
Trio Motion Technology

Motion Coordinator MC464
Technical Reference Manual

Seventh Edition • 2010
Revision 2

All goods supplied by Trio are subject to Trio’s standard terms and conditions of sale.
This manual applies to systems based on the Motion Coordinator MC464 with system software 2.0087 or

higher.
The material in this manual is subject to change without notice. Despite every effort, in a manual

of this scope errors and omissions may occur. Therefore Trio cannot be held responsible for any
malfunctions or loss of data as a result.

Revision 1 December 2010

Copyright (C) 2000-2010 Trio Motion Technology Ltd.
All Rights Reserved

UK
Trio Motion Technology Ltd.

Shannon Way
Tewkesbury
GL20 8ND

United Kingdom
Phone: +44 (0)1684 292333
Fax: +44 (0)1684 297929

USA
Trio Motion Technology LLC.
1000 Gamma Drive, Suite 206

Pittsburgh
PA 15238,

USA
Phone: +1 412 968 9744

Fax: +1 412 968 9746

CHINA
Trio Shanghai

Tomson Centre
B1602, 188 Zhang Yang Road,
Pudong New Area, Shanghai,

200122,
 CHINA

Tel: +86 21 5879 7659
Fax: +86 21 5879 4289

Technical Reference Manual

CONTENTS
﻿

I

Contents

INTRODUCTION TO THE MC464...1-3
Features.. 1-5
The Trio Motion Technology Website...1-6

HARDWARE OVERVIEW..2-3
Motion Coordinator MC464... 2-3
Connections to the MC464... 2-5
Battery.. 2-9
Backlit Display..2-10
MC464 Feature Summary..2-11

INSTALLATION OF THE MC464..3-3
Packaging...3-3
Mounting..3-5
EMC considerations... 3-7
Background to EMC Directive...3-9

Installation Requirements to Ensure EMC Conformance....................3-10

MODULE ASSEMBLY..4-3
Fitting Expansion Modules...4-4
RTEX Interface (P871)..4-5
SERCOS II Interface (P872)...4-7
SLM Interface (P873)..4-9
FlexAxis Interface (P874 / P879)...4-11
Anybus-CC Module (P875)...4-14
EtherCAT Interface (P876)..4-16

INPUT / OUTPUT MODULES ...5-3
General Description..5-3
CAN 16-I/O Module (P316)..5-4
CAN 16-Output Module (P317) ..5-5
CAN 16-Input Module (P318) ..5-6
Alternative connection protocols..5-10

Software Interfacing P316, P317..5-13
Troubleshooting- P316, P317...5-13
Specification P316:..5-14
Specification P317...5-14
Specification P318...5-15

CAN Analogue I/O Module (P326)..5-16
Software Interfacing P326...5-19
Troubleshooting- P326 ...5-19
Specification P326..5-19

SYSTEM SETUP AND DIAGNOSTICS..6-3
Preliminary Concepts...6-3

System Setup ..6-3
Preliminary checks...6-3
Checking Communications and System Configuration........................6-4

Trio Motion Technology

CONTENTS
﻿

II

Setting Servo Gains...6-7
Diagnostic Checklists..6-12

WHAT IS A PROGRAM?.. 7-3
Controlling the Sequence of Events.. 7-3
Controller Functions..7-6
Parameters... 7-9
Command Line Interface..7-12
Example Programs...7-14

TRIOBASIC COMMANDS...8-3
Motion and Axis Commands..8-13
Input / Output Commands.. 8-109
Program Loops and Structures... 8-141
System Parameters and Commands... 8-155
Mathematical Operations and Commands.. 8-278
Constants.. 8-307
Axis Parameters.. 8-310

SUPPORT SOFTWARE..9-3
Motion Perfect 2..9-3

System Requirements...9-4
Connecting Motion Perfect to a controller....................................9-4
Running Motion Perfect 2 for the First time...................................9-5
Motion Perfect 2 Projects..9-5
Project Check Window..9-6

The Motion Perfect Desktop..9-9
Main Menu..9-10
Controller Menu...9-11
Controller Configuration...9-13
CAN I/O Status...9-14
Ethernet Configuration...9-14
Feature Enable..9-16
Memory Card Support..9-17

Loading New System Software...9-19
Motion Perfect Tools... 9-24

Terminal... 9-25
Axis Parameters.. 9-29
Oscilloscope...9-31
Keypad Emulation.. 9-40
Table / VR Editor... 9-42
Jog Axes... 9-42
Digital IO Status.. 9-45
Analogue Input Viewer.. 9-47

Linking to External Tools... 9-47
Control Panel... 9-48
The Motion Perfect Editor.. 9-52
Editor Menus.. 9-56
Program Debugger... 9-58
Variable Watch Tool... 9-60
Running Programs.. 9-61
Making programs run automatically... 9-62

Technical Reference Manual

CONTENTS
﻿

III

Storing Programs in the Flash EPROM .. 9-63
Configuring The Motion Perfect 2 Desktop....................................... 9-63

Communications.. 9-64
Editor Options.. 9-66

General Options... 9-66
CAN Drive Options... 9-67
Diagnostics.. 9-68
Terminal Font... 9-68
Program Compare.. 9-68
CX-Drive Configuration.. 9-69
FINS Configuration... 9-69
Saving the Desktop Layout... 9-69

Running Motion Perfect 2 Without a Controller.................................. 9-70
MC Simulation.. 9-70
Limitations of MC Simulation..9-71

Project Encryptor... 9-72
Introduction.. 9-72
Encryption Process... 9-72
Encrypting a Project... 9-72

CAD2Motion...9-76
Introduction...9-76
Main Screen..9-76
Sequence Manipulation Tools.. 9-79
Import Options... 9-79
Preparing A Drawing For CAD2Motion... 9-81

DocMaker... 9-82

AUTOLOADER AND MCLOADER ACTIVEX..................................... 10-3
Project Autoloader.. 10-3

Using the Autoloader.. 10-3
Script Commands.. 10-7

Script File.. 10-15
MC Loader... 10-16

Installation of the MC Loader Component................................... 10-16
Events.. 10-18
Methods... 10-23
TrioPC Motion ActiveX Control...11-3

Requirements..11-3
Installation of the ActiveX Component..11-3
Using the Component..11-3

Connection Commands ...11-4
Properties...11-7
Motion Commands... 11-10
Process Control Commands... 11-20
Variable Commands.. 11-21
Input / Output Commands.. 11-28
General commands.. 11-35
Events.. 11-38
Intelligent Drive Commands.. 11-40
Program Manipulation Commands... 11-41
Data Types.. 11-43

Trio Motion Technology

CONTENTS
﻿

IV

TrioPC status.. 11-44

INTRODUCTION TO MODBUS... 12-3
Modbus RTU...12-3
Modbus TCP.. 12-4
Modbus Technical Reference.. 12-6
DeviceNet...12-9

DeviceNet Objects Implemented... 12-10
Identity Object.. 12-10
DeviceNet Object..12-11
Assembly Object.. 12-12
Connection Object.. 12-13
MC Object.. 12-16

Ethernet... 12-19
The Subnet Mask.. 12-20

Anybus... 12-25
Anybus Configuration... 12-26

REFERENCE... 13-3
Communications Ports...13-3
Error Codes...13-3
Data Formats and Floating-Point Operations..................................... 13-8
Product Codes... 13-9

INDEX... III

1CHAPTER

INTRODUCTION

Trio Motion Technology

INTRODUCTION
﻿

1-2

Technical Reference Manual

INTRODUCTION
﻿

1-3

Introduction to the MC464

The MC464 represents a quantum leap in motion control technology. Run your
machine faster with this new generation Motion Coordinator based on a 64 bit MIPS
processor.

Choose the motor and drives to best suit your application without compromise,
MC464 provides interface options for traditional servo, stepper and piezo control
together with many digital interfaces for current digital servo drives. Increase the
flexibility of your equipment with support for up to 64 axes of motion control.
Trio’s tradition of modular configuration has evolved into convenient clip-on
modules allowing the system designer to precisely build the configuration needed
for the job.

HMI

LAPTOP

FACTORY
NETWORK

CAN I/O

NETWORKED
SERVO DRIVES

MOTORS

SERVO DRIVES

MOTORS

MC464
MOTION COORDINATOR

Typical System Configuration

The MC464 supports programs written in TrioBASIC, allowing a smooth upgrade
path from earlier series of Motion Coordinator. In addition; G-Code, HPGL and the
standard IEC 61131-3 languages are supported, with full operation of the IEC 61131-
3 language requiring a software license. I/O expansion is provided via a built-in
CANbus interface. Further fieldbus networks supporting common factory protocols
are supported via the HMS AnyBus® adapter module.

The axis expansion modules feature many options for Drive Network interfaces,
analogue servo, pulse/direction, absolute or incremental feedback and accurate
hardware registration.

Up to 7 half-height expansion modules or 3 full-height expansion modules can be
attached. This modular approach along with Trio’s feature enable code system for
axis activation allows the whole system to be scaled exactly to need.

Trio Motion Technology

INTRODUCTION
﻿

1-4

Setup and Programming
To program the Motion Coordinator a PC is connected via an Ethernet link. The
dedicated Motion Perfect 2 program is normally used to provide a wide range of
programming facilities, on a PC running Microsoft Windows XP, Vista or Windows 7
32bit versions.

Motion Perfect 2

Once connected to the Motion Coordinator, the user has direct access to
TrioBASIC, which provides an easy, rapid way to develop control programs. All
the standard program constructs are provided; variables, loops, input/output,
maths and conditions. Extensions to this basic instruction set exist to permit a
wide variety of motion control facilities, such as single axis moves, synchronised
multi axis moves and unsynchronised multi axis moves as well as the control of the
digital I/O.

The MC464 controller features multi-tasking TrioBASIC and the standard IEC 61131-3
language. Multiple TrioBASIC programs plus Instruction List (IL), Ladder Diagram
(LD), Function Block (FB), Structured Text (ST) and Sequential Function Chart
(SFC) can be constructed and run simultaneously to make programming complex
applications much easier.

KW-Software’s “Multiprog” programming suite is available separately in order
to access the fill IEC 61131-3 functionality. Multiprog provides a seamless
programming, compilation and debug environment that can work in real-time with

Technical Reference Manual

INTRODUCTION
Features

1-5

the MC464. A motion library is provided which enables the familiar Trio Motion
Technology commands to be included in IEC 61131-3 programs.

Features
•	Supports digital drive systems up to 64 axis

•	Based on 64bit 400MHz MIPS processor

•	Anybus Module support allowing flexible factory communication options

•	64bit position integers

•	High accuracy double floating point resolution

•	Multi-tasking BASIC programming

•	Backlit LCD display

•	Ethernet programming interface

•	Expansion flexibility with clip on modules allowing quick interchangibility

•	 IEC61131-3 programming support

•	“Disable zones” for networked drives

•	Bi-directional reference encoder port

•	 I/O expansion up to 272 I/O points

Trio Motion Technology

INTRODUCTION
The Trio Motion Technology Website

1-6

The Trio Motion Technology Website
The Trio website contains up to the minute news, information and support for the
Motion Coordinator product range.

•	Website Features

•	Latest News

•	Product Information

•	Manuals

•	Support Software

•	System Software Updates

•	Technical Support

•	User’s Forum

•	Application Examples

•	Employment Opportunities

WWW.TRIOMOTION.COM

Technical Reference Manual

INTRODUCTION
The Trio Motion Technology Website

1-7

2CHAPTER

HARDWARE OVERVIEW

Trio Motion Technology

HARDWARE OVERVIEW
﻿

2-2

Technical Reference Manual

HARDWARE OVERVIEW
Motion Coordinator MC464

2-3

Hardware Overview

Motion Coordinator MC464
Overview
The Motion Coordinator MC464
is Trio’s new generation modular
servo control positioner with
the ability to control servo or
stepper motors by means of
Digital Drive links (e.g. EtherCAT,
SERCOS, etc) or via traditional
analogue encoder or pulse and
direction. A maximum of 7
expansion modules can be fitted
to control up to 64 axes which
gives the flexibility required in
modern system design. The
MC464 is housed in a rugged
plastic case with integrated earth
chassis and incorporates all the
isolation circuitry necessary for
direct connection to external
equipment in an industrial
environment. Filtered power
supplies are included so that it
can be powered from the 24V
d.c. logic supply present in most
industrial cabinets.

It is designed to be configured
and programmed for the application using a PC running the Motion Perfect 2
application software, and then may be set to run “standalone” if an external
computer is not required for the final system.

The Multi-tasking version of TrioBASIC for the MC464 allows up to 20 TrioBASIC
programs to be run simultaneously on the controller using pre-emptive multi-
tasking. In addition, the operating system software includes a full IEC 61131-3
standard run-time environment (licence key required).

Programming
The Multi-tasking ability of the MC464 allows parts of a complex application to be
developed, tested and run independently, although the tasks can share data and
motion control hardware. IEC 61131-3 programs can be run at the same time as
TrioBASIC allowing the programmer to select the best features of each.

Trio Motion Technology

HARDWARE OVERVIEW
Motion Coordinator MC464

2-4

I/O Capability
The MC464 has 8 built in 24V inputs and 8 bi-directional I/O channels. These may
be used for system interaction or may be defined to be used by the controller for
end of travel limits, registration, datuming and feedhold functions if required. Each
of the Input/Output channels has a status indicator to make it easy to check them
at a glance. The MC464 can have up 256 external Input/Output channels connected
using DIN rail mounted CAN I/O modules. These units connect to the built-in CAN
channel.

Communications
A 10/100 base-T Ethernet port is fitted as standard and this is the primary
communications connection to the MC464. Many protocols are supported including
Telnet, Modbus TCP, Ethernet IP and TrioPCMotion. Check the Trio website (www.
triomotion.com) for a complete list.

The MC464 has one built in RS232 port and one built in duplex RS485 channel
for simple factory communication systems. Either the RS232 port or the RS485
port may be configured to run the Modbus or Hostlink protocol for PLC or HMI
interfacing.

If the built-in CAN channel is not used for connecting I/O modules, it may optionally
be used for CAN communications. e.g. DeviceNet, CANopen etc.

The Anybus CompactCom Carrier Module (P875) can be used to add other fieldbus
communications options

Removable Storage
The MC464 has a SD Card slot which allows a simple
means of transferring programs, firmware and data
without a PC connection. Offering the OEM easy machine
replication and servicing.

The memory slot is compatable with a wide range of SD
cards up to 2Gbytes using the FAT32 file system.

Axis Positioning Functions
The motion control generation software receives instructions to move an axis or
axes from the TrioBASIC or IEC 61131-3 language which is running concurrently
on the same processor. The motion generation software provides control during
operation to ensure smooth, coordinated movements with the velocity profiled as
specified by the controlling program. Linear interpolation may be performed on
groups of axes, and circular, helical or spherical interpolation in any two/three
orthogonal axes. Each axis may run independently or they may be linked in any
combination using interpolation, CAM profile or the electronic gearbox facilities.

