
Mathematical Operations and Commands

Trio Motion Technology

Example: a = 10 XOR (2.1*9)

Trio BASIC evaluates the parentheses first giving the value 18.9, but as was specified
earlier, only the integer part of the number is used for the operation, therefore this
expression is equivalent to: a=10 XOR 18. The XOR is a bitwise operator and so the
binary action taking place is:

01010
XOR 10010

11000
The result is therefore 24.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-229
Constants

Constants

OFF
Type: Constant

Description: OFF returns the value 0

Example: IF IN(56)=OFF THEN GOSUB label
'run subroutine label if input 56 is off.

ON
Type: Constant

Description: ON returns the value 1.

Example: OP(lever,ON) 'This sets the output named lever to ON.

FALSE
Type: Constant

Description: The constant FALSE takes the numerical value of 0.

Example: test:
res=IN(0) OR IN(2)

IF res=FALSE THEN PRINT "Inputs are off"
ENDIF

PI
Type: Constant

Description: PI is the circumference/diameter constant of approximately 3.14159

Example: circum=100
PRINT "Radius=";circum/(2*PI)

8-230Trio BASIC Commands
Constants

Trio Motion Technology

TRUE
Type: Constant

Description: The constant TRUE takes the numerical value of -1.

Example: t=IN(0)=ON AND IN(2)=ON
IF t=TRUE THEN

PRINT "Inputs are on"
ENDIF

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-231
Axis Parameters

Axis Parameters

ACCEL
Type: Axis Parameter

Syntax: ACCEL=value
Description: The ACCEL axis parameter may be used to set or read back the acceleration rate of

each axis fitted. The acceleration rate is in units/sec/sec.

Example: ACCEL=130:' Set acceleration rate
PRINT " Accel rate:";ACCEL;" mm/sec/sec"

ADDAX_AXIS
Type: Axis Parameter (Read Only)

Syntax: ADDAX_AXIS
Description: Returns the axis currently linked to with the ADDAX command, if none the parameter

returns -1.

AFF_GAIN
Type: Axis Parameter

Syntax: AFF_GAIN = value
Description: Sets the acceleration Feed Forward for the axis. This is a multiplying factor which is

applied to the rate of change of demand speed. The result is summed to the control
loop output to give the DAC_OUT value.

Note: AFF_GAIN is only effective in systems with very high counts per revolution in the
feedback. I.e. 65536 counts per rev or greater.

8-232Trio BASIC Commands
Axis Parameters

Trio Motion Technology

ATYPE
Type: Axis Parameter

Description: The ATYPE axis parameter indicates the type of axis fitted. On daughter board
based axes, the ATYPE axis parameter is set by the system software at power up.

Controllers that use Feature Enable Codes to activate axes, such as the Euro205x and
MC206X, have the ATYPE of each axis set by the system software depending on the
Enabled Features on that Motion Coordinator. The ATYPE of Remote Axes must be
set during initialisation in a suitable Trio BASIC program. e.g. STARTUP.BAS.

On the MC302X the ATYPE parameter must be set to select the axis function.

Description

0 No axis daughter board fitted

1 Stepper daughter board

2 Servo daughter board

3 Encoder daughter board

4 Stepper daughter with position verification / Differential Stepper

5 Resolver daughter board

6 Voltage output daughter board

7 Absolute SSI servo daughter board

8 CAN daughter board

9 Remote CAN axis

10 PSWITCH daughter board

11 Remote SLM axis

12 Enhanced servo daughter board

13 Embedded axis

14 Encoder output

15 Trio CAN

16 Remote SERCOS speed axis

17 Remote SERCOS position axis

18 Remote CANOpen position axis

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-233
Axis Parameters

19 Remote CANOpen speed axis

20 Remote PLM axis

21 Remote user specific CAN axis

22 Remote SERCOS speed + registration axis

23 Remote SERCOS position + registration axis

24 SERCOS torque

25 SERCOS speed open

26 CAN 402 position mode

27 CAN 402 velocity mode

30 Remote Analog Feedback axis

31 Tamagawa absolute encoder + stepper

32 Tamagawa absolute encoder + servo

33 EnDat absolute encoder + stepper

34 EnDat absolute encoder + servo

35 PWM stepper

36 PWM servo

37 Step z

38 MTX dual port RAM

39 Empty

40 Trajexia Mechatrolink

41 Mechatrolink speed

42 Mechatrolink torque

43 Stepper 32

44 Servo 32

45 Step out 32

46 Tamagawa 32

47 Endat 32

Description

8-234Trio BASIC Commands
Axis Parameters

Trio Motion Technology

Note: Some ATYPEs are not available on all products.

Example: >>PRINT ATYPE AXIS(2)
1.0000
This would show that an stepper daughter board is fitted in this axis slot.

ATYPE AXIS(20)=16
Sets axis 20 to be a remote SERCOS speed axis. (This feature must be enabled with
the correct Feature Enable Code first)

ATYPE AXIS(0)=4
Sets axis 0 to be a stepper with encoder verification axis on the MC302X.

AXIS_ADDRESS
Type: Axis Parameter

Description: The AXIS_ADDRESS axis parameter is used when control is being made of remote
servo drives with SERCOS or CANOpen communications, or if an analogue input is
used for feedback. The AXIS_ADDRESS holds the address of the remote servo drive
or the AIN number of the analogue input to be used for feedback.

Note: Remote axes will require a Feature Enable Code to be entered before the remote
axis can be used. When a SERCOS or CAN daughter board is fitted, 2 remote axes are
enabled automatically.

AXIS_ENABLE

Type: Axis Parameter

Syntax: AXIS_ENABLE = (ON/OFF)

48 SSI 32

49 Mechatrolink servo inverter

Description

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-235
Axis Parameters

Description: Used when independent axis enabling is required with either SERCOS or MECHATRO-
LINK. This parameter can be set ON or OFF for each axis individually. The default
value is ON to maintain compatibility with earlier versions. The axis 'x' will be ena-
bled if AXIS_ENABLE AXIS(x) = ON and WDOG = ON.

Note 1: MOTION_ERROR now returns a bit pattern showing the axes which have a motion
error. i.e. if axes 2 and 5 have an error, the MOTION_ERROR value would be 40.
(32+8)

Note 2: Both WDOG (non axis specific) & AXIS_ENABLE (axis specific) must be set ON for the
axis to be enabled. If an axis has not been included in a DISABLE_GROUP and an error
occurs on that axis, WDOG will be set OFF.

AXIS_MODE
Type: Axis Parameter

Syntax: AXIS_MODE=value
Description: Depending on the bit set this command applies special functions to the axis.

Parameters:

AXISSTATUS
Type: Axis Parameter (Read Only)

Description: The AXISSTATUS axis parameter may be used to check various status bits held for
each axis fitted:

Value

Bit 0 When set it allows Euro205X to use the O/C outputs and encoder inputs at
the same time.

Bit 1 When set it changes the action of end limits on a CONNECT command; sets
ratio to 0 instead of cancelling the command.

Bit 2 Reserved

Bit 3 Reserved

Bit 4 Reserved

Bit 5 Inverts fault input on Euro205X.

Bit Description Value char

0 Unused 1
1 Following error warning range 2 w
2 Communications error to remote drive 4 a

8-236Trio BASIC Commands
Axis Parameters

Trio Motion Technology

The AXISSTATUS axis parameter is set by the system software is read-only..

Example: IF (AXISSTATUS AND 16)>0 THEN
PRINT "In forward limit"

ENDIF

Note: In the Motion Perfect parameter screen the AXISSTA-
TUS parameter is displayed as a series of characters,
ocyxehdrfmaw, as listed in the table above.

These characters are displayed in green lowercase
letters normally, or red uppercase when set.

See Also: ERRORMASK, DATUM(0)

BACKLASH_DIST
Type: Axis Parameter

Syntax: value = BACKLASH_DIST
Description: Amount of backlash compensation that is being applied to the axis when BACKLASH is

on.

Example: IF BACKLASH_DIST>100 THEN
 OP (10, ON) 'show that backlash compensation has reached
 'this value

3 Remote drive error 8 m
4 In forward limit 16 f
5 In reverse limit 32 r
6 Datuming 64 d
7 Feedhold 128 h
8 Following error exceeds limit 256 e
9 In forward software limit 512 x
10 In reverse software limit 1024 y
11 Cancelling move 2048 c
12 Encoder power supply overload (MC206X) 4096 o
13 Set on SSI axis after initialisation 8192
14 Status of FAULT input 16384

Bit Description Value char

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-237
Axis Parameters

ELSE
 OP (10, OFF)
END IF

BOOST
Type: Axis Parameter

Syntax: BOOST=ON / BOOST=OFF
Description: Sets the boost output on a stepper daughter board. The boost output is a dedicated

open collector output on the stepper and stepper encoder daughter boards. The
open collector can be switched on or off for each axis using this command.

Example: BOOST AXIS(11)=ON

CAN_ENABLE
Type: Axis Parameter

Description: The CAN_ENABLE axis parameter is used when control is being made of the remote
servo drives with CAN communications. The CAN_ENABLE is used to control the ena-
ble on the remote servo drive.

CLOSE_WIN
Type: Axis Parameter

Alternate Format: CW
Description: By writing to this parameter the end of the window in which a registration mark is

expected can be defined. The value is in user units.

Example: CLOSE_WIN=10.

CLUTCH_RATE
Type: Axis Parameter

8-238Trio BASIC Commands
Axis Parameters

Trio Motion Technology

Description: This affects operation of CONNECT by changing the connection ratio at the specified
rate/second.

Default CLUTCH_RATE is set very high to ensure compatibility with earlier versions.

Example: CLUTCH_RATE=5

CREEP
Type: Axis Parameter

Description: Sets the creep speed on the current base axis. The creep speed is used for the slow
part of a DATUM sequence. The creep speed must always be a positive value. When
given a DATUM move the axis will move at the programmed SPEED until the datum
input DATUM_IN goes low. The axis will then ramp the speed down and start a move
in the reversed direction at the CREEP speed until the datum input goes high.

The creep speed is entered in units/sec programmed using the unit conversion fac-
tor. For example, if the unit conversion factor is set to the number of encoder
edges/inch the speed is programmed in INCHES/SEC.

Example: BASE(2)
CREEP=10
SPEED=500
DATUM(4)
CREEP AXIS(1)=10
SPEED AXIS(1)=500
DATUM(4) AXIS(1)

D_GAIN
Type: Axis Parameter

Syntax: D_GAIN=value
Description: The derivative gain is a constant which is multiplied by the change in following error.

Adding derivative gain to a system is likely to produce a smoother response and
allow the use of a higher proportional gain than could otherwise be used.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-239
Axis Parameters

High values may lead to oscillation. For a derivative term Kd and a change in follow-
ing error de the contribution to the output signal is:

Example: D_GAIN=0.25

D_ZONE_MIN
Type: Axis Parameter

Description: For Piezo Motor Control. This sets works in conjunction with D_ZONE_MAX to clamp
the DAC output to zero when the demand movement is complete and the magnitude
of the following error is less than the D_ZONE_MIN value. The servo loop will be reac-
tivated when either the following error rises above the D_ZONE_MAX value, or a fresh
movement is started.

Example: D_ZONE_MIN = 3
D_ZONE_MAX = 10

With these 2 parameters set as above, the DAC output will be clamped at zero when
the movement is complete and the following error falls below 3. When a movement
is restarted or if the following error rises above a value of 10, the servo loop will be
reactivated.

D_ZONE_MAX
Type: Axis Parameter

Description: This sets works in conjunction with D_ZONE_MIN to clamp the DAC output to zero
when the demand movement is complete and the magnitude of the following error is
less than the D_ZONE_MIN value. The servo loop will be reactivated when either the
following error rises above the D_ZONE_MAX value, or a fresh movement is started.

Example: D_ZONE_MIN = 3
D_ZONE_MAX = 10

With these 2 parameters set as above, the DAC output will be clamped at zero when
the movement is complete and the following error falls below 3. When a movement
is restarted or if the following error rises above a value of 10, the servo loop will be
reactivated.

Od Kd e=

8-240Trio BASIC Commands
Axis Parameters

Trio Motion Technology

DAC
Type: Axis Parameter

Description: Writing to this axis parameter when SERVO=OFF allows the user to force a specified
voltage on a servo axis. The range of values that a 12 bit DAC can take is:

DAC=-2048 corresponds to a voltage of 10V
to
DAC=2047 corresponds to a voltage of -10v

The range of values that a 16 bit DAC can take is:

DAC=32767 corresponds to a voltage of 10V
to
DAC=-32768 corresponds to a voltage of -10v

Note: See DAC_SCALE for a list of DAC types.

Example: To force a square wave of amplitude +/-5V and period of approximately 500ms on
axis 0.

WDOG=ON
SERVO AXIS(0)=OFF
square:

DAC AXIS(0)=1024
WA(250)
DAC AXIS(0)=-1024
WA(250)

GOTO square

DAC_OUT
Type: Axis Parameter (Read Only)

Description: The axis DAC is the electronics hardware used to output +/-10volts to the servo drive
when using a servo daughter board. The DAC_OUT parameter allows the value being
used to be read back. The value put on the DAC comes from 2 potential sources:

If the axis parameter SERVO is set OFF then the axis parameter DAC is written to the
axis hardware. If the SERVO parameter is ON then a value calculated using the servo
algorithm is placed on the DAC. Either case can be read back using DAC_OUT. Values
returned will be in the range -2048 to 2047.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-241
Axis Parameters

Example: >>PRINT DAC_OUT AXIS(8)
288.0000
>>

DAC_SCALE
Type: Axis Parameter

Description: The DAC_SCALE axis parameter is an integer multiplier which is applied between the
control loop output and the Digital to Analog converter. DAC_SCALE can be set to
value 16 on axes with a 16 bit DAC. This scales the values applied to the higher res-
olution DAC so that the gains required on the axis are similar to those required on
axes with a 12 bit DAC.

DAC_SCALE may be set negative to reverse the polarity of the DAC output signal.
When the servo is off the magnitude of DAC_SCALE is not important as the voltage
applied is controlled by the DAC parameter. The polarity is still reversed however by
DAC_SCALE.

Example: DAC_SCALE AXIS(3)=-16

Note: To obtain true 16 bit output with a 16 bit D to A converter, the DAC_SCALE must be
set to 1 or -1 and the loop gains increased by a factor of 16 compared to those
used on an equivalent 12 bit axis.

DATUM_IN
Type: Axis Parameter

Alternate Format: DAT_IN
Description: This parameter holds a digital input channel to be used as a datum input. The input

can be in the range 0..63, except in the PCI208 which has 0..31. If DATUM_IN is set to
-1 (default) then no input is used as a datum.

Product DAC Size
Default

DAC_SCALE
P200 Servo DB 12 bit 1
P270 SSI Servo DB 12 bit 1
P201 Enhanced Servo DB 16 bit 1
P136 MC206X 16 bit 16
P156 Euro205x 12 bit 1
P184 / P185 PCI208 16 bit 16

8-242Trio BASIC Commands
Axis Parameters

Trio Motion Technology

Example: DATUM_IN AXIS(0)=28
Note: Feedhold, forward, reverse, datum and jog inputs are ACTIVE LOW.

DECEL
Type: Axis Parameter

Syntax: DECEL=value
Description: The DECEL axis parameter may be used to set or read back the deceleration rate of

each axis fitted. The deceleration rate will be returned in units/sec/sec.

Example: DECEL=100' Set deceleration rate
PRINT " Decel is ";DECEL;" mm/sec/sec"

DEMAND_EDGES
Type: Axis Parameter (Read Only)

Description: Allows the user to read back the current DPOS in encoder edges.

Example: >>PRINT DEMAND_EDGES AXIS(4)

DEMAND_SPEED
Type: Axis Parameter (Read Only)

Description: Returns the speed output of the UPU in edges or counts per millisecond. Normally
used for low level debug of the motion system.

Example: >>?DEMAND_SPEED
5.0000

DPOS
Type: Axis Parameter (Read Only)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-243
Axis Parameters

Description: The demand position DPOS is the demanded axis position generated by the move
commands. Its value may also be adjusted without doing a move by using the DEF-
POS() or OFFPOS commands. It is reset to 0 on power up or software reset. The
demand position must never be written to directly although a value can be forced to
create a step change in position by writing to the ENDMOVE parameter if no moves
are currently in progress on the axis.

Example: >>? DPOS AXIS(10)
This will return the demand position in user units.

DRIVE_CLEAR
Type: Axis Function

Syntax: DRIVE_CLEAR

Description: Reset and clear the local drive and clear the drive fault flags. Trio “Drive-In” module
only. DRIVE_CLEAR will run the drive’s own error reset procedure so that if the
external conditions allow, the drive will then be ready to run.

Example: WHILE TRUE'Error Handler Program
 IF AXISSTATUS=256 OR AXISSTATUS=258 THEN 'Check for FE fault

 GOSUB reset_routine
 PRINT #5,"All Clear…"

 ENDIF
 WEND 'End program loop

Reset_routine:
DATUM(0)'Clear FE fault in MC302-K
DRIVE_CLEAR'Reset drive faults
WA(100)'Wait in ms
WDOG=OFF'Cycle enable (WDOG) to the drive…
WA(50)
SERVO=ON'Close position loop in MC302-K
WDOG=ON'Enable drive
WA(50)
RETURN

DRIVE_CONTROL
Type: Axis Parameter

Description: Sets the value of a control word that is sent to a drive via a digital communications
bus, e.g. SERCOS, CAN etc, or to the the local drive when used with a Trio “Drive-In”
module.