Consecutive movements may be merged to produce continuous path motion and
the user may program the motion using programmable units of measurement (e.g.
mm, inches, revs etc.). The module may also be programmed to control only the
axis speed. The positioner checks the status of end of travel limit switches which
can be used to cancel moves in progress and alter program execution.

Technical Reference Manual

HARDWARE OVERVIEW
Connections to the MC464

2-5

Connections to the MC464

101011
A

B

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ENABLE

MC 464

Backlit
Display

RS232 and
RS485 Port

Ethernet
Sync Port

Ethernet
Port

Sync Encoder

SD Card

I/O, CAN,
Analogue,

Power

Expansion
Module

Ethernet Port Connection
Physical layer: 10/100 base_T

Connector: RJ45

The Ethernet port is the default connection between the Motion Coordinator and
the host PC running Motion Perfect 2 programming.

Ethernet Sync Port
This second Ethernet port is provided for inter-connection between Motion
Coordinators for system and/or motion synchronisation.

MC464 Serial Connections
The MC464 features two serial ports. Both ports are accessed through a single 8
pin connector.

Serial Connector

Pin Function Note

1 RS485 Data In A Rx+
Serial Port #2

2 RS485 Data In B Rx-

3 RS232 Transmit Serial Port #1

4 0V Serial

5 RS232 Receive Serial Port #1

6 1

2

3

4

58
7

Trio Motion Technology

HARDWARE OVERVIEW
Connections to the MC464

2-6

Pin Function Note

6 Internal 5V 5V supply is limited to 150mA, shared with sync
port

7 RS485 Data Out Z Tx- Serial Port #2

8 RS485 Data Out Y Tx+ Serial Port #2

Sync Encoder
The sync encoder port is bidirectional. It can be used as a reference encoder input
or as an encoder simulation output to act as a master reference for other parts of
the system.

Pin Function Pulse & Direction

1 Enc. A Step+

2 Enc. /A Step-

3 Enc. B Direction+

4 Enc. /B Direction-

5 0V Encoder 0V Stepper

6 Enc. Z Enable+

7 Enc. /Z Enable-

8 5V * 5V*

9 5V Registration input 5V Registration input

*5V supply is limited to 150mA (shared with serial port)

Registration
The MC464 built in port has 2 available registration events. These can be used with
the Z mark, the registration input on the sync port, input 0 or input 1.

1
2
3
4
5

6
7
8
9

Technical Reference Manual

HARDWARE OVERVIEW
Connections to the MC464

2-7

24V Power Supply Input

101011
A

B

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ENABLE

MC 464

0V AIN
AIN0
AIN1

WDOG+
WDOG-

I 0
I 1
I 2
I 3
I 4
I 5
I 6
I 7

0V I/O
0V SUPPLY

0V CAN/AIN
CAN LOW
CAN SHIELD
CAN HIGH
24V CAN/AIN SUPPLY
I/O/8
I/O/9
I/O/10
I/O/11
I/O/12
I/O/13
I/O/14
I/O/15
24V I/0 SUPPLY
24V SUPPLY

The MC464 is powered entirely via the 24v d.c.supply connections. The unit
uses internal DC-DC converters to generate independent 5V logic supply, the
encoder/serial 5V supply and other internal power supplies. I/O, analogue and
CANbus circuits are isolated from the main 24V power input and must be powered
separately. For example; it is often necessary to power the CANbus network
remotely via the CANbus cable.

24V d.c., Class 2 transformer or power source required for UL compliance. The MC464
is grounded via the metal chassis. It MUST be installed on an unpainted metal plate or
DIN rail which is connected to earth.

Amplifier Enable (Watchdog) Relay Outputs
One internal relay contact is available to enable external amplifiers when the
controller has powered up correctly and the system and application software
is ready. The amplifier enable is a solid-state relay with an ON resistance of 25
ohms at 100mA. The enable relay will be open circuit if there is no power on the
controller OR a motion error exists on a servo axis OR the user program sets it open
with the WDOG=OFF command.

The amplifier enable relay may, for example, be incorporated within a hold-up
circuit or chain that must be intact before a 3-phase power input is made live.

ALL STEPPER AND SERVO AMPLIFIERS MUST BE INHIBITED WHEN THE AMPLIFIER
ENABLE OUTPUT IS OPEN CIRCUIT!

Trio Motion Technology

HARDWARE OVERVIEW
Connections to the MC464

2-8

CANbus
The MC464 features a built-in CAN channel. This
is primarily intended for Input/Output expansion
via Trio’s range of CAN digital and analogue I/O
modules. It may be used for other purposes when
I/O expansion is not required.

The CANbus port is electrically equivalent to a
DeviceNet node.

Analogue Inputs
Two built-in 12 bit analogue inputs are provided
which are set up with a scale of 0 to 10V. External
connection to these inputs is via the 2-part terminal
strip on the lower front panel.

A 24V d.c. supply must be applied to the CANbus
port to provide power for the analogue input circuit.

24V Input Channels
The Motion Coordinator has 16 24V Input channels
built into the master unit. These may be expanded to
256 Inputs by the addition of CAN-16 I/O modules.

All of the 24V Input channels have the same circuit
although 8 on the master unit have 24V Output
channels connected to the same pin. These bi-
directional channels may be used for Input or Output
to suit the application. If the channel is to be used as
an Input then the Output should not be switched on in the program.

24V I/O Channels
Input/output channels 8..15 are bi-
directional and may be used for Input
or Output to suit the application. The
inputs have a protected 24V sourcing
output connected to the same pin.
If the channel is to be used as an
Input then the Output should not
be switched on in the program. The
input circuitry is the same as on the
dedicated inputs. The output circuit
has electronic over-current protection

101011
A

B

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ENABLE

MC 464

0V AIN
AIN0
AIN1

WDOG+
WDOG-

I 0
I 1
I 2
I 3
I 4
I 5
I 6
I 7

0V I/O
0V SUPPLY

0V CAN/AIN
CAN LOW
CAN SHIELD
CAN HIGH
24V CAN/AIN SUPPLY
I/O/8
I/O/9
I/O/10
I/O/11
I/O/12
I/O/13
I/O/14
I/O/15
24V I/0 SUPPLY
24V SUPPLY

Ain

0V

22k

22k

100uf

A to D
CONVERTER

0V

6k8 Ohms

Vin

I/O 24V

I/O 0V

Input Pin

Optical
Output
Control

Signal

Optical
Input

Signal

I/O 24V

I/O OV

6k8
Input/Output
Pin

Protected
Switch

Technical Reference Manual

HARDWARE OVERVIEW
Battery

2-9

and thermal protection which shuts the output down when the current exceeds
250mA.

Care should be taken to ensure that the 250mA limit for the output circuit is not
exceeded, and that the total load for the group of 8 outputs does not exceed 1A

Battery
The MC464 incorporates a user replaceable battery for the battery back-up RAM.
For replacement, use battery model CR2450 or equivalent.

To replace the battery, insert screwdriver under the frontmost ventilation slot (A)
and prize off the battery cover (B) and pull the battery ribbon to lift the battery
(C) from the MC464. Replacing is the reverse of the procedure.

A

B

C

TO AVOID LOSING THE MEMORY CONTENTS, THE NEW BATTERY SHOULD BE INSERTED
WITHIN 30 SECONDS OF THE OLD ONE BEING REMOVED.!

Trio Motion Technology

HARDWARE OVERVIEW
Backlit Display

2-10

Backlit Display
The information display area shows the IP address and subnet mask during power-
up and whenever an Ethernet cable is first connected to the MC464. During
operation, this display shows run, Off or Err to indicate the MC464 status. Below
the main status display are the ERROR, ENABLE and BATTERY LOW indicators.

101011
A

B

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ENABLE

MC 464

0V AIN
AIN0
AIN1

WDOG+
WDOG-

I 0
I 1
I 2
I 3
I 4
I 5
I 6
I 7

0V I/O
0V SUPPLY

0V CAN/AIN
CAN LOW
CAN EARTH
CAN HIGH
24V CAN/AIN SUPPLY
I/O/8
I/O/9
I/O/10
I/O/11
I/O/12
I/O/13
I/O/14
I/O/15
24V I/0 SUPPLY
24V SUPPLY

Information Display

Input Status I/O Status

Ok Status

ERROR		 An error has occurred (see Error Display Codes table below 	
			 for details).

ENABLE		 When illuminated, WDOG is ON.

BATTERY LOW	 When illuminated the battery needs replacing.

A bank of 8 indicators at the left side shows the Digital Input States and a similar
bank on the right shows the state of I/O8 to I/O15. The I/O displayed can be
altered using the DISPLAY command.

Two LED’s are provided to show the processor (OK) and system status.

Error Display Codes

Unn Unit error on slot nn

Ann Axis error on axis nn

Caa Configuration error on unit nn ie: too many axes

Exx System error E00 - RAM error 8bit BB - RAM (VR)
E01 - RAM error 16 bit BB - RAM (TABLE)
E02 - Not used
E03 - Battery Error

Technical Reference Manual

HARDWARE OVERVIEW
MC464 Feature Summary

2-11

MC464 Feature Summary
Size 201 mm x 56 mm x 155 mm (HxWxD).

Weight 750g

Operating Temp. 0 - 45 degrees. C

Control Inputs Forward Limit, Reverse Limit, Datum Input, Feedhold Input.

Communication
Ports

RS232 channel: up to 38400 baud.
RS485 channel: up to 38400 baud.
CANbus port (DeviceNet and CANopen compatible)
Ethernet: 10/100 BaseT multiple port connection.

Position Resolution 64 bit position count

Speed Resolution 32 bits. Speed may be changed at any time. Moves may be
merged.

Servo Cycle 125µs minimum, 1ms default, 2ms max.

Programming Multi-tasking TrioBASIC system, maximum 20 user
processess.
IEC 61131-3 programming system.

Interpolation
modes

Linear 1-64 axes, circular, helical, spherical, CAM Profiles,
speed control, electronic gearboxes.

Memory 8 Mbyte user memory. 2 Mbyte TABLE battery-backed
memory. Automatic flash EPROM program storage.

Table 512,000 table positions. 196,608 positions in battery backed
memory.

VR 65,536 VR positions in battery backed memory.

SD Card Standard SD Card compatible to 2Gbytes. Used for storing
programs and/or data.

Power Input 24V d.c., Class 2 transformer or power source.
18..29V d.c. at 625mA typical.

Amplifier Enable
Output

Normally open solid-state relay rated 24V ac/dc nominal.
Maximum load 100mA. Maximum voltage 29V.

Analogue Inputs 2 isolated x 12 bit 0 to 10V.

Serial / Encoder
Power Output

5V at 150mA.

Digital Inputs 8 Opto-isolated 24V inputs.

Digital I/O 8 Opto-isolated 24V outputs. Current sourcing (PNP) 250
mA. (max. 1A per bank of 8).

3CHAPTER

INSTALLATION

Trio Motion Technology

INSTALLATION
﻿

3-2

Technical Reference Manual

INSTALLATION
Packaging

3-3

Installation of the MC464

Packaging
The Motion Coordinator MC464 is designed to be mounted on a DIN rail or, by use
of optional mounting clips, it can be screwed to a backplate.

A cast metal chassis provides mechanical stability and a reliable earth connection
to aid EMC immunity.

The rugged plastic case includes ventilation holes, top and bottom, and a
removable cover to access the memory battery.

Expandable design

System expansion is done by adding either single or double height modules. These
are clipped to the MC464 and secured by a bolt which also acts as the earth
connection between the MC464 and the module

The dimensions are as shown below.

56mm

7mm

15mm

154mm

184mm 201mm

34mm

128mm

Items supplied with the MC464

Trio Motion Technology

INSTALLATION
Mounting

3-4

Connectors:
•	9 way D-Type plug

•	Quick connect I/O connector (30 way)

Panel mounting set:
•	2 x Mounting bracket

•	1 x M3 x 10mm Countersunk screw

•	1 x M3 x 6mm Countersunk screw

•	Quick start guide

•	CD ROM with software and documentation

Technical Reference Manual

INSTALLATION
Mounting

3-5

Mounting
General
The MC464 must be mounted vertically and should not be subjected to mechanical
loading. Care must be taken to ensure that there is a free flow of air vertically
around the MC464.

DIN Rail
Pull down the clip to allow the MC464 to be mounted on a single DIN rail. Push up
the clip to lock it to the rail.

Trio Motion Technology

INSTALLATION
Mounting

3-6

Mounting Clips
Remove the 2 mounting clips from their packaging and insert one at the top rear
of the case, by fitting the small tab into the rectangular slot and fix with the M3 x
6mm screw provided.

The second clip fits to the bottom of the case rear. Line up the DIN rail lever with
the hole and slot in the metal chassis, fit the clip into the slot and fix it with the
M3 x 10mm screw.

Environmental Considerations
The MC464 should not be handled whilst the 24 Volt power is connected.

ENSURE THAT THE AREA AROUND THE VENTILATION HOLES AT THE TOP AND BOTTOM
OF THE MC464 AND ANY ADDITIONAL MODULES ARE KEPT CLEAR. AVOID VIOLENT
SHOCKS TO, OF VIBRATION OF, THE MC464, SYSTEM AND MODULES WHILST IN USE OR
STORAGE.

IP rating: IP 20

The MC464 and add-on modules are protected against solid objects intruding into
the case and against humidity levels that do not induce condensation to occur.

!

Technical Reference Manual

INSTALLATION
EMC considerations

3-7

EMC considerations
Most pieces of electrical equipment will emit noise either by radiated emissions or
conducted emissions along the connecting wires. This noise can cause interference
with other equipment near-by which could lead to that equipment malfunctioning.
These sort of problems can usually be avoided by careful wiring and following a
few basic rules.

•	Mount noise generators such as contactors, solenoid coils and relays as far
away as possible from the MC464.

•	Where possible use solid-state contactors and relays.

•	Fit suppressors across coils and contacts.

•	Route heavy current power and motor cables away from signal and data
cables.

•	Ensure all the modules have a secure earth connection.

•	Where screened cables are used terminate the screen with a 360 degree
termination rather than a “pig-tail”. Connect both ends of the screen to
earth. The screening should be continuous, even where the cable passes
through a cabinet wall or connector.

These are just very general guidelines and for more specific advice on
specific controllers, see the installation requirements later in this chapter.
The consideration of EMC implications is more important than ever since the
introduction of the EC EMC directive which makes it a legal requirement for
the supplier of a product to the end customer to ensure that it does not cause
interference with other equipment and that it is not itself susceptible to
interference from other equipment.