8-244Trio BASIC Commands
Axis Parameters

Trio Motion Technology

DRIVE_ENABLE
Type: Axis Parameter

Description: Controls the cyclic communication to a remote drive. When set to 1 cyclic transmis-
sion is started. Cyclic comms include a sync telegram and set point telegram sent via
the communications bus in use.

Example: DRIVE_ENABLE AXIS(0)=1
DRIVE_ENABLE AXIS(1)=1

DRIVE_EPROM
Type: Drive Function

Syntax: DRIVE_EPROM

Description: Forces the local drive to perform a save function and save the drive perameters to
the drive’s flash eprom. Trio “Drive-In” module only.

DRIVE_HOME
Type: Drive Function

Syntax: DRIVE_HOME

Description: When the DRIVE_HOME is encountered in a Trio BASIC program, the drive will begin
its internal homing sequence.

The mode of homing will be based on the settings of the drive’s DREF, NREF, VREF,
IN1MODE, and REFMODE parameters. See the homing example in the “Drive-In” Tech-
nical Reference Manual. The Trio BASIC program will pause on the DRIVE_HOME line
until the drive completes the homing sequence (when the Motion Task Active is
cleared).

DRIVE_INPUTS
Type: Axis Parameter

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-245
Axis Parameters

Syntax: DRIVE_INPUTS

Description: Read input word from a remote or “Drive-In” drive with digital communications
capability.

Example: PRINT DRIVE_INPUTS AXIS(2)

DRIVE_INTERFACE
Type: Axis Parameter

Syntax: DRIVE_INTERFACE (function, parameter value)

Description: Low-level communications link between a “Drive-In” module and the local drive.

The DRIVE_INTERFACE provides direct access to the Dual Port RAM in the drive
regardless of communication status between the “Drive-In” and the Drive. Even cat-
astrophic drive errors such as “System Error” can be read back using function mode
5, letting a Trio BASIC program determine the drive’s status.

Example: DRIVE_INTERFACE(5,ERRCODE_Byte) 'get error code byte from S3000
drive

Note: The above example returns either the Most Significant Word (MSW) when
ERRCODE_byte=0; and the Least Significant Word (LSW) when ERRCODE_byte=1. This
is the 32-bit value ERRCODE that is provided by the drive, with 1 bit per fault raised
by the drive. A 0 indicates that the fault is not present and a 1 indicates that it is.
Bit 0 indicates the status of F01 and bit 31 indicates the status of F32. For example,
if faults F29 and F04 are present then DRIVE_INTERFACE (5,0) would return 4096
(or hex 1000) and DRIVE_INTERFACE (5,1) would return 8.

DRIVE_MODE
Type: Axis Parameter

Syntax: DRIVE_MODE

Description: Read or set the mode of a remote or “Drive-In” drive with digital communications
capability.

Example: DRIVE_MODE AXIS(5)=mode1

DRIVE_MONITOR
Type: Axis Parameter

8-246Trio BASIC Commands
Axis Parameters

Trio Motion Technology

Syntax: DRIVE_MONITOR

Description: Read a monitor word from a remote or “Drive-In” drive with digital communications
capability.

Example: PRINT DRIVE_MONITOR AXIS(0)

DRIVE_READ
Type: Drive Function

Syntax: DRIVE_READ (register[, time])

Description: Reads a drive parameter from the local drive. Trio “Drive-In” modules only.

Parameters:

Example: PRINT DRIVE_READ ($0A, 256)

DRIVE_RESET
Type: Axis Parameter

Syntax: DRIVE_RESET [phase]

Description: Reset the communications link between A “Drive-In” module and the local drive. The
DRIVE_RESET is typically not required for normal operation. The optional communi-
cation phase parameter between the “Drive-In” module and the drive.

Example: DRIVE_RESET

Command used to re-establish communications after a “Network Timeout Error” or
“Network Protocol Error” error. These errors are due to a command timeout
between the MC302-K and the drive. The DRIVE_RESET command will reset the
communications link between the MC302-K and the local drive.

DRIVE_STATUS
Type: Axis Parameter

Syntax: DRIVE_STATUS
Description: Returns the status register of a drive with digital communications capability con-

nected to the Motion Coordinator.

Register: Drive parameter 1

Time: Optional time out value in msec (default=100)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-247
Axis Parameters

In the case of an SLM axis it returns the SLM and drive status:
Bits 0..7 return bits 0..7 of register 0x8000 on the drive. Bits 8..23 return register
0xD000 on the SLM.

Example: >>PRINT DRIVE_STATUS AXIS(8)
0.0000
>>

DRIVE_WRITE
Type: Drive Function

Syntax: DRIVE_WRITE (register, value[, time])
Description: Writes a value to a drive parameter in the local drive. Trio “Drive-In” modules only.

Parameters:

ENCODER
Type: Axis Parameter (Read Only)

Description: The ENCODER axis parameter holds a raw copy of the encoder hardware register or
the raw data received from a fieldbus controlled drive. On Servo daughter boards,
for example, this can be a 12 bit (Modulo 4096) or 14 bit (Modulo 16384) number. On
absolute axes the ENCODER register holds a value using the number of bits pro-
grammed with ENCODER_BITS.

The MPOS axis measured position is calculated from the ENCODER value automatically
allowing for overflows and offsets. On MC302X and the built-in axes of a Euro205x or
MC206X the ENCODER register is 14 bit.

ENCODER_BITS
Type: Axis Parameter

Register: Drive parameter 1

Value: Value to be written

Time Optional time out value in msec (default=100)

8-248Trio BASIC Commands
Axis Parameters

Trio Motion Technology

Description: This parameter is only used with an absolute encoder axis. It is used to set the
number of data bits to be clocked out of the encoder by the axis hardware. There
are 2 types of absolute encoder supported by this parameter; SSI and EnDat. For SSI,
the maximum permitted value is 24. The default value is 0 which will cause no data
to be clocked from the SSI encoder, users MUST therefore set a value to suit the
encoder. With the EnDat encoder, bits 0..7 of the parameter are the total number of
encoder bits and bits 8..14 are the number of multi-turn bits to be used.

If the number of ENCODER_BITS is to be changed, the parameter must first be set to
zero before entering the new value.

Example 1: 'set up 2 axes of SSI absolute encoder
ENCODER_BITS AXIS(3) = 12
ENCODER_BITS AXIS(7) = 21

Example 2: 're-initialise MPOS using absolute value from encoder
SERVO=OFF
ENCODER_BITS = 0
ENCODER_BITS = databits

Example 3: 'A 25 bit EnDat encoder has 12 multi-turn and 13 bits/turn
'resolution. (total number of bits is 25)
ENCODER_BITS = 25 + (256 * 12)

Note: If the number of ENCODER_BITS is to be changed, the parameter must first be set to
zero before entering the new value.

ENCODER_CONTROL
Type: Axis Parameter

Description: Endat encoders can be set to either cyclically return their position, or they can be
set to a parameter read/write mode. The mode is controlled with the parameter
ENCODER_CONTROL.

ENCODER_CONTROL = 1 ' sets parameter read/write mode

ENCODER_CONTROL = 0 ' sets cyclic position return mode

ENCODER_CONTROL is set to 0 on power up or reset. Using the ENCODER_READ or
ENCODER_WRITE functions will set the parameter to 1 automatically.

On the PCI 208 the ENCODER_CONTROL should be set for the axis pairs 0/1, 2/3, 4/5
or 6/7 at the same time due to the configuration of the interface transceivers.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-249
Axis Parameters

Example 1: ' Set axes to parameter mode in a pair (PCI 208)
ENCODER_CONTROL AXIS(0)=1
ENCODER_CONTROL AXIS(1)=1

ENCODER_ID
Type: Axis Parameter

Description: This parameter returns the ENID parameter from the encoder (fixed at 17 decimal).

(Tamagawa abolute encoder only)

ENCODER_READ
Type: Axis Command

Syntax: ENCODER_READ (register address)
Description: Read an internal register from an Absolute Encoder. EnDat absolute encoder only.

Example: PRINT ENCODER_READ (endat_address)

ENCODER_STATUS
Type: Axis Parameter

Syntax: ENCODER_STATUS
Description: This axis parameter returns both the status field SF and the ALMC encoder error

field. The ALMC field is in bits 8..15. The SF field is in bits 0..7.

(Tamagawa abolute encoder only)

ENCODER_TURNS
Type: Axis Parameter

8-250Trio BASIC Commands
Axis Parameters

Trio Motion Technology

Description: 1. Tamagawa absolute encoder: This axis parameter returns the number of multi-
turn counts from fields ABM0/ABM1/AMB2 of the encoder. The multi-turn data is not
automatically applied to the axis MPOS after initialisation. The application program-
mer must apply this from BASIC using OFFPOS or DEFPOS as required.

2. EnDat absolute encoder: This axis parameter returns the number of multi-turn
counts from the encoder.

ENCODER_WRITE
Type: Axis Command

Syntax: ENCODER_WRITE (register addres, value)
Description: Write an internal register to an Absolute Encoder. EnDat absolute encoder only.

Example: ENCODER_WRITE (endat_address, setvalue)

ENDMOVE
Type: Axis Parameter

Description: This parameter holds the position of the end of the current move in user units. It is
normally only read back although may be written to if required provided that
SERVO=ON and no move is in progress. This will produce a step change in DPOS. Mak-
ing step changes in DPOS can easily lead to “Following error exceeds limit” errors
unless the steps are small or the FE_LIMIT is high.

ENDMOVE_BUFFER
Type: Axis Parameter (Read only)

Only available in system software versions where “LookAhead” is enabled.

Description: This holds the absolute position at the end of the buffered sequence. It is adjusted
by OFFPOS/DEFPOS. The individual moves in the buffer are incremental and do not
need to be adjusted by OFFPOS (Look-ahead versions only).

Example: >>? ENDMOVE_BUFFER AXIS(0)

This will return the absolute position at the end of the current buffered sequence on
axis 0.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-251
Axis Parameters

ENDMOVE_SPEED
Type: Axis Parameter

Only available in system software versions where “LookAhead” is enabled.

Description: This is used in conjunction with MOVESP, MOVEASBSSP, MOVECIRCSP and MHELI-
CALSP. It is loaded into the buffer at the same time as the move. The controller will
(using the specified value of ACCEL or DECEL) change the speed of the vector moves
so by the end of the MOVE starts in MTYPE the axis VPSPEED = FORCE SPEED (Look-
ahead versions only).

Example: SPEED=15
(other moves are loaded into the buffer)

ENDMOVE_SPEED=10
MOVESP(20)

In this example the controller will start ramping down the speed (at the specified
rate of DECEL) so at the end of the MOVESP(20) the VPSPEED=10. After which, if
another SP move type isn't issued the speed will ramp back to a speed of 15.
ENDMOVE_SPEED takes priority over FORCE_SPEED).

ERRORMASK
Type: Axis Parameter

Description: The value held in this parameter is bitwise ANDed with the AXISSTATUS parameter
by every axis on every servo cycle to determine if a runtime error should switch off
the enable (WDOG) relay. If the result of the AND operation is not zero the enable
relay is switched OFF.

On the MC302X the default setting is 256. This will trip the enable relay only if a fol-
lowing error condition occurs.

For the MC206X and Euro205x, the default value is 268 which is set to also trap criti-
cal errors with digital drive communications.

After a critical error has tripped the enable relay, the Motion Coordinator must
either be reset, or a DATUM(0) command must be executed to reset the error flags.
DATUM(0) is a global command (affects all axes) and needs to run once only.

See Also: AXISSTATUS, DATUM(0)

8-252Trio BASIC Commands
Axis Parameters

Trio Motion Technology

FAST_JOG
Type: Axis Parameter

Description: This parameter holds the input number to be used as the fast jog input. The input
can be in the range 0..31. If FAST_JOG is set to -1 (default) then no input is used for
the fast jog. If the FAST_JOG is asserted then the jog inputs use the axis SPEED for
the jog functions, otherwise the JOGSPEED will be used.

Note: Feedhold, forward, reverse, datum and jog inputs are ACTIVE LOW.

FASTDEC
Type: Axis Parameter

Description: The FASTDEC axis parameter may be used to set or read back the fast deceleration
rate of each axis fitted. Fast deceleration is used when a CANCEL is issued, for
example; from the user, a program, or from a software or hardware limit. If the
motion finishes normally or FASTDEC = 0 then the DECEL value is used.

Example: DECEL=100 'set normal deceleration rate
FASTDEC=1000 'set fast deceleration rate
MOVEABS(10000) 'start a move
WAIT UNTIL MPOS= 5000 'wait until the move is half finished
CANCEL 'stop move at fast deceleration rate

FE
Type: Axis Parameter (Read Only)

Description: This parameter is the position error, which is equal to the demand position(DPOS)-
measured position (MPOS). The parameter is returned in user units.

FE_LATCH
Type: Axis Parameter (Read Only)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-253
Axis Parameters

Description: Contains the intial FE value which caused the axis to put the controller into
“MOTION_ERROR”. This value is only set when the FE exceeds the FE_LIMIT and the
SERVO parameter has been set to 0. FE_LATCH is reset to 0 when the axis’ SERVO
parameter is set back to 1.

FE_LIMIT
Type: Axis Parameter

Alternate Format: FELIMIT
Syntax: FE_LIMIT = value

Description: This is the maximum allowable following error. When exceeded the controller will
generate a run time error and always resets the enable (WDOG) relay thus disabling
further motor operation. This limit may be used to guard against fault conditions
such as mechanical lock-up, loss of encoder feedback, etc. It is returned in USER
UNITS.

The default value is 2000 encoder edges.

FE_LIMIT_MODE
Type: Axis Parameter

Syntax: FE_LIMIT_MODE = value
Description: When this parameter is set to 0, the axis will cause a MOTION_ERROR immediately if

the FE exceeds the FE_LIMIT value.

If FE_LIMIT_MODE is set to 1, the axis will only generate a MOTION_ERROR when the
FE exceeds FE_LIMIT during 2 consecutive servo periods. This means that if
FE_LIMIT is exceeded for one servo period only, it will be ignored.

The default value for FE_LIMIT_MODE is 0.

FE_RANGE
Type: Axis Parameter

Syntax: FE_RANGE = value

Description: Following error report range. When the following error exceeds this value on a servo
axis, the axis has bit 1 in the AXISSTATUS axis parameter set.

8-254Trio BASIC Commands
Axis Parameters

Trio Motion Technology

FEGRAD
Type: Axis Parameter

Syntax: FEGRAD=value

Description: Following error limit gradient. Specifies the allowable increase in following error per
unit increase in velocity profile speed. The parameter is not currently used in the
motion generator program.

FEMIN
Type: Axis Parameter

Syntax: FEMIN=value

Description: Following error limit at zero speed. The parameter is not currently used in the
motion generator program.

FHOLD_IN
Type: Axis Parameter

Alternate Format: FH_IN
Syntax: FHOLD_IN=value

Description: This parameter holds the input number to be used as a feedhold input. The input can
be in the range 0..31. If FHOLD_IN is set to -1 (default) then no input is used as a
feedhold. When the feedhold input is set motion on the specified axis has its speed
overridden to the Feedhold speed (FHSPEED) WITHOUT CANCELLING THE MOVE IN
PROGRESS. This speed is usually zero. When the input is reset any move in progress
when the input was set will go back to the programmed speed. Moves which are not
speed controlled E.G. CONNECT, CAMBOX, MOVELINK are not affected.

Note: Feedhold, forward, reverse, datum and jog inputs are ACTIVE LOW.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-255
Axis Parameters

FHSPEED
Type: Axis Parameter

Syntax: FHSPEED=value

Description: When the feedhold input is set motion is usually ramped down to zero speed as the
feedhold speed is set to its default zero value. In some cases it may be desirable for
the axis to ramp to a known constant speed when the feedhold input is set. To do
this the FHSPEED parameter is set to a non zero value. The value is in user units/sec.

FORCE_SPEED
Type: Axis Parameter

Only available in system software versions where “LookAhead” is enabled.

Description: This is used in conjunction with MOVESP, MOVEASBSSP, MOVECIRCSP and MHELI-
CALSP. It is loaded into the buffer at the same time as the move. The controller will
(using the specified value of ACCEL or DECEL) change the speed of the vector moves
so at the point the move starts in MTYPE the axis VPSPEED = FORCE SPEED (Look-
Ahead versions only).

Example: SPEED = 15

(other moves are loaded into the buffer)

FORCE_SPEED = 10
MOVESP(20)

In this example the controller will ramp the speed down to a speed of 10 for the
duration of the MOVESP(20), after which it will ramp back to a speed of 15. (If
ENDMOVE_SPEED is set then this takes priority over force speed).