Trio Motion Technology

INSTALLATION
EMC considerations

3-8

EMC Earth
Best EMC performance is obtained when the MC464 is attached to an earthed,
unpainted metal panel using the two mounting clips. When screwed directly to the
panel, the clips provide the required EMC earth connection.

If the MC464 is mounted on a DIN rail, then an additional EMC earth must be
attached as shown below. Use a flat braided conductor, minimum cross-section
4mm x 1mm. Connect to the earthed metal panel as close to the MC464 as
possible. Do not use circular cross-section wire. Do not run the conductor to a
central star point.

Cable Shields
All encoder cables must be terminated in the correct D-type plug, either 9 way or
15 way as required. For best EMC performance use a metal or metalised plastic
cover for the D-type connector. Clamp the screen of the encoder cable where it
enters the connector cover. Do not make a “pig-tail” connection from the screen
to the plug cover. When plugging the D-type into the MC464, use the jack-screws
to firmly attach the D-type plug to the socket on the MC464 or its axis module.

Technical Reference Manual

INSTALLATION
Background to EMC Directive

3-9

Both ends of the encoder cable’s screen must be connected using a 360 degree contact
and not a pig-tail connection.
The 0V must be connected separately from the screen. Make sure that encoder cables
are specified with one extra wire to carry the 0V.

All serial cables must be terminated in an 8-pin mini-DIN connector. For best EMC
performance, clamp the screen of the serial cable where it enters the connector
cover. Do not make a “pig-tail” connection from the screen to the plug cover.

SCREEN CONNECTED INTERNALLY
TO METAL SHIELD

SCREEN CLAMPED TO EARTH

Both ends of the serial cable’s screen must be connected using a 360 degree contact
and not a pig-tail connection.
The 0V must be connected separately from the screen. Make sure that serial cables
are specified with one extra wire to carry the 0V. This applies to RS422/RS485 serial
connections as well as RS232.

Background to EMC Directive
Since 1st January 1996 all suppliers of electrical equipment to end users must
ensure that their product complies with the 89/336/EEC Electromagnetic
Compatibility directive. The essential protection requirements of this directive are:

Equipment must be constructed to ensure that any electromagnetic disturbance it
generates allows radio and telecommunications equipment and other apparatus to
function as intended.

Equipment must be constructed with an inherent level of immunity to externally
generated electromagnetic disturbances.

Suppliers of equipment that falls within the scope of this directive must show “due
diligence” in ensuring compliance. Trio has achieved this by having products that
it considers to be within the scope of the directive tested at an independent test
house.

Trio Motion Technology

INSTALLATION
Background to EMC Directive

3-10

As products comply with the general protection requirements of the directive
they can be marked with the CE mark to show compliance with this and any other
relevant directives. At the time of writing this manual the only applicable directive
is the EMC directive. The low voltage directive (LVD) which took effect from 1st
January 1997 does not apply to current Trio products as they are all powered from
24V which is below the voltage range that the LVD applies to.

Just because a system is made up of CE marked products does not necessarily
mean that the completed system is compliant. The components in the system
must be connected together as specified by the manufacturer and even then it is
possible for some interaction between different components to cause problems but
obviously it is a step in the right direction if all components are CE marked.

Testing Standards
For the purposes of testing, a typical system configuration was chosen because of
the modular nature of the Motion Coordinator products. Full details of this and
copies of test certificates can be supplied by Trio if required.

For each typical system configuration testing was carried out to the following
standards:

Emissions - BS EN61000-6-4 : 2007.
The MC464 products conform to the Class A limits.

Immunity - BS EN61000-6-2 : 2005.
This standard sets limits for immunity in an industrial environment and is a far
more rigorous test than part 1 of the standard.

Installation Requirements to Ensure EMC Conformance

WHEN THE TRIO PRODUCTS ARE TESTED THEY ARE WIRED IN A TYPICAL SYSTEM
CONFIGURATION. THE WIRING PRACTICES USED IN THIS TEST SYSTEM MUST BE
FOLLOWED TO ENSURE THE TRIO PRODUCTS ARE COMPLIANT WITHIN THE COMPLETED
SYSTEM.

A summary of the guidelines follows:
•	The MC464 modules must be earthed via the main chassis of the MC464 using

the lower panel mounting clip or an earth strap. This must be done even if
DIN rail mounted.

•	 If any I/O lines are not to be used they should be left unconnected rather
than being taken to a terminal block, for example, as lengths of unterminated
cable hanging from an I/O port can act as an antenna for noise.

!

Technical Reference Manual

INSTALLATION
Background to EMC Directive

3-11

•	Screened cables MUST be used for encoder, stepper and registration input
feedback signals and for the demand voltage from the controller to the
servo amplifier if relevant. The demand voltage wiring must be less than
1m long and preferably as short as possible. The screen must be connected
to earth at both ends. Termination of the screen should be made in a 360
degree connection to a metallised connector shell. If the connection is to a
screw terminal e.g. demand voltage or registration input the screen can be
terminated with a short pig-tail to earth.

•	Ethernet cables should be shielded and as a minimum, meet the TIA Cat 5e
requirements.

•	Connection to the serial ports should be made with a Trio supplied cable.

As well as following these guidelines, any installation instructions for other
products in the system must be observed.

4CHAPTER

MC464 EXPANSION MODULES

Trio Motion Technology

MC464 EXPANSION MODULES4-2
﻿

Technical Reference Manual

MC464 EXPANSION MODULES 4-3
Fitting Expansion Modules

Module Assembly

A maximum of 7 half height modules or 3 full height modules may be fitted to
the MC464. A system may be made using any combination of half and full height
modules providing that the full height modules are the last to be attached.

Module SLOT Numbers
SLOT Numbers are allocated by the system software in order, left to right, starting
with the lower bus. Lower modules are allocated slots 0 to m, then the upper
modules become slots m+1 to n. Finally, the Sync Encoder Port is allocated slot
n+1. The Sync Encoder Port has SLOT number -1 in addition to the one allocated (1)
in this sequence.

 1 SLOT

SLOT 0

 1 0

 7 4 5 6

0 1 2 3

 4 1 2 3

0

Trio Motion Technology

MC464 EXPANSION MODULES4-4
Fitting Expansion Modules

Fitting Expansion Modules
•	Remove the 2 covers (B) if fitted to the MC464 or to the previous expansion

module (C).

•	Locate the 2 hooks at the front of the module, while holding the rear out at
an angle

•	Push forward to engage the hooks and at the same time swing the rear of the
module in so as to locate the connector.

•	Press the connector “home” once it is located.

•	Tighten the screw (A) using the tool provided or a small coin

•	Clip the provided covers (B) in place as shown.

A

C

B

B

Removing modules is the reversal of the above procedure.

If the system is to be panel mounted, a kit (P8) comprising 2 x panel mounting
brackets and 2 x countersunk screws may be purchaced separately from your Trio
distributor.

Technical Reference Manual

MC464 EXPANSION MODULES 4-5
RTEX Interface (P871)

RTEX Interface (P871)
For use with Panasonic amplifiers supporting the Panasonic Real Time Express
(RTEX) network. Allows Plug & Play interconnection with Shielded twisted pair
(TIA/EIA-568B CAT5e or more) Ethernet cables.

A single interface supports up to 32 axes on the RTEX network. The module comes
with 2 axes enabled. Further axes can be enabled with Trio’s Feature Enable
Codes.

Realtime Express
The P871 communicates with up to 32 servo amplifiers using Ethernet Real Time

Express. The physical layer is standard Ethernet connected in a ring. Each node
has a transmit socket and a receive socket to allow easy connection. The maxium
cable length between any 2 nodes is 60 meters and the overall network length is
limited to 200 meters.

RJ45 Connector (tx)
(Top connector)100Mbps Panasonic RTEX transmit – connect to receive of first
drive.

Trio Motion Technology

MC464 EXPANSION MODULES4-6
RTEX Interface (P871)

RJ45 Connector(Rx)
(Bottom connector) 100Mbps Panasonic RTEX receive – connect to transmit of last
drive.

Time Based Registration
Time based registration uses a 10MHz clock to record the time of a registration
event which is then referenced to time stamps on the axis position from the digital
drive network. An accurate registration position is then calculated. The 10MHz
clock gives a time resolution of 100nsec. The position and speed of the axis are
recorded so that the user can compensate for any fixed delays in the registration
circuit.

Any time based registration input can be assigned to any Digital or Virtual axis.
This makes the registration very flexible and enables multiple registration channels
per axis. Each registration channel can be armed independently and assigned to
an axis at any time.

Registration connector
R0-R7 registration inputs (24V).

0V common 0V return.

Registration inputs can be allocated to any axis by software.

LED Functions

LED LED colour LED function

ok Green ON=Module Initialised Okay

0 Red ON=Module Error

1 Yellow Status 1

2 Yellow Status 2

R0
R1
R2
R3

R0V
R0V

R4
R5
R6
R7
R0V
R0V

Technical Reference Manual

MC464 EXPANSION MODULES 4-7
SERCOS II Interface (P872)

SERCOS II Interface (P872)
The SERCOS interface module is designed to control up to 16 servo amplifiers using
the standard SERCOS II fibre-optic ring. Benefits of this system include full isolation
from the amplifiers and greatly reduced wiring.

For use with any SERCOS II IEC61491 compliant drive. The module allows control
of up to 16 axes via SERCOS with cycle times down to 250usec. Multiple SERCOS
interface modules can be used to increase axes count to 64.

2, 4, 8 and 16 Mbit / sec

Software settable intensity

SERCOS Connections
SERCOS is connected by 1mm polymer or glass fibre optic cable terminated with
9mm FSMA connectors. The SERCOS ring is completed by connecting TX to RX in a
series loop. The maximum fibre cable length between 2 nodes is 40m for plastic
optical fibre (POF) and 200m for hard clad silica (HCS). The total length for POF is
680m and 3,400 for HCS.

Connector (Rx)
(Top connector) SERCOS fibre-optic transmit. 9mm FSMA.

Trio Motion Technology

MC464 EXPANSION MODULES4-8
SERCOS II Interface (P872)

Connector (Tx)
(Bottom connector) SERCOS fibre-optic receive. 9mm FSMA.

Time Based Registration
Time based registration uses a 10MHz clock to record the time of a registration
event which is then referenced to time stamps on the axis position from the digital
drive network. An accurate registration position is then calculated. The 10MHz
clock gives a time resolution of 100nsec. The position and speed of the axis are
recorded so that the user can compensate for any fixed delays in the registration
circuit.

Any time based registration input can be assigned to any Digital or Virtual axis.
This makes the registration very flexible and enables multiple registration channels
per axis. Each registration channel can be armed independently and assigned to
an axis on the fly.

Registration connector

R0 - R7 registration inputs (24V).

R0V registration common 0V return.

Registration inputs can be allocated to any axis by software.

LED Functions

LED LED colour LED function

ok Green ON=Module Initialised Okay

0 Red ON=Module Error

1 Yellow Status 1

2 Yellow Status 2

SERCOS phase LED 1 LED 2

0 OFF FLASH

1 OFF ON

2 FLASH OFF 1

3 ON OFF 2

4 ON ON

R0
R1
R2
R3

R0V
R0V

R4
R5
R6
R7
R0V
R0V

Technical Reference Manual

MC464 EXPANSION MODULES 4-9
SLM Interface (P873)

SLM Interface (P873)
For use with drives supporting the Control Techniques SLM protocol. Each module
supports 6 axes which can be individual drives or two drives using the CT Multiax
concept.

SLM Connector

Pin Upper D-Type Lower D-Type

1 Com Axis 0 Com Axis 3

2 /Com Axis 0 /Com Axis 3

3 Hardware Enable Hardware Enable

4 0V Output 0V Output

5 24V Output 24V Output

6 Com Axis 1 Com Axis 4

7 /Com Axis 1 /Com Axis 43

8 No Connection No Connection

9 No Connection No Connection

10 No Connection No Connection

6

10

1

5

11

15

Trio Motion Technology

MC464 EXPANSION MODULES4-10
SLM Interface (P873)

Pin Upper D-Type Lower D-Type

11 24V Output 24V Output

12 0V Output 0V Output

13 Com Axis 2 Com Axis 5

14 /Com Axis 2 /Com Axis 5

15 Earth / Shield Earth / Shield

Time Based Registration
Time based registration uses a 10MHz clock to record the time of a registration
event which is then referenced to time stamps on the axis position from the digital
drive network. An accurate registration position is then calculated. The 10MHz
clock gives a time resolution of 100nsec. The position and speed of the axis are
recorded so that the user can compensate for any fixed delays in the registration
circuit.

Any time based registration input can be assigned to any Digital or Virtual axis.
This makes the registration very flexible and enables multiple registration channels
per axis. Each registration channel can be armed independently and assigned to
an axis on the fly.

Registration Connector

R0 - R5 registration inputs (24V).

0VR common 0V return.

0V PWR Power input for SLM system.

24V Power input for SLM system.

LED Functions

LED LED Colour LED Function

ok Green ON = Module initalised ok

0 Red ON = Module error

1 Yellow Status 1

2 Yellow Status 2

R0
R1
R2

R0V
0V PWR

R3
R4
R5
R0V
24V

Technical Reference Manual

MC464 EXPANSION MODULES 4-11
FlexAxis Interface (P874 / P879)

FlexAxis Interface (P874 / P879)
For use with Stepper, Analogue Servo & Piezo motors. The FlexAxis Interface is
available in 4 axes (P879) and 8 axes (P874) versions.

Each axis provides a 16 bit analogue output, up to 8 x 24Vdc high speed
registration inputs and a 6MHz encoder input. The encoder port can be configured
to drive a stepper motor or an encoder simulation port, both at 2MHz.

Trio Motion Technology

MC464 EXPANSION MODULES4-12
FlexAxis Interface (P874 / P879)

Encoder Connector

Pin Incremental
Encoder

Pulse +
Direction

Absolute
Encoder

1 Enc. A n Step+ n Clock+ n

2 Enc. /A n Step- n Clock- n

3 Enc. B n Direction+ n n/c

4 Enc. /B n Direction- n n/c

5 0V Enc 0V Enc 0V Enc

6 Enc. Z n Enable+ n Data+ n

7 Enc. /Z n Enable- n Data- n

8 5V* 5V* 5V*

9 Enc A n+4 Step+ n4 Clock+ n+4

10 Enc /A n+4 Step- n4 Clock- n+4

11 Enc B n+4 Direction+ n+4 n/c

12 Enc /B n+4 Direction- n+4 n/c

13 Enc Z n+4 Enable+ n+4 Data+ n+4

14 Enc /Z n+4 Enable- n+4 Data- n+4

15 0V Enc 0V Enc 0V Enc

*5V supply is limited to 150mA per axis.