8-256Trio BASIC Commands
Axis Parameters

Trio Motion Technology

FS_LIMIT
Type: Axis Parameter

Alternate Format: FSLIMIT
Description: An end of travel limit may be set up in software thus allowing the program control of

the working envelope of the machine. This parameter holds the absolute position of
the forward travel limit in user units. When the limit is hit the controller will ramp
down the speed to zero then cancel the move. Bit 9 of the AXISSTATUS register is set
when the axis position is greater than the FS_LIMIT.
FS_LIMIT is disabled when it has a value greater than REP_DIST.

FULL_SP_RADIUS
Type: Controller Parameter

Only available in system software versions where “LookAhead” is enabled.

Description: This sets the full speed radius in user UNITS. Once set the controller will use the full
programmed SPEED value for radii above the value of FULL_SP_RADIUS. Where the
radius is below the value of FULL_SP_RADIUS the controller will proportionally
reduce the speed.

Example: In the following program, when the first MOVECIRC is reached the speed remains at
10 because the radius (8) is greater than that set in FULL_SP_RADIUS. For the second
MOVECIRC the speed is reduced by 50% to a value of 5, because the radius is 50% of
that stored in FULL_SP_RADIUS.

MERGE=ON
SPEED=10
FULL_SP_RADIUS=6
DEFPOS(0,0)

MOVE(10,10)
MOVE(10,5)
MOVE(5,5)
MOVECIRC(8,8,0,8,1)
MOVECIRC(3,3,0,3,1)
MOVE(5,5)
MOVE(10,5)

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-257
Axis Parameters

FWD_IN
Type: Axis Parameter

Description: This parameter holds the input number to be used as a forward limit input. The input
can be in the range 0..31. If FWD_IN is set to -1 (default) then no input is used as a
forward limit. When the forward limit input is asserted any forward motion on that
axis is stopped.

Example: FWD_IN=19

Note: Feedhold, jog forward, reverse and datum inputs are ACTIVE LOW.

FWD_JOG
Type: Axis Parameter

Description: This parameter holds the input number to be used as a jog forward input. The input
can be in the range 0..31. If FWD_JOG is set to -1 (default) then no input is used as a
forward jog.

Example: FWD_JOG=7

Note: Feedhold, forward, reverse, datum and jog inputs are ACTIVE LOW.

I_GAIN
Type: Axis Parameter

Description: The integral gain is a constant which is multiplied by the sum of following errors of
all the previous samples. This term may often be set to 0 (Default). Adding integral
gain to a servo system reduces position error when at rest or moving steadily but it
will produce or increase overshoot and may lead to oscillation.

For an integral gain Ki and a sum of position errors , the contribution to the out-
put signal is:

Note: Servo gains have no effect on stepper motor axes.

e

Oi Ki e=

8-258Trio BASIC Commands
Axis Parameters

Trio Motion Technology

INVERT_STEP
Type: Axis Parameter

Description: INVERT_STEP is used to switch a hardware inverter into the stepper pulse output cir-
cuit. This can be necessary in for connecting to some stepper drives. The electronic
logic inside the Motion Coordinator stepper pulse generation assumes that the FALL-
ING edge of the step output is the active edge which results in motor movement.
This is suitable for the majority of stepper drives. Setting INVERT_STEP=ON effec-
tively makes the RISING edge of the step signal the active edge. INVERT_STEP should
be set if required prior to enabling the controller with WDOG=ON. Default=OFF.

Note: If the setting is incorrect. A stepper motor may lose position by one step when
changing direction.

JOGSPEED
Type: Axis Parameter

Description: Sets the slow jog speed in user units for an axis to run at when performing a slow
jog. A slow jog will be performed when a jog input for an axis has been declared and
that input is low. The jog will be at the JOGSPEED provided the FAST_JOG input has
not be declared and is set low. Two separate jog inputs are available for each axis
FWD_JOG and REV_JOG.

LIMIT_BUFFERED
Type: Controller Parameter

Only available in system software versions where “LookAhead” is enabled.

Description: This sets the maximum number of move buffers available in the controller. The max-
imum value (and also the default) is 16 (look-Ahead versions only).

Example: LIMIT_BUFFERED=10

This will set the total number of available buffered moves in the controller to 10.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-259
Axis Parameters

LINKAX
Type: Axis Parameter (Read Only)18

Description: Returns the axis number that the axis is linked to during any linked moves. Linked
moves are where the demand position is a function of another axis. E.G. CONNECT,
CAMBOX, MOVELINK

MARK
Type: Axis Parameter (Read Only)

Description: Returns TRUE when a registration event has occurred. This is set to FALSE by the
REGIST command and set to true when the registration event occurs. When TRUE
the REG_POS is valid.

Example: loop:
 WAIT UNTIL IN(punch_clr)=ON
 MOVE(index_length)
 REGIST(3) 'rising edge of R
 WAIT UNTIL MARK MOVEMODIFY(REG_POS + offset)
 WAIT IDLE
GOTO loop

MARKB
Type: Axis Parameter (Read Only)

Description: MARKB returns TRUE when the second registration position has been latched. This is
set to FALSE by the REGIST command and set to TRUE when the registration event
occurs. When MARKB is TRUE the REG_POSB is valid.

See also REGIST() and REG_POSB.

8-260Trio BASIC Commands
Axis Parameters

Trio Motion Technology

MERGE
Type: Axis Parameter

Syntax: MERGE=ON / MERGE=OFF
Description: This is a software switch which can be used to enable or disable the merging of con-

secutive moves. With merging enabled, if the next move is already in the buffer the
axis will not ramp down to zero speed but load up the following move allowing them
to be seamlessly merged. Note that it is up to the programmer to ensure that the
merging is sensible. For example merging a forward move with a reverse move will
cause an attempted instantaneous change of direction.

MERGE will only function if:

1) The next move is loaded

2) Axis group does not change on multi-axis moves

3) Velocity profiled moves (MOVE, MOVEABS, MOVECIRC, MHELICAL, REVERSE,
FORWARD) cannot be merged with linked moves (CONNECT,MOVELINK,CAMBOX)

Note: When merging multi-axis moves only the base axis MERGE flag needs to be set.

If the moves are short a high deceleration rate must be set to avoid the controller
ramping the speed down in anticipation of the end of the buffered move

Example: MERGE=OFF 'Decelerate at the end of each move
MERGE=ON 'Moves will be merged if possible

MICROSTEP
Type: Axis Parameter

Description: Sets microstepping mode when using a stepper daughter board, P230, P240 and
P280. On these controllers the stepper pulse circuit contains a circuit which places
the step pulses more evenly in time by dividing the pulse rate by 2 or 16:

(On the MC206X a different pulse generation circuit is used which always divides the
pulse rate by 16 and is NOT affected by the MICROSTEP parameter. This circuit can
generate pulses up to 2Mhz) The stepper daughter board can generate pulses at up
to 62500 Hz with MICROSTEP=OFF (This is the default setting and should be used
when the pulse rate does not exceed 62500 Hz even if the motor is microstepping)

MICROSTEP=OFF (DEFAULT) 62.5 kHz Maximum

MICROSTEP=ON 500 kHz Maximum

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-261
Axis Parameters

With MICROSTEP=ON the stepper board can generate pulses at up to 500,000 Hz
although the pulses are not so evenly spaced in time.

With MICROSTEP=OFF the UNITS parameter should be set to 16 times the number of
pulses in a distance parameter. With MICROSTEP=ON the UNITS should be set to 2
times the number.

Example: UNITS AXIS(2)=180*2' 180 pulses/rev * 2
MICROSTEP AXIS(2)=ON

MOVES_BUFFERED
Type: Axis Parameter (Read only)

Only available in system software versions where “LookAhead” is enabled.

Description: This returns the number of moves being buffered by the axis when using the look-
ahead functionality (look-ahead versions only).

Example: >>? VECTOR_BUFFERED AXIS(0)

This will return the total number of current buffered moves.

MPOS
Type: Axis Parameter (Read Only)

Description: This parameter is the position of the axis as measured by the encoder or resolver. It
is reset to 0 (unless a resolver is fitted) on power up or software reset. The value is
adjusted using the DEFPOS() command or OFFPOS axis parameter to shift the datum
position or when the REP_DIST is in operation. The position is reported in user units.

Example: WAIT UNTIL MPOS>=1250
SPEED=2.5

8-262Trio BASIC Commands
Axis Parameters

Trio Motion Technology

MSPEED
Type: Axis Parameter (Read Only)

Description: The MSPEED represents the change in measured position in user units (per second) in
the last servo period. The SERVO_PERIOD defaults to 1msec. It therefore can be used
to represent the speed measured. This value represents a snapshot of the speed and
significant fluctuations can occur, particularly at low speeds. It can be worthwhile to
average several readings if a stable value is required at low speeds.

MTYPE
Type: Axis Parameter (Read Only)

Description: This parameter holds the type of move currently being executed.

This parameter may be interrogated to determine whether a move has finished or if
a transition from one move type to another has taken place.

A non-idle move type does not necessarily mean that the axis is actually moving. It
may be at zero speed part way along a move or interpolating with another axis with-
out moving itself.

MTYPE Move Type

0 Idle (No move)
1 MOVE
2 MOVEABS
3 MHELICAL
4 MOVECIRC
5 MOVEMODIFY
10 FORWARD
11 REVERSE
12 DATUMING
13 CAM
14 Forward Jog
15 Reverse Jog
20 CAMBOX
21 CONNECT
22 MOVELINK

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-263
Axis Parameters

NTYPE
Type: Axis Parameter (Read Only)

Description: This parameter holds the type of the next buffered move. The values held are as for
MTYPE. If no move is buffered zero will be returned. The NTYPE parameter is read
only but the NTYPE can be cleared using CANCEL(1)

OFFPOS
Type: Axis Parameter

Description: The OFFPOS parameter allows the axis position value to be offset by any amount
without affecting the motion which is in progress. OFFPOS can therefore be used to
effectively datum a system at full speed. Values loaded into the OFFPOS axis param-
eter are reset to 0 by the system software after the axis position is changed.

Example 1: Change the current position by 125, using the command line terminal:

>>?DPOS
300.0000
>>OFFPOS=125
>>?DPOS
425.0000

 Example 2: Define the current demand position as zero:

OFFPOS=-DPOS
WAIT UNTIL OFFPOS=0' wait until applied
This is equivalent to DEFPOS(0)

Example 3: A conveyor is used to transport boxes onto
which labels must be applied.

Using the REGIST() function, we can cap-
ture the position at which the leading edge
of the box is seen, then by using OFFPOS we
can adjust the measured position of the
axis to be zero at that point. Therefore,
after the registration event has occurred,
the measured position (seen in MPOS) will
actually reflect the absolute distance from
the start of the box, the mechanism which
applies the label can take advantage of the absolute position start mode of the
MOVELINK or CAMBOX commands to apply the label.

8-264Trio BASIC Commands
Axis Parameters

Trio Motion Technology

BASE(conv)
REGIST(3)
WAIT UNTIL MARK
OFFPOS = -REG_POS ‘ Leading edge of box is now zero

Note: The OFFPOS adjustment is executed on the next servo period. Several Trio BASIC
instructions may occur prior to the next servo period. Care must be taken to ensure
these instructions do not assume the position shift has occurred.

OPEN_WIN
Type: Axis Parameter

Alternate Format: OW
Description: This parameter defines the first position of the window which will be used for regis-

tration marks if windowing is specified by the REGIST() command.

Example: ‘only look for registration marks between 170 1nd 230mm
OPEN_WIN=170.00
CLOSE_WIN=230.0
REGIST(256+3)
WAIT UNTIL MARK

OUTLIMIT
Type: Axis Parameter

Description: The output limit restricts the voltage output from a servo axis to a lower value than
the maximum. The value required varies depending on whether the axis has a 12 bit
or 16 bit DAC. If the voltage output is generated by a 12 bit DAC values an OUTLIMIT
of 2047 will produce the full +/-10v range. If the voltage output is generated by a 16
bit DAC values an OUTLIMIT of 32767 will produce the full +/-10v range. See DAC
types for each controller.

Example: OUTLIMIT AXIS(0)=1023

The above will limit the voltage output to a ±5V output range on a servo daughter
board axis. This will apply to the DAC command if SERVO=OFF or to the voltage out-
put by the servo if SERVO=ON.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-265
Axis Parameters

OV_GAIN
Type: Axis Parameter

Description: The output velocity gain is a gain constant which is multiplied by the change in
measured position. The result is summed with all the other gain terms and applied
to the servo DAC. Default value is 0. Adding NEGATIVE output velocity gain to a sys-
tem is mechanically equivalent to adding damping. It is likely to produce a smoother
response and allow the use of a higher proportional gain than could otherwise be
used, but at the expense of higher following errors. High values may lead to oscilla-
tion and produce high following errors. For an output velocity term Kov and change
in position Pm, the contribution to the output signal is:

Note: Negative values are normally required. Servo gains have no effect on stepper motor
axes.

P_GAIN
Type: Axis Parameter

Description: The proportional gain sets the 'stiffness' of the servo response. Values that are too
high will produce oscillation. Values that are too low will produce large following
errors.
For a proportional gain Kp and position error E, its contribution to the output signal
is:

Note: P_GAIN may be fractional values. The default value is 1.0. Servo gains have no effect
on stepper motor axes.

Example: P_GAIN AXIS(11)=0.25

Oov K0v P m=

Op Kp E=

8-266Trio BASIC Commands
Axis Parameters

Trio Motion Technology

PP_STEP
Type: Axis parameter

Description: This parameter allows the incoming raw encoder counts to be multiplied by an inte-
ger value in the range -1024 to 1023. This can be used to match encoders to high res-
olution microstepping motors for position verification or for moving along circular
arcs on machines where the number of encoder edges/distance do not match on the
axes. Using a negative number will reverse the encoder count.

Example 1: A microstepping motor has 20000 steps/rev. The Motion Coordinator is working in
MICROSTEP=ON mode so will internally process 40000 counts/rev. A 2500 pulse
encoder is to be connected. This will generate 10000 edge counts/rev. A multiplica-
tion factor of 4 is therefore is required to convert the 10000 counts/rev to match the
40000 counts/rev of the motor.

PP_STEP AXIS(3)=4
Example 2: An X-Y machine has encoders which give 50 edges/mm in the X axis (Axis 0) and 75

edges/mm in the Y axis (Axis 1). Circular arc interpolation is required between the
axes. This requires that the interpolating axes have the same number of encoder
counts/distance. It is not possible to multiply the X axis counts by 1.5 as the
PP_STEP parameter must be an integer. Both X and Y axes must therefore be set to
give 150 edges/mm:

PP_STEP AXIS(0)=3
PP_STEP AXIS(1)=2
UNITS AXIS(0)=150
UNITS AXIS(1)=150

Note: If used in a Servo axis, increasing PP_STEP will require a proportionate decrease of
all loop gain parameters.

REG_POS
Type: Axis Parameter (Read Only)

Alternate Format: RPOS

Description: Stores the position at which a registration mark was seen on each axis in user units.
See REGIST() for more details.

Example: A paper cutting machine uses a CAM profile shape to quickly draw paper through
servo driven rollers then stop it whilst it is cut. The paper is printed with a registra-
tion mark. This mark is detected and the length of the next sheet is adjusted by scal-
ing the CAM profile with the third parameter of the CAM command:

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-267
Axis Parameters

' Example Registration Program using CAM stretching:
' Set window open and close:

length=200
OPEN_WIN=10
CLOSE_WIN=length-10
GOSUB Initial

Loop:
TICKS=0' Set millisecond counter to 0
IF MARK THEN

offset=REG_POS
' This next line makes offset -ve if at end of sheet:

IF ABS(offset-length)<offset THEN offset=offset-length
PRINT "Mark seen at:"offset[5.1]

ELSE
offset=0

PRINT "Mark not seen"
ENDIF

' Reset registration prior to each move:
DEFPOS(0)

REGIST(3+768)' Allow mark at first 10mm/last 10mm of sheet
CAM(0,50,(length+offset*0.5)*cf,1000)

WAIT UNTIL TICKS<-500
GOTO Loop

(variable “cf” is a constant which would be calculated depending on the machine
draw length per encoder edge)

REMAIN
Type: Axis Parameter (Read Only)

Description: This is the distance remaining to the end of the current move. It may be tested to
see what amount of the move has been completed. The units are user distance units.

Example: To change the speed to a slower value 5mm from the end of a move.

start:
SPEED=10
MOVE(45)
WAIT UNTIL REMAIN<5
SPEED=1
WAIT IDLE

8-268Trio BASIC Commands
Axis Parameters

Trio Motion Technology

REP_DIST
Type: Axis Parameter

Description: The repeat distance contains the allowable range of movement for an axis before
the position count overflows or underflows. For example, when an axis executes a
FORWARD move the demand and measured position will continually increase. When
the measured position reaches the REPDIST twice that distance is subtracted to
ensure that the axis always stays in the range -REPEAT DISTANCE to +REPEAT DIS-
TANCE (Assuming REP_OPTION=OFF). The Motion Coordinator will adjust its absolute
position without affecting the move in progress or the servo algorithm.