Absolute encoder is only available on axes 4-7 on the P874 and on axes 2-3 on P879.

Connector 8 Axes (P874) 4 Axes (P879)

1 0 and 4 0

2 1 and 5 1

3 2 and 6 2

4 3 and 7 3

Technical Reference Manual

MC464 EXPANSION MODULES 4-13
FlexAxis Interface (P874 / P879)

Multifunction Connector
The 22 pin multifunction connector provides terminals for 8 registration inputs, 8
voltage outputs and 4 hardware PSWITCH outputs.

Analogue Outputs
8 +/-10V 16Bit analogue outputs are available for servo axis control (4 in the P879).
Connect V0 as the velocity command signal for the first axis, V1 for the second axis
and so on. The maximum load per axis together is 10mA.

Position Based Registration
Position based registration uses the encoder signal. When the registration event
occurs the encoder position is latched in hardware. The speed of the axis is also
recorded so that the user can compensate for any fixed electronic delays in the
registration circuit. Flexible allocation of registration inputs to axes is provided.
Each axis can have a number of registration events assigned to it and the source of
these events can be from any of the registration channels.

The Flex Axis module has 8 registration inputs in addition to the Z mark for each
axis. The first axis has 8 registration events which can be assigned to use any of
the registration inputs or its own Z mark. The remaining axes have 2 registration
events which can be assigned to use any of the registration inputs or their own Z
mark.

PSWITCH Outputs
Inputs R4 to R7 are bi-directional and can be used as outputs for high accuracy
PSWITCH operation. When used in this mode, the outputs are controlled by the
position value of an axis within the same P874 / P879 module.

Multifunction Connector Pin Out
0V DAC common 0V return

V0 - V7 Voltage outputs

R0 - R3 24V Registration Inputs
R4/PS4 - R7/PS7 Bidirectional 24V registration In/24V: PSWITCH outputs
Inputs / 24V PSwitch outputs
0V PWR Power Input
24V Power Input

4 axis version uses voltage outputs V0 - V3 only.

LED Functions

LED LED Colour LED Function

ok Green ON = Module initalised ok

ok

0

1

2
1

2

3

4

DAC 0V
DAC 0V

V0
V1
V2
V3
 R0
R1
R2
R3

0V PWR

DAC 0V
DAC 0V
V4
V5
V6
V7
R4/PS4
R5/PS5
R6/PS6
R7/PS7
24V

Trio Motion Technology

MC464 EXPANSION MODULES4-14
Anybus-CC Module (P875)

LED LED Colour LED Function

0 Red ON = Module error

1 Yellow Status 1

2 Yellow Status 2

Anybus-CC Module (P875)
Open communications is an important aspect to any control system. This module
adds support for the Anybus CompactCom device modules.

Anybus-CC is a plug-in module supporting all major Fieldbus and Ethernet
networks. Its innovative design and versatile functionality offers the Anybus-CC
optimal flexibility for OEM manufacturers.

The Anybus modules can be found at:

www.anybus.com

Anybus CompactCom Module shown for illustration only. Anybus CC Modules may be
purchased seperately.

Technical Reference Manual

MC464 EXPANSION MODULES 4-15
EtherCAT Interface (P876)

Anybus Module Fitting
Push the Anybus® module (A) into the Trio Expansion Interface taking care to keep
its base in contact with the PCB and align guide slots (B) with the connector rails
inside.

Ensure that the moulded hooks (C) on the lower front edge of the Anybus® module
locate under the P875 PCB at the front.

When the module is flush with the face of the Trio Expansion Interface, tighten
the two “Torx” head screws (D) to locate the two lugs (E) and secure the Anybus®
module.

CD

A

B

E

To remove the module, reverse this procedure.

Trio Motion Technology

MC464 EXPANSION MODULES4-16
EtherCAT Interface (P876)

EtherCAT Interface (P876)
For use with EtherCAT compliant drives, this module allows control of up to 64
axes via standard shielded twisted pair (TIA/EIA-568B CAT5e or more) Ethernet
cables. Multiple EtherCAT Interface Modules can be used.

EtherCAT is an open, high performance ethernet based fieldbus system, which has
been integrated into several IEC standards (IEC 61158, IEC 61784 and IEC61800). It
is a high performance, deterministic protocol, with high bandwidth usage, low
latency and low communication jitter. Various network topologies are supported,
including line, tree or star. The EtherCAT compliant servo amplifiers from any
number of vendors may be included in a network.

The module supports both the CANopen and servo drive (SERCOS, IEC 61491)
EtherCAT profiles, along with the mailbox transfer protocol to exchange
configuration, status and diagnostic information between the master and slave.

RJ45 Connector
100 base-T Ethernet (EtherCat Master).

Technical Reference Manual

MC464 EXPANSION MODULES 4-17
EtherCAT Interface (P876)

Time Based Registration
Time based registration uses a 10MHz clock to record the time of a registration
event which is then referenced to time stamps on the axis position from the digital
drive network. An accurate registration position is then calculated. The 10MHz
clock gives a time resolution of 100nsec. The position and speed of the axis are
recorded so that the user can compensate for any fixed delays in the registration
circuit.

Any time based registration input can be assigned to any Digital or Virtual axis.
This makes the registration very flexible and enables multiple registration channels
per axis. Each registration channel can be armed independently and assigned to
an axis on the fly.

Registration Connector

R0 - R7: registration inputs (24V).

R0V: registration common 0V return.

Registration inputs can be allocated to any axis by software.

LED Functions

LED LED colour LED function

ok Green ON=Module Initialised Okay

0 Red ON=Module Error

1 Yellow Status 1

2 Yellow Status 2

R0
R1
R2
R3

R0V
R0V

R4
R5
R6
R7
R0V
R0V

5CHAPTER

I/O EXPANSION MODULES

Trio Motion Technology

I/O EXPANSION MODULES5-2
﻿

Technical Reference Manual

I/O EXPANSION MODULES 5-3
General Description

Input / Output Modules

General Description
Trio can supply a range of Input/Output Modules.

The Motion Coordinator controllers allow for I/O expansion by having a CAN
interface. This allows the I/O modules to form a network up to 100m in length.

Operator interface units can communicate with controllers using the serial RS232/
RS485 ports or the Ethernet port. Third party operator interface units may
connect using either the built-in Modbus protocol or a serial protocol written in
BASIC.

Product Code:
CAN 16-I/O Module		 P316

CAN 16-Output Module		 P317

CAN 16-Input Module		 P318

CAN Analogue I/O Module 	 P326

Trio Motion Technology

I/O EXPANSION MODULES5-4
CAN 16-I/O Module (P316)

CAN 16-I/O Module (P316)
The CAN 16-I/O Module allows the 24 Volt digital inputs and outputs of the Motion
Coordinator to be expanded in blocks of 16 bi-directional channels.

Up to 16 CAN 16-I/O Modules may be connected allowing up to 256 I/O channels in
addition to the internal channels built-in to the Motion Coordinator. Each of the 16
channels in each module is bi-directional and can be used either as an input OR as
an output.

Convenient disconnect terminals are used for all I/O connections. The P216 CAN
16-I/O Module may also be used as an I/O expander for Lenze drives with an
appropriate CAN interface.

P316

0
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15

1
2
4
8
16
32

OFF

MS NS

PR
DR 10 11 12 13 14 15 24v Ov98

NODE
ADDRESS

CAN 16-I/O

7 6 5 4 3 2 1 00v 24v

0v for IO 0-7
24v for IO 0-7
IO 7
IO 6
IO 5
IO 4
IO 3
IO 2
IO 1
IO 0

0v for IO 8-15
24v for IO 8-15
IO 15
IO 14
IO 13
IO 12
IO 11
IO 10
IO 9
IO 8

(Black) V-
(Blue) CAN _L
 SHIELD
(White) CAN_H
(Red) V+

24V DC Class 2

I/O Connections
The CAN 16-I/O Module has 3 disconnect terminal connectors:

•	DeviceNet physical format 5 way CAN connector

•	 Input/Output Bank 0 - 7 and power supply for bank 0 - 7 on 10 way connector

•	 Input/Output Bank 8 - 15 and power supply for bank 8 - 15 on 10 way
connector.

Technical Reference Manual

I/O EXPANSION MODULES 5-5
CAN 16-Output Module (P317)

CAN 16-Output Module (P317)
The CAN 16-Output Module allows the 24 Volt digital outputs of the Motion
Coordinator to be expanded in blocks of 16 additional output channels.

Up to 16 CAN 16-Output Modules may be connected allowing up to 256 Input
channels in addition to the internal channels built-in to the Motion Coordinator.
CAN 16-Output modules may be mixed with CAN 16-Input and CAN 16-I/O modules
on the same network to build the I/O configuration required for the system.

Convenient disconnect terminals are used for all I/O connections.

0

1

2

3

4

5

6

7

24V

0V

8

9

10

11

12

13

14

15

24V

0V

0 Out
1 Out
2 Out
3 Out
4 Out
5 Out
6 Out
7 Out

24V
0V

8 Out
9 Out

10 Out
11 Out
12 Out
13 Out
14 Out
15 Out

24V
0V

V- (black)
CAN_L (blue)
Shield
CAN_H (white)
V+ (red)

- L H
 +

24V D
C Class 2

I/O Connections:
The CAN 16-Output Module has 3 disconnect terminal connectors:

•	DeviceNet physical format 5 way CAN connector (on top)

•	Output Bank 0 - 7 and power supply for bank 0 - 7 on 10 way connector

•	Output Bank 8 - 15 and power supply for bank 8 - 15 on 10 way connector.

Trio Motion Technology

I/O EXPANSION MODULES5-6
CAN 16-Input Module (P318)

CAN 16-Input Module (P318)
The CAN 16-Input Module allows the 24 Volt digital inputs of the Motion
Coordinator to be expanded in blocks of 16 additional input channels.

Up to 16 CAN 16-Input Modules may be connected allowing up to 256 Input
channels in addition to the internal channels built-in to the Motion Coordinator.

CAN 16-Input modules may be mixed with CAN 16-Ouput and CAN 16-I/O modules
on the same network to build the I/O configuration required for the system.

Convenient disconnect terminals are used for all I/O connections.

0

1

2

3

4

5

6

7

24V

0V

8

9

10

11

12

13

14

15

24V

0V

0 In
1 In
2 In
3 In
4 In
5 In
6 In
7 In
N/C
0V

8 In
9 In

10 In
11 In
12 In
13 In
14 In
15 In

N/C
0V

V- (black)
CAN_L (blue)
Shield
CAN_H (white)
V+ (red)

- L H
 +

24V D
C Class 2

I/O Connections:
The CAN 16-Input Module has 3 disconnect terminal connectors:

•	DeviceNet physical format 5 way CAN connector (on top)

•	 Input Bank 0 - 7 and power supply for bank 0 - 7 on 10 way connector

•	 Input Bank 8 - 15 and power supply for bank 8 - 15 on 10 way connector.

Technical Reference Manual

I/O EXPANSION MODULES 5-7
CAN 16-Input Module (P318)

Bus Wiring
The CAN 16-I/O Modules and the Motion Coordinator are connected together on a
CAN network running at 500kHz. The network is of a linear bus topology. That is
the devices are daisy-chained together with spurs from the chain. The total length
is allowed to be up to 100m, with drop lines or spurs of up to 6m in length. At
both ends of the network, 120 Ohm terminating resistors are required between the
CAN_H and CAN_L connections. The resistor should be 1/4 watt, 1% metal film.

101011
A

B

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ENABLE

MC 464

120Ω
Terminating
Resistor

120Ω
Terminating

Resistor

24V Power Supply
to Network

The cable required consists of:

Blue/White 24AWG data twisted pair

+ Red/Black 22AWG DC power twisted pair

+ Screen

A suitable type is Belden 3084A.

The CAN 16-I/O modules are powered from the network. The 24 Volts supply for
the network must be externally connected. The Motion Coordinator does NOT
provide the network power. In many installations the power supply for the Motion
Coordinator will also provide the network power.

Trio Motion Technology

I/O EXPANSION MODULES5-8
CAN 16-Input Module (P318)

It is recommended that you use a separate power supply from that used to power the
I/O to power the network as switching noise from the I/O devices may be carried into
the network.

24V I/O Channels
Input/output channels can be bi-directional, input or output. Bi-directional inputs
have a protected 24V sourcing output connected to the same pin. If the output is
unused, the pin may be used as an input in the program. The output circuit has
electronic over-current protection and thermal protection which shuts the output
down when the current exceeds 250mA.

Care should be taken to ensure that the 250mA limit for the output circuit is not
exceeded, and that the total load for the group of 8 outputs does not exceed 1
amp.

Optical
Output
Control

Signal

Optical
Input

Signal

I/O 24V

I/O OV

6k8
Input/Output
Pin

Protected
Switch

CAN16-I/O 24V I/O Channel

24V Input Channels
Input channels have an opto-isolated 24V input which is designed to be ON when
the input voltage is greater than 18 Volts and OFF when the signal voltage is below
2V. The input has a 6k8 resistor in series and so provides a load of approximately
3.5mA at 24V.

Technical Reference Manual

I/O EXPANSION MODULES 5-9
CAN 16-Input Module (P318)

Optical
Input

Signal

I/O OV

6k8
Input Pin

CAN16-Input 24V Input Channel

24V Output Channels
Output channels have a protected 24V sourcing output connected to the output
pin. The output circuit has electronic over-current protection and thermal
protection which shuts the output down when the current exceeds 250mA.

Care should be taken to ensure that the 250mA limit for the output circuit is not
exceeded, and that the total load for the group of 8 outputs does not exceed 1
amp.

Optical
Output
Control

Signal

I/O 24V

Output Pin

Protected
Switch

CAN16-Output 24V Output Channel

Trio Motion Technology

I/O EXPANSION MODULES5-10
Alternative connection protocols

DIP Switch Settings

Address: Start: End:

0 16 31

1 32 47

2 48 63

3 64 79

4 80 95

5 96 111

6 112 127

7 128 143

8 144 159

9 160 175

10 176 191

11 192 207

12 208 223

13 224 239

14 240 255

15 256 271

Alternative connection protocols
The DIP switches can be set up to allow for different protocols to be used,
enabling the P317 and P318 modules to be used with other manufacturer’s devices.
The DIP switch marked “PR” selects the protocol to be used. Switched right it
selects the TRIO protocol, switched left it selects the module to act as a CANopen
DS401 expansion I/O. (Not available on the P316).

TRIO Protocol:
The switch marked PR is set ON to select the standard Trio protocol.

The top 5 DIP switches on the CAN 16-I/O set the module address. Only addresses
0 - 15 are valid for CAN 16-I/O modules.

The switch marked DR sets the CAN Bus communications rate. 500KHz must be
selected when using Trio Protocol Mode.