REP_OPTION
Type: Axis Parameter

Description: Bit 0 of the REP_OPTION parameter controls the way the REP_DIST is applied. In the
default setting (REP_OPTION bit 0=0) REP_DIST operation is selected in the range -
REPEAT DISTANCE to +REPEAT DISTANCE. In some circumstances it more convenient
for the axis positions to be specified from 0 to +REPEAT DISTANCE. (REP_OPTION
bit 0=1)

REP_OPTION bit 1: when set ON, the automatic repeat option of the CAMBOX or
MOVELINK function will be turned OFF. When the system software has set the
option OFF it automatically clears bit 1 of REP_OPTION.

REP_OPTION bit 2: when this is set ON, the functions REP_DIST, DEFPOS and OFFPOS
will affect MPOS only. Bit 2 is an option for Stepper + Encoder axes, it is not appro-
priate for servo axes.

REV_IN
Type: Axis Parameter

Description: This parameter holds the input number to be used as a reverse limit input. The input
should be in the range 0..31. If REV_IN is set to -1 (default) then no input is used as
a reverse limit. When the reverse limit input is asserted moves going in the reverse
direction will be cancelled. The axis status bit 5 will also be set.

Note: Feedhold, forward, reverse and datum inputs are ACTIVE LOW.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-269
Axis Parameters

REV_JOG
Type: Axis Parameter

Description: This parameter holds the input number to be used as a reverse jog input. The input
should be in the range 0..31. If REV_JOG is set to -1 (default) then no input is used as
a reverse jog. When the input is asserted then the axis is moved forward at the JOG-
SPEED or axis SPEED depending on the status of the FAST_JOG input.

Note: Feedhold, forward, reverse and datum inputs are ACTIVE LOW.

RS_LIMIT
Type: Axis Parameter

Alternate Format: RSLIMIT
Description: An end of travel software limit may be set up in software thus allowing the program

control of the working envelope of the machine. This parameter holds the absolute
position of the reverse travel limit in user units. When the limit is hit the controller
will ramp down the speed to zero then cancel the move. Bit 10 in the axis status
parameter is set when the axis is in the RS_LIMIT.

RS_LIMIT is disabled when its value is outside the range of REP_DIST.

SERVO
Type: Axis Parameter

Description: On a servo axis this parameter determines whether the axis runs under servo control
or open loop. When SERVO=OFF the axis hardware will output a voltage dependent
on the DAC parameter. When SERVO=ON the axis hardware will output a voltage
dependent on the gain settings and the following error.

SERVO is also used on stepper axes with position verification. If SERVO=ON the system
software will compare the difference between the DPOS and MPOS (FE) on the axis
with the FE_LIMIT. If the difference exceeds the limit the following error bit is set in
the AXISSTATUS register, the enable relay is forced OFF and the servo is set OFF. If
the SERVO=OFF on a stepper verification axis the FE is not compared with the
FE_LIMIT.

Example: SERVO AXIS(0)=ON' Axis 0 is under servo control
SERVO AXIS(1)=OFF' Axis 1 is run open loop

8-270Trio BASIC Commands
Axis Parameters

Trio Motion Technology

Note: Stepper axes with position verification need consideration also of VERIFY and
PP_STEP.

SPEED
Type: Axis Parameter

Description: The SPEED axis parameter can be used to set/read back the demand speed axis
parameter. The speed is returned in units/s. The demand speed is the speed ramped
up to during the movement commands MOVE, MOVEABS, MOVECIRC, FORWARD,
REVERSE, MHELICAL and MOVEMODIFY.

Example: SPEED=1000
PRINT “Speed Set=”;SPEED

SPHERE_CENTRE
Type: Axis Command

Syntax: SPHERE_CENTRE(tablex, tabley, tablez)

Description: Returns the co-ordinates of the centre point (x, y, z) of the most recent
MOVE_SPHERICAL. x, y and z are returned in the TABLE memory area and can be
printed to the terminal as required.

Example: SPHERE_CENTRE(10, 11, 30)
PRINT TABLE(10);”, “;TABLE(11);”, “;TABLE(12)

SRAMP
Type: Axis Parameter

Description: This parameter stores the s-ramp factor. This controls the amount of rounding
applied to trapezoidal profiles. 0 sets no rounding. 10 maximum rounding. Using S
ramps increases the time required for the movement to complete. SRAMP can be
used with MOVE, MOVEABS, MOVECIRC, MHELICAL, FORWARD, REVERSE and MOVE-
MODIFY move types.

Note: The SRAMP factor should not be changed while a move is in progress.

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-271
Axis Parameters

TANG_DIRECTION
Type: Axis Parameter

Only available in system software versions where “LookAhead” is enabled.

Description: When used with a 2 axis X-Y system, this parameter returns the angle in radians that
represents the vector direction of the interpolated axes. The value returned is
between -PI and +PI and is determined by the directions of the interpolated axes as
follows:

Example1: Note scale_factor_x MUST be the same as scale_factor_y

UNITS AXIS(4)=scale_factor_x
UNITS AXIS(5)=scale_factor_y

BASE(4,5)
MOVE(100,50)
angle = TANG_DIRECTION

Example2: BASE(0,1)
angle_deg = 180 * TANG_DIRECTION / PI

TRANS_DPOS
Type: Axis Parameter (Read Only)

Description: Axis demand position at output of frame transformation. TRANS_DPOS is normally
equal to DPOS on each axis. The frame transformation is therefore equivalent to 1:1
for each axis. For some machinery configurations it can be useful to install a frame
transformation which is not 1:1, these are typically machines such as robotic arms or
machines with parasitic motions on the axes. Frame transformations have to be spe-
cially written in the “C” language and downloaded into the controller. It is essential
to contact Trio if you want to install frame transformations.

Note: See also FRAME

X Y value

0 1 0

1 0 PI/2

0 -1 PI/2 (+PI or
-PI)

-1 0 -PI/2

8-272Trio BASIC Commands
Axis Parameters

Trio Motion Technology

UNITS
Type: Axis Parameter

Description: The unit conversion factor sets the number of encoder edges/stepper pulses in a
user unit. The motion commands to set speeds, acceleration and moves use the
UNITS parameter to allow values to be entered in more convenient units e.g.: mm
for a move or mm/sec for a speed.

Note: Units may be any positive value but it is recommended to design systems with an
integer number of encoder pulses/user unit.

Example: A leadscrew arrangement has a 5mm pitch and a 1000 pulse/rev encoder. The units
should be set to allow moves to be specified in mm. The 1000 pulses/rev will gener-
ate 1000 x 4=4000 edges/rev. One rev is equal to 5mm therefore there are 4000/
5=800 edges/mm so:

>>UNITS=1000*4/5
Example 2: A stepper motor has 180 pulses/rev and is being used with MICROSTEP=OFF

To program in revolutions the unit conversion factor will be:

>>UNITS=180*16
Note: Users with stepper axes should also refer to the MICROSTEP command when choosing

UNITS.

VECTOR_BUFFERED
Type: Axis Parameter (Read only)

Only available in system software versions where “LookAhead” is enabled.

Description: This holds the total vector length of the buffered moves. It is effectively the
amount the VPU can assume is available for deceleration. It should be executed with
respect to the first axis in the group (look-ahead versions only).

Example: >>BASE(0,1,2)
>>? VECTOR_BUFFERED AXIS(0)

This will return the total vector length for the current buffered moves whose axis
group begins with axis(0).

Motion Coordinator Technical Reference Manual

Trio BASIC Commands 8-273
Axis Parameters

VERIFY
Type: Axis Parameter

Description: The verify axis parameter is used to select different modes of operation on a stepper
encoder, encoder or servo axis. Its use depends upon the hardware.

(A) P240, P280, MC302X, PCI208

VERIFY=OFF
Encoder count circuit is connected to the STEP and DIRECTION hardware signals so
that these are counted as if they were encoder signals. This is particularly useful for
registration as the registration circuit can therefore function on a stepper axis.

VERIFY=ON
Encoder circuit is connected to external A,B, Z signal

(B) Euro205x

VERIFY=OFF

The encoder counting circuit is configured to accept STEP and DIRECTION signals
hard wired to the encoder A and B inputs.

VERIFY=ON

The encoder circuit is configured for the usual quadrature input.

Take care that the encoder inputs do not exceed 5 volts.

(B) P270 SSI Daughter Board

VERIFY=ON

SSI Binary encoder operation.

VERIFY=OFF

SSI Gray code encoder operation.

Gray code / Binary option available on P270 with V1.2 FPGA onwards.

Example: VERIFY AXIS(3)=ON
Note: Motion Coordinator that use Feature Enable Codes to activate axis functions will

power up with VERIFY either OFF or ON depending on axis type. To ensure that VER-
IFY is in the correct state, set only the required FECs for the axis type required.
Forcing the axis type with the ATYPE command alone will leave the axis with the
wrong encoder operation.

8-274Trio BASIC Commands
Axis Parameters

Trio Motion Technology

VFF_GAIN
Type: Axis Parameter

Description: The velocity feed forward gain is a constant which is multiplied by the change in
demand position. Adding velocity feed forward gain to a system decreases the fol-
lowing error during a move by increasing the output proportionally with the speed.

For a velocity feed forward term and change in position , the contribu-

tion to the output signal is:

Note: Servo gains have no effect on stepper motor axes.

VP_SPEED
Type: Axis Parameter (Read Only)

Alternate Format: VPSPEED
Description: The velocity profile speed is an internal speed which is ramped up and down as the

movement is velocity profiled. It is reported in user units/sec.

Example: Wait until command speed is achieved:

MOVE(100)
WAIT UNTIL SPEED=VP_SPEED

Kvff Pd

Ov ff Kvff P d=

	Trio BASIC Commands
	Motion and Axis Commands
	ACC
	ADD_DAC
	ADDAX
	AXIS
	BACKLASH
	BASE
	CAM
	CAMBOX
	CAMBOX Pattern Mode:
	CANCEL
	CONNECT
	DATUM
	DEC
	DEFPOS
	DISABLE_GROUP
	ENCODER_RATIO
	FORWARD
	MHELICAL
	MHELICALSP
	MOVE
	MOVEABS
	MOVEABSSP
	MOVECIRC
	MOVECIRCSP
	MOVELINK
	MOVEMODIFY
	MOVESP
	MSPHERICAL
	MOVETANG
	RAPIDSTOP
	REGIST
	REGIST_SPEED
	REVERSE
	STEP_RATIO

	Input / Output Commands
	AIN
	AIN0..3 / AINBI0..3
	AOUT0...3
	CHANNEL_READ
	CHANNEL_WRITE
	CHR
	CLOSE
	CURSOR
	DEFKEY
	ENABLE_OP
	FILE
	FLAG
	FLAGS
	GET
	GET#
	HEX
	IN()/IN
	INPUT
	INPUTS0 / INPUTS1
	INVERT_IN
	KEY
	LINPUT
	OP
	OPEN
	PRINT
	PRINT#
	PSWITCH
	READ_OP()
	READPACKET
	SEND
	SETCOM
	TIMER

	Program Loops and Structures
	BASICERROR
	ELSE
	ELSEIF
	ENDIF
	FOR..TO.. STEP..NEXT
	GOSUB
	GOTO
	NEXT
	ON.. GOSUB
	ON.. GOTO
	REPEAT.. UNTIL
	RETURN
	THEN
	TO
	UNTIL
	WA
	WAIT IDLE
	WAIT LOADED
	WAIT UNTIL
	WEND
	WHILE

	System Parameters and Commands
	ADDRESS
	APPENDPROG
	AUTORUN
	AXISVALUES
	BATTERY_LOW
	BOOT_LOADER
	BREAK_ADD
	BREAK_DELETE
	BREAK_LIST
	BREAK_RESET
	CAN
	CANIO_ADDRESS
	CANIO_ENABLE
	CANIO_STATUS
	CANOPEN_OP_RATE
	CHECKSUM
	CLEAR
	CLEAR_PARAMS
	COMMSERROR
	COMMSTYPE
	COMPILE
	CONTROL
	COPY
	DATE
	DATE$
	DAY
	DAY$
	DEL
	DEVICENET
	DIR
	DISPLAY
	DLINK
	EDIT
	EDPROG
	EPROM
	ERROR_AXIS
	ETHERNET
	ETHERNET_IP
	EX
	EXECUTE
	FB_SET
	FB_STATUS
	FEATURE_ENABLE
	FLASHVR
	FRAME
	FREE
	HALT
	HLM_COMMAND
	HLM_READ
	HLM_STATUS
	HLM_TIMEOUT
	HLM_WRITE
	HLS_MODEL
	HLS_NODE
	INCLUDE
	INITIALISE
	LAST_AXIS
	LIST
	LIST_GLOBAL
	LOAD_PROJECT
	LOADSYSTEM
	LOCK
	MC_TABLE
	MC_VR
	MOTION_ERROR
	MPE
	N_ANA_OUT
	NAIO
	NETSTAT
	NEW
	NIO
	PEEK
	POKE
	PORT
	POWER_UP
	PROCESS
	PROFIBUS
	PROTOCOL
	REMOTE
	RENAME
	RS232_SPEED_MODE
	RUN
	RUNTYPE
	SCOPE
	SCOPE_POS
	SELECT
	SERCOS
	SERCOS_PHASE
	SERIAL_NUMBER
	SERVO_PERIOD
	SLOT
	STEP
	STEPLINE
	STOP
	STICK_READ
	STICK_WRITE
	STORE
	SYNC_TIMER
	TABLE
	TABLEVALUES
	TIME
	TIME$
	TRIGGER
	TROFF
	TRON
	TSIZE
	UNLOCK
	USB
	USB_HEARTBEAT
	USB_STALL
	VERSION
	VIEW
	VR
	VRSTRING
	WDOG
	WDOGB
	:
	’
	#
	$
	BITREV8
	ERROR_LINE
	INDEVICE
	LOOKUP
	OUTDEVICE
	PMOVE
	PROC
	PROC_LINE
	PROC_MODE
	PROC_STATUS
	PROCNUMBER
	RESET
	RUN_ERROR
	SHIFTR
	STRTOD
	TABLE_POINTER
	TICKS

	Mathematical Operations and Commands
	+ Add
	- Subtract
	* Multiply
	/ Divide
	^ Power
	= Equals
	<> Not Equal
	> Greater Than
	>= Greater Than or Equal
	< Less Than
	<= Less Than or Equal
	ABS
	ACOS
	AND
	ASIN
	ATAN
	ATAN2
	B_SPLINE
	CLEAR_BIT
	CONSTANT
	COS
	CRC16
	EXP
	FRAC
	GLOBAL
	IEEE_IN
	IEEE_OUT
	INT
	INTEGER_READ/INTEGER_WRITE
	LN
	MOD
	NOT
	OR
	READ_BIT
	SET_BIT
	SGN
	SIN
	SQR
	TAN
	XOR

	Constants
	OFF
	ON
	FALSE
	PI
	TRUE

	Axis Parameters
	ACCEL
	ADDAX_AXIS
	AFF_GAIN
	ATYPE
	AXIS_ADDRESS
	AXIS_ENABLE
	AXIS_MODE
	AXISSTATUS
	BACKLASH_DIST
	BOOST
	CAN_ENABLE
	CLOSE_WIN
	CLUTCH_RATE
	CREEP
	D_GAIN
	D_ZONE_MIN
	D_ZONE_MAX
	DAC
	DAC_OUT
	DAC_SCALE
	DATUM_IN
	DECEL
	DEMAND_EDGES
	DEMAND_SPEED
	DPOS
	DRIVE_CLEAR
	DRIVE_CONTROL
	DRIVE_ENABLE
	DRIVE_EPROM
	DRIVE_HOME
	DRIVE_INPUTS
	DRIVE_INTERFACE
	DRIVE_MODE
	DRIVE_MONITOR
	DRIVE_READ
	DRIVE_RESET
	DRIVE_STATUS
	DRIVE_WRITE
	ENCODER
	ENCODER_BITS
	ENCODER_CONTROL
	ENCODER_ID
	ENCODER_READ
	ENCODER_STATUS
	ENCODER_TURNS
	ENCODER_WRITE
	ENDMOVE
	ENDMOVE_BUFFER
	ENDMOVE_SPEED
	ERRORMASK
	FAST_JOG
	FASTDEC
	FE
	FE_LATCH
	FE_LIMIT
	FE_LIMIT_MODE
	FE_RANGE
	FEGRAD
	FEMIN
	FHOLD_IN
	FHSPEED
	FORCE_SPEED
	FS_LIMIT
	FULL_SP_RADIUS
	FWD_IN
	FWD_JOG
	I_GAIN
	INVERT_STEP
	JOGSPEED
	LIMIT_BUFFERED
	LINKAX
	MARK
	MARKB
	MERGE
	MICROSTEP
	MOVES_BUFFERED
	MPOS
	MSPEED
	MTYPE
	NTYPE
	OFFPOS
	OPEN_WIN
	OUTLIMIT
	OV_GAIN
	P_GAIN
	PP_STEP
	REG_POS
	REMAIN
	REP_DIST
	REP_OPTION
	REV_IN
	REV_JOG
	RS_LIMIT
	SERVO
	SPEED
	SPHERE_CENTRE
	SRAMP
	TANG_DIRECTION
	TRANS_DPOS
	UNITS
	VECTOR_BUFFERED
	VERIFY
	VFF_GAIN
	VP_SPEED