Switch 32 selects the operating mode. Set ON for Trio Mode.

The addresses for I/O modules MUST be set in sequence, 0,1,2 etc. Therefore the
first two CAN 16-I/O Modules would have switch settings as shown below:

Technical Reference Manual

I/O EXPANSION MODULES 5-11
Alternative connection protocols

 Address

(Trio Mode)
N/A

1
2
4
8

16
32
PR
DR

1
2
4
8

16
32
PR
DR

 Address

DR B0
(CANopen Mode)
DR B1

1
2
4
8

16
32
PR
DR

1
2
4
8

16
32
PR
DR

Trio Mode CANopen Mode

Trio Mode CANopen Mode

 Address

(Trio Mode)
N/A

 Address

DR B0
(CANopen Mode)
DR B1

The I/O Channels referred to above start at 16. This is because the numbering
sequence starts with channels 0 - 15, which are on the Motion Coordinator master unit
itself.

CANopen Protocol
The switch marked PR is set OFF to select the CANopen protocol.

The top 6 DIP switches are used to set the node number. This should be set to a
number 1..63.

The baud rate is selected by setting the switches marked 32 and DR. Four speeds
are available.

 Address

(Trio Mode)
N/A

1
2
4
8

16
32
PR
DR

1
2
4
8

16
32
PR
DR

 Address

DR B0
(CANopen Mode)
DR B1

1
2
4
8

16
32
PR
DR

1
2
4
8

16
32
PR
DR

Trio Mode CANopen Mode

Trio Mode CANopen Mode

 Address

(Trio Mode)
N/A

 Address

DR B0
(CANopen Mode)
DR B1

LED Indicators
When ERR is OFF LEDs marked 0 - 15 represent the input or output channels 0 - 15
of the module. The actual input as seen by the Motion Coordinator software will
depend on the I/O modules’ address:

Trio Motion Technology

I/O EXPANSION MODULES5-12
Alternative connection protocols

ERR

24
25
26
27
28
29
30
31

16
17
18
19
20
21
22
23

PWR PWR

Address = 1
ERR

40
41
42
43
44
45
46
47

32
33
34
35
36
37
38
39

Address = 2
ERR

56
57
58
59
60
61
62
63

48
49
50
51
52
53
54
55

PWR

Address = 3
ERR

72
73
74
75
76
77
78
79

64
65
66
67
68
69
70
71

PWR

Address = 4

Error Codes:
When an error occurs on a CAN I/O module, the ERR LED will be lit and the fault
code is represented by a binary number displayed on the leds.

Code Error Description

1 Invalid Protocol

2 Invalid Module Address

3 Invalid Data Rate

4 Uninitialised

5 Duplicate Address

6 Start Pending

7 System Shutdown

8 Unknown Poll

9 Poll Not Implemented

10 CAN Error

11 Receive Data Timeout

ERR

8
9
10
11
12
13
14
15

0
1
2
3
4
5
6
7

PWR

Error Code
displayed on
IO 8 .. 11

Whole Bank
Flashing

Technical Reference Manual

I/O EXPANSION MODULES 5-13
Alternative connection protocols

Software Interfacing P316, P317
The Motion Coordinator will automatically detect and allow the use of correctly
connected CAN I/O channels. The CAN I/O are accessed with the same IN and OP
commands used to access the built-in I/O on the Motion Coordinator. The Motion
Coordinator sets the system parameter NIO which reflects the number of I/O’s
connected to the system. 3 system parameters are available to facilitate the use of
the CAN 16-I/O:

CANIO_STATUS, CANIO_ADDRESS and CANIO_ENABLE

When choosing which I/O devices should be connected to which channels the
following points need to be considered:

•	 Inputs 0 - 63 ONLY are available for use with system parameters which specify
an input, such as FWD _ IN, REV _ IN, DATUM _ IN etc.

•	The built-in I/O channels have the fastest operation <1mS

•	CAN I/O channels 16 - 63 have the next fastest operation up to 2mS

•	CAN I/O channels 64 - 271 have the next fastest operation up to 16mS

It is not possible to mix the CAN 16-I/O modules which are running the TRIO I/O
protocol with DeviceNet equipment or CANopen devices on the same network.

Troubleshooting- P316, P317
If the network configuration is incorrect 2 indications will be seen: The CAN 16-I/O
module will indicate that it is uninitialised and the Motion Coordinator will report
the wrong number when questioned:

>>? NIO

If this is not as expected check:

•	Terminating 120 Ohm Network Resistors fitted?

•	24Volt Power to each IO bank required?

•	24Volt Power to Network?

•	DIP switches in sequence starting 0,1,2...?

•	Cable used is the correct CAN bus specification?

•	Motion Coordinator CANIO _ ADDRESS=32?

Trio Motion Technology

I/O EXPANSION MODULES5-14
Alternative connection protocols

Specification P316:

Inputs: 16 24 Volt input channels with 2500V isolation

Outputs: 16 24 Volt output channels with 2500V isolation

Configuration: 16 bi-directional channels

Output Capacity: Outputs are rated at 250mA/channel. (1 Amp total/bank of 8
I/O’s)

Protection: Outputs are overcurrent and over temperature protected

Indicators: Individual status LED’s

Address Setting: Via DIP switches

Power Supply: 24V dc, Class 2 transformer or power source.
18 ... 29V dc / 1.5W

Mounting: DIN rail mount

Size: 95mm wide x 45mm deep x 105mm high

Weight: 200g

CAN: 500kHz, Up to 256 expansion I/O channels

EMC: BSEN50082-2 (1995) Industrial Noise Immunity / BS EN55022
(2001) Industrial Noise Emissions

CAN protocol: Trio CAN I/O or Lenze CAN.

Specification P317

Inputs: 16 24 Volt input channels with 2500V isolation

Configuration: 16 input channels

Protection: Inputs are reverse polarity protected

Indicators: Individual status LED’s

Address Setting: Via DIP switches

Power Supply: 24V dc, Class 2 transformer or power source
18 ... 29V dc / 1.5W.

Mounting: DIN rail mount

Size: 26mm wide 85mm deep 130mm high

Weight: 128g

CAN: 500kHz, Up to 256 expansion I/O channels

EMC: EN 61000-6-2 : 2005 Industrial Noise Immunity / EN 61000-6-4
: 2007 Industrial Noise Emissions

CAN protocol: Trio CAN I/O or CANopen DS401.

Technical Reference Manual

I/O EXPANSION MODULES 5-15
CAN Analogue I/O Module (P326)

Specification P318

Outputs: 16 24 Volt output channels with 2500V isolation

Configuration: 16 output channels

Output Capacity: Outputs are rated at 250mA/channel. (1 Amp total/bank of 8
I/O’s)

Protection: Outputs are overcurrent and over temperature protected

Indicators: Individual status LED’s

Address Setting: Via DIP switches

Power Supply: 24V dc, Class 2 transformer or power sourc
18 ... 29V dc / 1.5W.

Mounting: DIN rail mount

Size: 26mm wide 85mm deep 130mm high

Weight: 128g

CAN: 500kHz, Up to 256 expansion I/O channels

EMC: EN 61000-6-2 : 2005 Industrial Noise Immunity / EN 61000-6-4
: 2007 Industrial Noise

CAN protocol: Trio CAN I/O or CANopen DS401.

Trio Motion Technology

I/O EXPANSION MODULES5-16
CAN Analogue I/O Module (P326)

CAN Analogue I/O Module (P326)
The CAN Analogue I/O Module allows the Motion Coordinator to be expanded with
banks of 8 analogue input channels and 4 analogue output channels. Up to 4 x
P326 Modules may be connected allowing up to 32 x 12 bit analogue inputs and 16 x
12 bit analogue output channels. Convenient disconnect terminals are used for the
I/O connections. The input channels are designed for +/-10 Volt operation and the
4 output channels each provide a -10V to +10V signal. Each bank of 8 in / 4 out
channels is opto-isolated from the CAN bus.

0

1

2

3

4

5

6

7

24V

0V

8

9

10

11

12

13

14

15

24V

0V

0 Ain
1 Ain
2 Ain
3 Ain
4 Ain
5 Ain
6 Ain
7 Ain

N/C
0V

0 Vout
0V

1 Vout
0V

2 Vout
0V

3 Vout
0V

N/C
0V

V- (black)
CAN_L (blue)
Shield
CAN_H (white)
V+ (red)

- L H
 +

24V D
C Class 2

I/O Connections:
The CAN analogue I/O Module has 3 disconnect terminal connectors:

DeviceNet physical format 5 way CAN connector (on top)

Analogue Input Bank 0 - 7 and 0V ref on 10 way connector

Analogue Output Bank 0 - 3 and 0V ref on 10 way connector.

Technical Reference Manual

I/O EXPANSION MODULES 5-17
CAN Analogue I/O Module (P326)

Bus Wiring
See Can 16-I/O for details

Input Terminals
The 8 analogue inputs are single-ended and have a common 0V. Analogue input
nominal impedance = 30kOhm.

INPUT CIRCUIT

Ain

0V

10k

1μF

A to D
CONVERTER

0V

Output Terminals
The 4 analogue outputs are single-ended and have a common 0V. Analogue output
nominal impedance = 200Ohm.

OUTPUT CIRCUIT

Aout

0V

100R

100nf

0V

D to A
CONVERTER

Trio Motion Technology

I/O EXPANSION MODULES5-18
CAN Analogue I/O Module (P326)

DIP Switch Settings
The switch marked “PR” selects the protocol. To the right selects the Trio CAN
protocol. To the left selects CANopen protocol, DS401.

The switch marked DR sets the baud rate. 500KHz must be selected when using
Trio Protocol.

When using the Trio protocol, the addresses for P326 modules MUST be set 16,17,18
or 19 in sequence. Therefore the first P326 Module should have the switch setting
as shown.

Trio Protocol
Address = 16

Analogue Inputs 0..7

1
2
4
8

16
32
PR
DR

TRIO
NA

CANopen Protocol
Address = 4

1
2
4
8

16

CANopen
DR

DR B0
PR
DR B1

The AIN command addresses the analogue inputs as per the following table.

Address: Start: End:

16 0 7

17 8 15

18 16 23

19 24 31

P326 modules and P316, P317 and P318 I/O modules may be mixed on the network. The
P316, P317 and P318 addresses will be 0 to 15 in sequence and the P326 modules will
have addresses 16 to 19 in sequence.

LED Indicators

PWR ON when module powered on OK

ERR ON when there is a CAN network error

0 Error code display bit 0

1 Error code display bit 1

2 Error code display bit 2

3 Error code display bit 3

See page 5-12, P317 Error codes for error code table.

ERR

2
3

0
1

PWR

Technical Reference Manual

I/O EXPANSION MODULES 5-19
CAN Analogue I/O Module (P326)

Software Interfacing P326
The Motion Coordinator will automatically detect and allow the use of correctly
connected P326 modules. The number of connected analogue input channels is
reported in the startup message and is also available to the programmer via an
additional system parameter “NAIO”.

In the Trio compatibility mode, the analogue input resolution is fixed at +10Volts to
-10Volts single ended and will return values -2047 to 2048 to the function AIN().
The first 4 channels are also available as system parameters AIN0, AIN1, AIN2,
and AIN3. This allows these values to be seen using the SCOPE function.

When using extended CAN functions in CANopen, the input scale and offset are
programmable. See the P326 CANopen manual for details.

Analogue outputs are not directly accessible in Trio Mode. In CANopen mode, they
are settable using standard CANopen objects from TrioBASIC.

Troubleshooting- P326
If the network configuration is incorrect 2 indications will be seen: The P326
module will indicate that it is uninitialised and the Motion Coordinator will report
the wrong number when questioned:

>>? NAIO

If this is not as expected check:

•	Terminating 120 Ohm Network Resistors fitted?

•	24Volt Power to Network?

•	DIP switches in sequence starting 16,17,18...?

•	Cable used is the correct CAN bus specification?

•	Motion Coordinator CANIO_ADDRESS=32?

Specification P326

Analogue Inputs: 8 +/-10 Volt inputs with 500V isolation from CAN bus.

Resolution: 12 bit.

Protection: Inputs are protected against 24V over voltage.

Analogue Outputs: 4 -10V to +10V outputs with 500V isolation from CAN bus.

Resolution: 12Bit.

Address Setting: Via DIP switches.

Power Supply: 24V dc, Class 2 transformer or power source.
18 ... 29V dc / 1.5W.

Mounting: DIN rail mount.

Trio Motion Technology

I/O EXPANSION MODULES5-20
CAN Analogue I/O Module (P326)

Size: 26mm wide 85mm deep 130mm high.

Weight: 128g

CAN: 500kHz, Up to 32 analogue input channels and 16
analogue output channels.

EMC: EN 61000-6-2 : 2005 Industrial Noise Immunity / EN
61000-6-4 : 2007 Industrial Noise Emissions.

CAN Protocol: Trio CAN I/O or CANopen DS401.

6CHAPTER

SYSTEM SETUP AND
DIAGNOSTICS

Trio Motion Technology

SYSTEM SETUP AND DIAGNOSTICS6-2
﻿

Technical Reference Manual

SYSTEM SETUP AND DIAGNOSTICS 6-3
Preliminary Concepts

System Setup and Diagnostics

Preliminary Concepts
Host Computer: A Windows PC running Motion Perfect 2.

Motor: A tuned servo drive / motor configuration for a servo axis or
a stepper motor and drive combination.

Prompt: When the controller is ready to receive a new command, the
prompt >> will appear on the left hand side of the current
line in the “terminal” under the “tools” menu .

Axis Parameters: Can be written to or read from. For example the proportional
gain of a servo axis has the name P _ GAIN.
It can be written to: P _ GAIN=0.5
or read from: PRINT P _ GAIN.

For further information see chapter 8.

System Setup

A CONTROL SYSTEM SHOULD BE TREATED WITH RESPECT AS CARELESS OR NEGLIGENT
OPERATION MAY RESULT IN DAMAGE TO MACHINERY OR INJURY TO THE OPERATOR.
FOR THIS REASON THE SETTING UP OF THE SYSTEM SHOULD NOT BE RUSHED.

This section describes a methodical approach to system configuration and is
designed to gradually test each aspect of the system in turn, finally resulting in the
connection of the motor. If followed cautiously no unexpected situations should
arise.

In cases where the setup procedure for servo and stepper systems differ a separate
description is provided for each. In multiple axis systems it is advantageous to set
up one axis at a time. The following procedure applies to all Motion Coordinator
modules.

It is recommended that this section is read in full before attempting to operate the
system for the first time.

Preliminary checks

ALL WIRING SHOULD BE CHECKED FOR POSSIBLE MISCONNECTION AND INTEGRITY
BEFORE ANY POWER IS APPLIED.

!

!

Trio Motion Technology

SYSTEM SETUP AND DIAGNOSTICS6-4
Preliminary Concepts

•	Disconnect all external connectors from the system, apart from the CANBus.

•	Check address DIP switches on any modules fitted.

•	Apply power to system and check the 24V power input on the MC464.

•	Connect an Ethernet lead between the controller and an unused port on your
PC. Either straight or cross over cables will work.

Checking Communications and System Configuration
•	Ensure that the Ethernet lead is connected between the Motion Coordinator

and the PC

•	Note: If there is no DHCP server on the Ethernet network, then set the P.C.
to use a fixed IP address and subnet mask. For example; IP=192.168.0.001,
subnet=255.255.255.0.

•	Apply 24V to the Motion Coordinator.

•	Run Motion Perfect on the computer while holding the shift key to stop
it searching for a controller. Select ‘Options/Communications and add an
Ethernet connection. Use the IP address shown on the front of the MC464.

•	Select “controller/connect”.

•	When Motion Perfect detects a controller press the OK button. If this is the
first time you have connected you will need to select the “New Project”
option when Motion Perfect tries to ensure that your “Project” on the
controller matches its copy on disk.

•	When the “Project Consistent” message is received in the “Check Project”
window you know:

•	Motion Perfect has made a connection between your PC and the controller.

•	Motion Perfect has an exact copy of the programs on the controller.

•	The controller hardware configuration can now be checked using the
“Controller configuration” option under the “Controller” menu. Motion
Perfect draws a graphical representation of your system, as shown following
in the following example.

Technical Reference Manual

SYSTEM SETUP AND DIAGNOSTICS 6-5
Preliminary Concepts

This message would be produced by a Motion Coordinator MC464 with the
following configuration:

•	System Software version 2.00

•	An AnyBus-CC Module is in slot 0.

•	A FlexAxis (4 axes) Interface is in slot 1

•	Slot 2 is for an internal Axis.

Check that the system description corresponds with the modules that are actually
present. If this is not so, check any CANbus connections and settings of the
address switches on any CAN modules if fitted.

Input/Output Connections
•	Check each of the 24V input connections with a meter then connect them to

the controller.

•	Test each of the input channels being used for correct operation in turn.
These may be easily viewed in the I/O window. Use “IO Status” under the
“Tools” menu.

•	Switch each output being used in turn for correct operation. These may be
easily set with the IO status window.

Connecting a Servo Motor to a Flexible Axis Module
This description assumes the motor / drive combination has been already tested
and is functioning optimally.

Each servo axis should be connected in turn.

Trio Motion Technology

SYSTEM SETUP AND DIAGNOSTICS6-6
Preliminary Concepts

FOR THE FOLLOWING TESTS, THE MOTOR MUST BE IN A SAFE DISABLED STATE.

•	With the servo drive off or inhibited connect the motor encoder only (or the
encoder emulation output from the servo drive).

•	Check the encoder counts both up and down by looking at the measured
axis position MPOS in the Axis parameter window of Motion Perfect (“Axis
parameters” under the “Tools” menu) whilst turning the axis by hand.

•	Ensure the SERVO axis parameter is set OFF (0) in the Axis parameters
window and that the DAC axis parameter is set to 0. It may be necessary to
use the scroll buttons to view these parameters. This will force 0 volts out
of the +/-10V output for the axis. Now connect the servo drive to the V+/V-
connections.

BEFORE ENABLING THE DRIVE, MAKE SURE THAT SUDDEN MOVEMENT CANNOT CAUSE
HARM OR DAMAGE TO THE MACHINE OR ITS’ OPERATORS.

•	Enable the servo drive by clicking the “Drives enabled” button on the
control panel. If the axis runs away the motor/drive combination must be re-
checked. (Note: clicking “Drives enabled” is equivalent to issuing a WDOG=ON
or WDOG=OFF command).

•	The servo motor should now be powered and is likely to be creeping in one
direction because the position servo is not enabled.

•	Set a small positive output voltage by setting DAC=6000. The motor should
then move slowly forward - Check the encoder is counting up by looking at
the MPOS axis parameter. If this is correct check that the motor reverses and
the encoder counts down when DAC=-6000.

•	 If the encoder counts down when a positive DAC voltage is applied. The
motor or position feedback needs to be reversed.

This can be achieved by:

•	Swap A and /A connections on the encoder input, or

•	Swap BOTH motor terminals and tacho terminals (DC motors only!) On many
digital brushless motors the direction can be reversed by a drive setting, or

•	 If the drive has differential inputs, reverse the voltage as it enters the drive.
(This can cause problems with some servo-drives. The V- pin of the Flexible
Axis Module is a common 0V inside the Motion Coordinator so the axis
voltage outputs cannot float relative to each other), or

•	 set a negative PP _ STEP axis parameter. (This is not possible using Absolute
encoders)

or

•	Set a negative DAC _ SCALE axis parameter.

We are now ready to apply the position servo as described following.

!

!

Technical Reference Manual

SYSTEM SETUP AND DIAGNOSTICS 6-7
Setting Servo Gains

Setting Servo Gains
The servo system controls the motor by constantly adjusting the voltage output
which gives a speed demand to the servo drive. The speed demand is worked out
by looking at the measured position of the axis from the encoder comparing it with
the demand position generated by the Motion Coordinator.

The demand position is constantly being changed by the Motion Coordinator during
a move. The difference between the demand position (Where you want the motor
to be) and the measured position (Where it actually is) is called the following error.

The controller checks the following error typically 1000 times per second and
updates the speed demand according to the “servo function”. The Motion
Coordinator has 5 gain values which control how the servo function generates the
voltage output from the following error.

Default Settings:

Gain Parameter Name Default Value

Proportional Gain P _ GAIN 1.0

Integral Gain I _ GAIN 0.0

Derivative Gain D _ GAIN 0.0

Output Velocity Gain OV _ GAIN 0.0

Velocity Feedforward Gain VFF _ GAIN 0.0

A simple test program can be used to generate movement to and fro for
examination of the motion profile generated on the oscilloscope. The oscilloscope
can be started from the menu “tools” and “oscilloscope”.

‘ Test program for Servo Loop Tuning
axis _ number=1
counts _ per _ rev=4000
max _ motor _ speed=3000 ‘speed in RPM
BASE(axis _ number)
UNITS=1
DEFPOS(0)
SPEED=max _ motor _ speed*counts _ per _ rev/60
ACCEL=SPEED*1000
DECEL=SPEED*1000
FE _ LIMIT=counts _ per _ rev/2
SERVO=ON
WDOG=ON
‘ motor will move 1/4 revolution at high speed
stepsize=INT(counts _ per _ rev/4)
WHILE TRUE
TRIGGER
WA(20)
MOVE(stepsize)
WA(500)
MOVE(-stepsize)
WA(480)
WEND

Trio Motion Technology

SYSTEM SETUP AND DIAGNOSTICS6-8
Setting Servo Gains

The editor built into Motion Perfect may be used to enter the test program. Click
on Program, New from the pull down menus and enter a program name. Now click
on the EDIT button and an edit window will be opened where the program shown
above may be typed in. See the Motion Perfect section for more details on how to
use the editor. Once the program is entered, it can be run by clicking on the red
button next to its name or the RUN button in the Controller Status panel.

Set the oscilloscope to show MPOS and DPOS for the axis being checked. Set the
horizontal timebase to 20msec/division and the trigger mode to trigger from the
program.

The servo gain parameters may be set to achieve the desired response from the
servo system. The desired response can vary depending on the type of machine.

Different gain settings can be used to obtain:

Smoothest motor running
This can be achieved by using low proportional gain values, adding output velocity
gain (0V _ GAIN) adds smoothing damping at the expense of higher following
errors.

Low following errors during complete motion cycle
This can be achieved by using velocity feed forward (VFF _ GAIN) to compensate
for following errors together with higher proportional gains.

Exact achievement of end points of moves
This can be achieved by using integral gain in the system together with
proportional gain. However overshoot will occur at the end of rapid deceleration.

Typically a combination of the above is required.

The system should be set with proportional gain alone firstly starting with the default
value of 1.0. The other gains should then be introduced if necessary according to the
descriptions which follow.

Proportional Gain

Description:	 The proportional gain creates an output value, Op that is proportional to the
following error E.

Op = Kp × E

Axis parameter is called P _ GAIN

Example:	 P _ GAIN=0.8

All practical systems use proportional gain, many use this gain parameter alone.

Technical Reference Manual

SYSTEM SETUP AND DIAGNOSTICS 6-9
Setting Servo Gains

Integral gain

Description:	 The Integral gain creates an output Oi that is proportional to the sum of the errors
that have occurred during the system operation.

Oi = Ki × ∫e

Integral gain can cause overshoot and so is usually used only on systems working at
constant speed or with a slow acceleration.

Axis parameter is called I _ GAIN

Example:	 I _ GAIN=0.0125

Derivative gain

Description:	 This produces an output Od that is proportional to the rate of change in the
following error and speeds up the response to changes in error whilst maintaining
the same relative stability.

Od = Kd × ΔE

This gain may create a smoother response. High values may lead to oscillation.

Axis parameter is called D _ GAIN

Example:	 D _ GAIN=5

Output Velocity Gain

Description:	 This increases the system damping, creating an output that is proportional to the
change in measured position.

Oov = Kov × ΔPm

This parameter can be useful for smoothing motions but will generate high
following errors. Note that a NEGATIVE OV _ GAIN is required for damping.

Axis parameter is called OV _ GAIN.

Trio Motion Technology

SYSTEM SETUP AND DIAGNOSTICS6-10
Setting Servo Gains

Example:	 OV _ GAIN=-5

Velocity Feed Forward Gain

Description:	 As movement is created by following errors, at high speed the following error
can be quite appreciable. To overcome this the Velocity Feed Forward creates
an output proportional to the change in demand position so creating movement
without the need for a following error.

Ovff = Kvff × ΔPd

Axis parameter is called VFF _ GAIN

Example:	 VFF _ GAIN=10

The VFF _ GAIN parameter can be set by minimising the following error at a
constant machine speed AFTER the other gains have been set.

DAC_SCALE

Description:	 Integer multiplier which is applied to the final velocity command value. The
default value is set so that analogue axes are compatible with earlier Motion
Coordinator and can use the same gain values. For best performance when digital
axes are used or a 16 bit DAC is present, the DAC _ SCALE should be set to 1.0 and
the gains adjusted to suit.

Example:	 DAC _ SCALE =1

ENCODER_RATIO
This function is applied to the encoder counts or feedback counts coming in to the
servo loop. The value of ENCODER _ RATIO will therefore effect the servo gain
values. Set the required ENCODER _ RATIO before tuning the position loop.

Technical Reference Manual

SYSTEM SETUP AND DIAGNOSTICS 6-11
Setting Servo Gains

TrioBASIC
Command

Interpreter

Velocity Profile /
Interpolation

Proportional
Gain

P_GAIN

Derivitive
Gain

D_GAIN

Integral
Gain

I_GAIN

Velocity
FeedForward

VFF_GAIN

Output
Velocity

OV_GAIN

Resultant
Speed

Demand

ENCODER

Measured
SPEED

MSPEED

Demand Position

DPOS DEMAND_SPEED

Measured
Position

MPOS

DAC_SCALE

SERVO
ON/OFF ?

Forced
Voltage Output

DAC

OUTLIMIT

DAC_OUT

ENCODER
_RATIO

Following
Error

FE

DIGITAL
BUS
SYSTEM

Speed
Command

Actual
Position

Feedback

Brushless
Drive

Brushless
Drive

Quad Count

+/- 10V
Speed Reference

Feedback

Encoder
Emulation

ANALOGUE
SYSTEM

+
-

Trio Motion Technology

SYSTEM SETUP AND DIAGNOSTICS6-12
Diagnostic Checklists

Diagnostic Checklists
Problem Potential reasons

No Status LEDs on
any module

Power Supply.

LEDs lit on Master
but not on other
modules

Modules not located correctly.

OK LED ON & Status
LED flashing

Following error on at least one axis. The axis demand
position and measured position exceed the programmed
limit.

Motor runs away
without issuing a
move command

Motor/drive polarity.
Encoder/controller polarity.
Gains (drive and/or controller).

Motor runs away
upon issuing a move
command

Motor feedback.
encoder feedback.
gains (drive and/or controller).

Motor does not move
upon issuing a move
command

Wiring (check the enables/inhibits/limits on drive and
controller).
Check status on all axes.
Drive power.
Feedhold applied.
Speed, acceleration and/or deceleration set to zero.
SERVO set off/WDOG set off.
Gains (drive and/or controller)
Axis is already running a move which has not completed -
Check MTYPE and NTYPE.

Axis goes out on
following error after
a time

Speed being requested exceeds the motor capability -
check drive gain and motor/ drive.
Drive shutting down on current limit after a time.
Drive shutting down on current limit after a time.
FE _ LIMIT set too low.
VFF _ GAIN needs adjusting.

Axis losing position Encoder coupling.
Encoder signal (wire length, differential/single ended
encoder).
Mechanics.
EMC (check cable screens).

Technical Reference Manual

SYSTEM SETUP AND DIAGNOSTICS 6-13
Diagnostic Checklists

Problem Potential reasons

Motion Perfect
cannot “connect”
with the controller

Controller running a program which transmits to “port
0”. If this prevents Motion Perfect connecting to the
controller, open Terminal screen in Motion Perfect
unconnected mode and type “halt” at the command
prompt.
Faulty or unconnected Ethernet cable.
Motion Perfect IP address is incorrect.
PC does not have IP address. Check PC Ethernet settings.
PC is on a different subnet to the MC464.
Check Motion Perfect version. The latest version can be
downloaded from www.triomotion.com.

7CHAPTER

PROGRAMMING

Trio Motion Technology

PROGRAMMING7-2
﻿

Technical Reference Manual

PROGRAMMING 7-3
Controlling the Sequence of Events

What is a program?

The traditional description of a program is a task that you want the computer (the
Motion Coordinator) to perform. The task is described using statements written in
the TrioBASIC language which the Motion Coordinator can understand.

A program is simply a list of instructions to the Motion Coordinator, some of
these instructions have a dedicated function to be performed by the controller,
others control the program flow, the sequence in which instructions are actually
executed.

Statements in your program must be written using a set of rules known as ‘Syntax’.
You must follow these rules if you are to write TrioBASIC programs. TrioBASIC
instructions are divided into the following types:

Instructions
Program Flow

Controller Specific

Identifiers
Labels

Data Storage

Controlling the Sequence of Events
In order to write a program we must break the function of our system down into
logical operations which the controller must perform. As we are not able to solve
every problem in a purely linear manner, we need more control of the ‘flow’ of
the program instructions, for example to make a decision and decide whether or
not certain instructions need to be executed, or to perform a certain task several
times. In programming terms we refer to these concepts as SEQUENCE, SELECTION
and ITERATION.

Sequence
The ability to process a series of instructions, in a logical order, and to control the
flow by branching to another part of the program.

Normally, a program executes statements in sequence starting at the top. In
order to branch between different sections of the program we need to be able to
identify specific sections of the code. Labels are used as place markers to indicate
the start of a routine, or the target for the ‘branch’ instructions, GOTO and GOSUB.

It is useful to split your program up into a series of routines, each of which handles
a particular funtion of the machine. The GOSUB command will jump to a label

Trio Motion Technology

PROGRAMMING7-4
Controlling the Sequence of Events

and continue from its new location. When the program encounters a RETURN
command, the program will jump back to the GOSUB from where it originally came.

Take the following example:

PRINT “Hello”
GOSUB a _ subroutine
STOP

a _ subroutine:
	 PRINT “World”
RETURN

The program will print the “Hello” text to the terminal window, then jump to
the line of the program labelled ‘a_subroutine’ and continue execution. The next
command it finds will print “World”. The RETURN command then returns the
program to the point it left, where it then proceeds onto the next command after
the GOSUB command which in this case is the STOP command, which halts the
execution of the program.

The GOTO command does not remember where it jumped from and will continue
running from its new location permanently. This might be used for example, if
we have a certain process which needs to be performed when shutting down a
machine, we might jump directly to that routine:

i.e. GOTO shut_down

TrioBASIC instructions
Labels, GOTO, GOSUB, RETURN, STOP

Selection
Commands that enable us to selectively execute instructions depending on certain
criteria being met.

Example:	 IF we have made a complete batch THEN stop the machine.

TrioBASIC Instructions:

	 IF … THEN … ELSEIF … ENDIF
	 ON ... GOTO
	 ON ... GOSUB

Iteration
To repeatedly execute one or more commands automatically, either for a specified
number of times, or until a certain condition is met or event occurs.

Example:	 REPEAT

	 GOSUB index _ conveyor
UNTIL IN(product _ sensor)=ON

Technical Reference Manual

PROGRAMMING 7-5
Controlling the Sequence of Events

TrioBASIC instructions:
	 FOR … TO … STEP … NEXT

	 REPEAT … UNTIL

	 WHILE … WEND

FOR..NEXT Statements
The FOR .. NEXT commands are used to create a finite loop in which a variable is
incremented or decremented from a value to a value.

Example:	 FOR t=1 TO 5

 PRINT t;” “;
NEXT t
PRINT “Done”

The output to the screen would read:

1.0000 2.0000 3.0000 4.0000 5.0000

The program would set the variable t to a value of 1 and then go to the next
line to PRINT. After the print, the NEXT command would return the program to
the FOR command and increment the value of T to make it 2. When the PRINT
command is used again, the value of T has changed and a new value is printed.
This continues until T has gone from 1 through to 5, then the loop ends and the
program is permitted to continue. The next command after the NEXT statement
prints “Done” to the screen slowing the program has left the loop.

You can also use for-next loops to create a loop within a loop, as the following
example shows:

FOR a=1 TO 5
 PRINT “MAIN A=”;a
 FOR b=1 TO 10
 PRINT “LITTLE B=”;b
 NEXT b
NEXT a

The FOR..NEXT statement loops the main A variable from 1 to 5, but for every
loop of A the FOR..NEXT statement inside the first loop must also loop its variable
B from 1 to 10. This is known as a nested loop as the loop in the middle is nested
inside an outer loop.

Such loops are especially useful for working on array data by using the variables
that increment as position indexes for the arrays. As an example, we could perform
a sequence of absolute moves like this:

FOR y=12 TO 1 STEP-1
	 FOR x=10 to 120 STEP10
		 MOVEABS(x,y)
	 NEXT x
NEXT y

Trio Motion Technology

PROGRAMMING7-6
Controller Functions

As can be seen, the for-next loop can count down as well as step in value, insted of
simply incrementing the loop counter.

Controller Functions
The specific commands, which instruct the processor to perform a predefined
function or operation. Each instruction will be assigned its own reserved word in
the language.

For example the PRINT instruction in TrioBASIC is used to display a message or
numeric value on the computer screen or another output device, such as a printer.

Instructions vary in complexity and will take a variety of formats. Some will be a
single keyword with a clearly defined function, such as CANCEL or STOP, whereas
others may take one or more parameters which affect the operation of the
command.

Example:	 WA(1000) 	 wait for a specified time (in milliseconds)

PRINT “Hello” 	 Display the word “hello” on the terminal screen
GOTO show 	 redirect the program to the part labelled show

Identifiers
Identifiers are the names which the programmer uses to identify things in the
program. There are essentially two main types of user-defined identifier, Labels
and Variables.

Labels
Labels are used to provide a place-marker in a program. Not only does this make
the code more readable, it also enables us to direct the flow of our program to a
specific place.

In TrioBASIC, labels are defined by placing a name at the start of the line, followed
by a colon (:).

Example:	 start:

enter _ password:
error _ handler:

Variables
Variables are storage locations for numeric values. They are called variables as
they can be changed at any time. Just like labels, variables can often be given a
user-defined name. Anywhere a number is required a variable can be used. Only
the first 32 charactors of each variable name are used to identify the unique
variable.

Technical Reference Manual

PROGRAMMING 7-7
Controller Functions

Example:	 batch _ size=10

would assign a value of 10 to a variable called “batch_size”. Then anywhere in the
program that needs to know the value stored can read this value by name.

TrioBASIC has three different variable types:

named variables These are LOCAL variables - i.e. they are only valid within the
task they are defined.
Each process can define up to 1024 named variables .

Example:
a=123
SPEED=user _ speed
PRINT #3,”Length = “;prod _ length[2]

VR() variables The controller has a global array of variables which are
shared between tasks. The MC464 has 65536 VR() variables
and most other Motion Coordinator have 1024.
Example:
VR(2)=123.4567

TABLE memory The TABLE memory is a large array of up to 256k entries
depending on the controller type. Normally used to store
profiles for the CAM/CAMBOX commands.

If the controller features a battery backed memory, VR() variables and TABLE
memory will be retained when the power is off.

Expressions
An expression is defined as any calculation or logical function which has to be
evaluated. An expression may be used anywhere a number is required, or a
logical (TRUE/FALSE) decision. In the case of logical expressions, TRUE is deemed
to be any non-zero result.

In programming, the component parts of an expression are known as operands and
operators. The operands are the values, either specific numbers, or variables. The
operators are those functions or actions which act on the operands.

Example 1:	 You can assign the result of an expression to a variable:

num _ widgets = total _ length / widget _ length

has three operands, num_widgets, total_length and widget_length

and two operators, = (assignment) & / (divide).

Reading the above as simple English would equate to:

Divide the variable total_ length by widget_length and assign the result to the
variable num_widgets

Trio Motion Technology

PROGRAMMING7-8
Parameters

Example 2:	 you could use an expression directly:

MOVE(widget _ length+10)

(MOVE is a TrioBASIC instruction)

Example 3:	 Sometimes an expression is used to make a decision.

IF batch _ count = batch _ size THEN GOTO batch _ done

Technical Reference Manual

PROGRAMMING 7-9
Parameters

Parameters
Parameters are special purpose variables, used by the system for configuration and
feedback.

Axis Parameters
Each of the axes has its own set of axis parameters which are used to achieve
many of the Motion Coordinator features. The axis parameters may be floating
point or integer. The parameters are all set to default values on every power up.
Parameters are read from and written to like variables. The TrioBASIC assumes the
current BASE axis is the required axis unless the AXIS modifier is used:

>>P _ GAIN=2
>>P _ GAIN AXIS(8)=0.25
>>? VP _ SPEED AXIS(2)

A list of all the axis parameters is given in chapter 8

System Parameters
TrioBASIC holds a list of parameters which are common for the whole controller.
These parameters can be read from and written to like variables. The system
parameters are described in chapter 8. Note that as there is only one system there
is no modifier for system parameters.

Process Parameters
TrioBASIC also holds a small number of parameters which are held separately for
each PROCESS.

Among these are:

TICKS

PROCNUMBER

PMOVE

ERROR _ LINE

INDEVICE / OUTDEVICE

BASE

The process assumed is the current process the command is using, however it is
possible to force the controller to read parameters from a specific process with the
PROC() modifier.

Trio Motion Technology

PROGRAMMING7-10
Parameters

Example:	 WAIT UNTIL PMOVE PROC(14)=0

Forcing priority of program execution
When a user program is running, it is known as a ‘task’, or a ‘process’. The
number of simultaneous processes available is dependant on the controller type.
When a program is started, the Motion Coordinator will allocate it to a process
automatically to make the system easier to use. This will normally be sufficient for
most applications, especially when there are less than 4 programs in use.

Allocation of Time
For more complex applications it can be useful to allocate execution priorities to
programs. In order to do this we need to understand how the Motion Coordinator
normally allocates the available processing time.

Process Numbers
The processes available for programs are identified by numbers, from 1 to
the maximum available on the controller. For example, an MC464 can run 22
simultaneous programs. An additional process is also allocated automatically to the
Motion Coordinator’s command line interface / Motion Perfect connection.

The maximum number of processes available is dependant on the controller type,
as shown in the table below.

Controller Max # Processes High Priority Processes

MC302X 3 3

Euro205x 7 7,6

MC206x 7 7,6

MC224 14 14,13

MC464 22 21,20

The two highest numbered processes (21 and 20 in our example MC464) are
allocated a fixed time slot. These are referred to as the “fast” tasks. They should
be used for processes which require:

•	Guaranteed processing every servo cycle.

•	A large number of calculations or processing.

•	Program execution which does not vary in speed as tasks are started or
stopped.

Any other processes (including the command line) share the remaining time.
Execution speed will therefore reduce as the number of programs running
increases. In practice however, a useful execution speed is still obtained.

Programs can be forced to run on a specific process using the commands RUN or
RUNTYPE:

Technical Reference Manual

PROGRAMMING 7-11
Command Line Interface

>>RUN “progname”,7	 ‘Run the named program immediately on
specified task.

If equal time is required to be given to all programs, the high priority processes
(21 and 20) should NOT be used. The time available will then be divided evenly
between the remaining processes. These programs and the command line use the
available time with equal priority.

Trio Motion Technology

PROGRAMMING7-12
Command Line Interface

Command Line Interface
A “Command Line” interface to the controller can be set up by opening a
“Terminal” window in Motion Perfect. The command line interface always uses
channel 0.

Typing Commands for Immediate Execution
When the controller is waiting for a TrioBASIC command to be typed in it prints the
prompt >>

Example:	 >>PRINT “HELLO”

A line must always be terminated by pressing the ENTER key (<CR>)

Limitations of the command line
The command line interface is intended to execute single commands. It is not
possible to process multiple-statement lines or those commands which control the
sequence or ‘flow’ of a program.

For example, the following type of commands are not available on the command
line:

Loop Instructions:

FOR..NEXT, WHILE..WEND, REPEAT..UNTIL

Wait Instructions:

Technical Reference Manual

PROGRAMMING 7-13
Example Programs

WA(time), WAIT UNTIL, WAIT IDLE
Named variables:

These are local to a program

Attempting to use any of these commands on the command line may produce
unpredictable results!

The command line features a buffer of the last 10 commands used. This can save a lot
of typing on the PC. Pressing the up arrow or down arrow cycles through the buffer.

If you find a command you do not recognise it was probably put there by Motion
Perfect!

Setting Programs to run on power up
Programs can be set to run automatically on power-up using the “Set power up
mode...” facility under the “Program” menu. This sets the RUNTYPE automatically.

Example:	 Typically only ONE program is set to run on power up. This program can then start
the others under program control:

...body of program
RUN “Prog2”
RUN “Prog3”
...body of program

After setting one or more programs to run on power up the project MUST be set to
“Fixed”. The programs will then be stored in flash Eprom.

The MC464 automatically stores programs to Flash so there is no need to “fix” the
project before shutting down Motion Perfect.

Trio Motion Technology

PROGRAMMING7-14
Example Programs

Example Programs
Example 1:	 start:

	 TICKS=0
	 PRINT “Press a key”
	 WAIT UNTIL KEY
	 GET k
	 PRINT “You took “;-TICKS/1000;” seconds”
GOTO start

Example 2:	 ‘Set speed then move forward then back:

	 PRINT “EXAMPLE PROGRAM 2”
	 SPEED=100
	 ACCEL=1000
	 DECEL=1000
	 MOVE(250)
	 MOVEABS(0)
	 STOP

Note that the last line stops the program, not the motion. The first line is a
comment. It has no effect on the program execution.

Example 3:	 ‘Display 16 INPUTS as a row of 1’s and 0’s

REPEAT
	 FOR i=0 TO 15
		 IF IN(i)=ON THEN
			 PRINT “1”;
		 ELSE
			 PRINT “0”;
		 ENDIF
	 NEXT i
	 PRINT CHR (13);
	 ‘Character 13 will do <CR> without linefeed
UNTIL 0

Technical Reference Manual

PROGRAMMING 7-15
Example Programs

8CHAPTER

TRIOBASIC COMMANDS

Trio Motion Technology

Triobasic Commands
﻿

8-2

Technical Reference Manual

Triobasic Commands
﻿

8-3

Contents

MOTION AND AXIS COMMANDS.. 8-13
ACC...8-13
ADD_DAC..8-14
ADDAX...8-16
AXIS... 8-20
BACKLASH.. 8-22
BASE... 8-23
CAM... 8-24
CAMBOX.. 8-29
CANCEL... 8-37
CONNECT... 8-40
CONNPATH... 8-42
DATUM.. 8-44
DEFPOS... 8-49
DISABLE_GROUP... 8-51
ENCODER_RATIO.. 8-54
ENCODER_WRITE.. 8-56
FLEXLINK... 8-57
FORWARD... 8-59
MHELICAL... 8-61
MHELICALSP.. 8-64
MOVE.. 8-67
MOVEABS... 8-69
MOVEABSSP.. 8-72
MOVECIRC.. 8-73
MOVECIRCSP..8-76
MOVELINK...8-76
MOVEMODIFY.. 8-81
MOVESP... 8-85
MOVETANG... 8-86
MSPHERICAL... 8-88
MSPHERICALSP... 8-92
RAPIDSTOP... 8-92
REGIST.. 8-96
REVERSE... 8-104
SERVO_READ.. 8-107
STEP_RATIO... 8-107

INPUT / OUTPUT COMMANDS...8-109
.. (Range).. 8-109
AIN.. 8-109
AIN0..3 / AINBI0..3... 8-110

TrioBASIC Commands

Trio Motion Technology

Triobasic Commands
﻿

8-4

CHANNEL_READ.. 8-110
CHANNEL_WRITE... 8-111
CLOSE.. 8-112
FILE... 8-112
FLAG... 8-118
FLAGS.. 8-119
GET... 8-120
HW_PSWITCH... 8-121
IN... 8-122
INPUT.. 8-123
INPUTS0 / INPUTS1.. 8-124
INVERT_IN... 8-125
KEY... 8-126
LINPUT... 8-127
MODULE_IO_MODE... 8-128
OP.. 8-129
OPEN... 8-131
PRINT.. 8-133
PSWITCH... 8-135
READ_OP.. 8-137
SETCOM.. 8-138
TIMER ... 8-139

PROGRAM LOOPS AND STRUCTURES.. 8-141
_ (Line Cont).. 8-141
BASICERROR... 8-141
FOR..TO.. STEP.. NEXT .. 8-142
GOSUB..RETURN.. 8-144
GOTO... 8-145
IDLE.. 8-146
IF..THEN..ELSEIF..ELSE..ENDIF.. 8-146
NEXT... 8-148
ON.. GOSUB / GOTO... 8-148
REPEAT.. UNTIL... 8-150
THEN... 8-150
TO.. 8-151
UNTIL.. 8-151
WA.. 8-152
WAIT... 8-152
WEND.. 8-153
WHILE.. 8-154

SYSTEM PARAMETERS AND COMMANDS....................................8-155
: (Colon)... 8-155
’ (Comment).. 8-156
(Hash).. 8-157
$ (Dollar).. 8-158
ADDRESS... 8-158
ANYBUS.. 8-159
AOUT... 8-164
AUTORUN.. 8-164

Technical Reference Manual

Triobasic Commands
﻿

8-5

AXIS_OFFSET.. 8-165
BATTERY_LOW.. 8-165
BOOT_LOADER.. 8-166
BREAK_ADD... 8-166
BREAK_DELETE... 8-167
BREAK_LIST... 8-167
BREAK_RESET... 8-168
CAN... 8-168
CANIO_ADDRESS.. 8-174
CANIO_ENABLE... 8-175
CANIO_STATUS.. 8-175
CANOPEN_OP_RATE.. 8-176
CHECKSUM... 8-176
CLEAR.. 8-176
CLEAR_PARAMS.. 8-177
COMMSERROR... 8-177
COMMSPOSITION... 8-178
COMMSTYPE... 8-178
COMPILE... 8-180
COMPILE_ALL... 8-180
CONTROL.. 8-180
COPY... 8-181
CPU_EXCEPTIONS.. 8-181
DATE... 8-182
DATE$.. 8-183
DAY... 8-184
DAY$.. 8-185
DEL... 8-185
DEVICENET.. 8-186
DIR.. 8-187
DISPLAY.. 8-188
DLINK.. 8-189
DUMP... 8-193
EDPROG.. 8-194
EDPROG1.. 8-196
EPROM... 8-197
EPROM_STATUS... 8-197
ERROR_AXIS... 8-197
ERROR_LINE... 8-198
ETHERNET... 8-198
EX... 8-206
EXECUTE... 8-207
FEATURE_ENABLE.. 8-207
FLASH_DUMP... 8-209
FLASHTABLE.. 8-209
FLASHVR... 8-210
FPGA_VERSION... 8-211
FPU_EXCEPTIONS.. 8-211
FRAME... 8-211
FRAME_TRANS.. 8-212

Trio Motion Technology

Triobasic Commands
﻿

8-6

FREE.. 8-212
HALT... 8-213
HLM_COMMAND.. 8-214
HLM_READ.. 8-216
HLM_STATUS.. 8-217
HLM_TIMEOUT.. 8-218
HLM_WRITE... 8-218
HLS_MODEL... 8-220
HLS_NODE... 8-220
HTTP... 8-220
INCLUDE... 8-220
INDEVICE .. 8-221
INITIALISE... 8-222
LAST_AXIS... 8-222
LIST .. 8-223
LIST_GLOBAL.. 8-223
LOAD_PROJECT... 8-224
LOADSYSTEM.. 8-224
LOCK... 8-225
LOOKUP.. 8-226
MOTION_ERROR.. 8-226
MPE... 8-227
N_ANA_IN... 8-228
N_ANA_OUT.. 8-229
NAIO.. 8-229
NEW.. 8-230
NIO... 8-231
OUTDEVICE.. 8-231
PEEK.. 8-232
PLC_ERROR... 8-232
PLC_READ... 8-233
PLC_STATUS... 8-234
PMOVE... 8-235
PROC... 8-236
PROC_LINE.. 8-236
PROC_STATUS... 8-236
PROCNUMBER .. 8-237
RESET.. 8-237
RUN_ERROR... 8-238
POKE... 8-238
PORT... 8-239
POWER_UP.. 8-239
PRMBLK.. 8-240
PROCESS .. 8-240
PROJECT_KEY... 8-241
PROTOCOL.. 8-241
READPACKET.. 8-242
REMOTE.. 8-244
REMOTE_PROC... 8-245
RENAME.. 8-246

Technical Reference Manual

Triobasic Commands
﻿

8-7

RUN... 8-246
RUNTYPE.. 8-247
SCHEDULE_TYPE... 8-248
SCOPE.. 8-249
SCOPE_POS.. 8-250
SELECT... 8-250
SERCOS... 8-251
SERCOS_PHASE... 8-256
SERIAL_NUMBER.. 8-257
SERVO_PERIOD.. 8-257
SLOT.. 8-258
STEP.. 8-258
STEPLINE.. 8-259
STICK_READ... 8-259
STICK_READVR... 8-260
STICK_WRITE... 8-261
STICK_WRITEVR.. 8-262
STOP... 8-263
STORE.. 8-264
SYSTEM_VARIABLE... 8-264
SYSTEM_ERROR... 8-264
TABLE.. 8-265
TABLE_POINTER.. 8-267
TABLEVALUES... 8-268
TICKS... 8-269
TIME.. 8-270
TOKENTABLE.. 8-270
TRIGGER... 8-270
TROFF.. 8-271
TRON... 8-272
TSIZE... 8-273
UNIT_SW_VERSION... 8-273
UNLOCK.. 8-274
VERSION... 8-274
VIEW... 8-275
VR.. 8-275
VRSTRING... 8-277
WDOG.. 8-277

MATHEMATICAL OPERATIONS AND COMMANDS...........................8-278
+ (Add).. 8-278
- (Subtract)... 8-278
* (Multiply).. 8-279
/ (Divide) .. 8-279
^ (Power) .. 8-280
= (Equals)... 8-280
<> (Not Equal).. 8-281
> (Greater Than) .. 8-282
>= (Greater Than or Equal).. 8-282
< (Less Than) ... 8-283
<= (Less Than or Equal)... 8-283

Trio Motion Technology

Triobasic Commands
﻿

8-8

ABS... 8-284
ACOS... 8-285
AND... 8-285
ASIN.. 8-287
ATAN... 8-287
ATAN2.. 8-288
B_SPLINE.. 8-288
CLEAR_BIT.. 8-291
CONSTANT... 8-292
COS... 8-293
CRC16.. 8-293
EXP... 8-295
FRAC... 8-295
GLOBAL.. 8-296
IEEE_IN.. 8-297
IEEE_OUT.. 8-297
INT.. 8-298
INTEGER_READ... 8-299
INTEGER_WRITE.. 8-299
LN.. 8-300
MOD.. 8-300
NOT.. 8-301
OR.. 8-301
READ_BIT.. 8-302
SET_BIT.. 8-303
SGN... 8-303
SIN..8-304
SQR... 8-305
TAN... 8-305
XOR... 8-306

CONSTANTS..8-307
FALSE... 8-307
OFF... 8-307
ON.. 8-308
PI... 8-308
TRUE... 8-308

AXIS PARAMETERS..8-310
ACCEL.. 8-310
ADDAX_AXIS.. 8-310
AFF_GAIN.. 8-311
ATYPE.. 8-311
AXIS_ADDRESS.. 8-313
AXIS_DEBUG_A... 8-313
AXIS_DEBUG_B... 8-313
AXIS_DISPLAY... 8-314
AXIS_ENABLE... 8-314
AXIS_ERROR_COUNT.. 8-315
AXIS_MODE.. 8-316
AXISSTATUS... 8-316

Technical Reference Manual

Triobasic Commands
﻿

8-9

BACKLASH_DIST.. 8-317
CHANGE_DIR_LAST.. 8-318
CLOSE_WIN.. 8-319
CLUTCH_RATE.. 8-319
COORDINATOR_DATA.. 8-320
CORNER_MODE... 8-320
CORNER_STATE... 8-321
CREEP.. 8-322
D_GAIN... 8-322
D_ZONE_MAX... 8-323
D_ZONE_MIN.. 8-324
DAC... 8-324
DAC_OUT.. 8-325
DAC_SCALE.. 8-326
DATUM_IN... 8-327
DECEL.. 8-328
DECEL_ANGLE.. 8-328
DEMAND_EDGES.. 8-329
DEMAND_SPEED.. 8-329
DPOS... 8-330
ENCODER.. 8-330
ENCODER_BITS... 8-331
ENCODER_CONTROL... 8-332
ENCODER_FILTER... 8-332
ENCODER_ID.. 8-333
ENCODER_READ.. 8-334
ENCODER_STATUS.. 8-334
ENCODER_TURNS... 8-335
END_DIR_LAST... 8-335
ENDMOVE.. 8-336
ENDMOVE_BUFFER... 8-337
ENDMOVE_SPEED... 8-337
ERRORMASK... 8-338
FAST_JOG... 8-339
FASTDEC...8-340
FE... 8-340
FE_LATCH... 8-341
FE_LIMIT... 8-342
FE_LIMIT_MODE.. 8-343
FE_RANGE... 8-343
FHOLD_IN...8-344
FHSPEED... 8-345
FORCE_SPEED...8-346
FS_LIMIT... 8-347
FULL_SP_RADIUS... 8-348
FWD_IN.. 8-349
FWD_JOG... 8-349
I_GAIN... 8-350
INVERT_STEP.. 8-350
JOGSPEED... 8-351

Trio Motion Technology

Triobasic Commands
﻿

8-10

LIMIT_BUFFERED... 8-352
LINK_AXIS... 8-352
LOADED.. 8-353
MARK... 8-353
MARKB... 8-354
MERGE... 8-355
MOVES_BUFFERED... 8-356
MPOS... 8-356
MSPEED.. 8-357
MTYPE... 8-357
NEG_OFFSET.. 8-359
NTYPE.. 8-359
OFFPOS.. 8-360
OPEN_WIN... 8-361
OUTLIMIT.. 8-362
OV_GAIN... 8-362
P_GAIN... 8-363
PLM_OFFSET.. 8-363
POS_OFFSET.. 8-364
PP_STEP... 8-364
PS_ENCODER.. 8-365
R_MARK... 8-365
R_REGISTSPEED.. 8-366
R_REGPOS... 8-367
RAISE_ANGLE... 8-368
REG_INPUTS.. 8-369
REG_POS.. 8-369
REG_POSB... 8-370
REGIST_CONTROL.. 8-371
REGIST_DELAY.. 8-371
REGIST_SPEED.. 8-372
REGIST_SPEEDB... 8-372
REMAIN.. 8-373
REP_DIST.. 8-374
REP_OPTION.. 8-375
REV_IN... 8-376
REV_JOG.. 8-376
RS_LIMIT... 8-377
SERVO.. 8-378
SLOT_NUMBER.. 8-378
SPEED.. 8-379
SPEED_SIGN... 8-379
SPHERE_CENTRE... 8-379
SRAMP... 8-380
START_DIR_LAST... 8-381
STARTMOVE_SPEED.. 8-381
STOP_ANGLE.. 8-382
TANG _DIRECTION... 8-383
TRANS_DPOS.. 8-383
TRIOPCTESTVARIAB.. 8-384

Technical Reference Manual

Triobasic Commands
﻿

8-11

UNITS.. 8-384
VECTOR_BUFFERED.. 8-385
VERIFY... 8-385
VFF_GAIN.. 8-386
VP_SPEED.. 8-386

Trio Motion Technology

Triobasic Commands
﻿

8-12

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-13

Motion and Axis Commands

ACC

Type:	 Axis Command

Syntax:	 ACC(rate)

Description:	 Sets both the acceleration and deceleration rate simultaneously.

This command is provided to aid compatibility with older Trio controllers. Use the
ACCEL and DECEL axis parameters in new programs.

Parameters:	 rate:		 The acceleration rate in UNITS/SEC/SEC.

Example 1:	 Move an axis at a given speed and using the same rates for both acceleration and
deceleration.

ACC(120) 		 ‘set accel and decel to 120 units/sec/sec
SPEED=14.5 		 ‘set programmed speed to 14.5 units/sec
MOVE(200) 		 ‘start a relative move with distance of 20

Example 2:	 Changing the ACC whilst motion is in progress.

SPEED=100000		 ‘set required target speed (units/sec)
ACC(1000)			 ‘set initial acc rate
FORWARD

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-14

ADD_DAC

Type:	 Axis Command

Syntax:	 ADD _ DAC(axis)

Description:	 Adds the output from the servo control block of a secondary axis to the output of
the base axis. The resulting DAC _ OUT of the base axis is then the sum of the two
control loop outputs.

The ADD _ DAC command is provided to allow a secondary encoder to be used on a
servo axis to implement dual feedback control.

This would typically be used in applications such as a roll-feed where a secondary
encoder to compensate for slippage is required.

Parameters:	 axis:		 Number of the second axis, who’s output will be added to the 		
			 current axis.

	 			 -1 will terminate the ADD _ DAC link.

Example 1:	 Use ADD _ DAC to add the output of a measuring wheel to the servo motor axis
controlling a roll-feed. Set up the servo motor axis as usual with encoder feedback
from the motor drive. The measuring wheel axis must also be set up as a servo.
This is so that the software will perform the servo control calculations on that axis.

It is necessary for the two axes to be controlled by a common demand position.
Typically this would be achieved by using ADDAX to produce a matching DPOS on
BOTH axes. The servo gains are then set up on BOTH axes, and the output summed
on to one physical output using ADD _ DAC.

If the required demand positions on both axes are not identical due to a difference in
resolution between the 2 feedback devices, ENCODER _ RATIO can be used on one
axis to produce matching UNITS.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-15

AXIS 2
(MEASURING WHEEL)

AXIS 1
(SERVO MOTOR)

BASE(1)
‘match the encoder counts per linear distance of the 2 axes
ENCODER _ RATIO(counts _ per _ mm2, counts _ per _ mm1)
UNITS AXIS(1) = counts _ per _ mm1
UNITS AXIS(2) = counts _ per _ mm1		 ‘ units MUST be the same
ADD _ DAC(2) 								 ‘Combine axis(2) DAC _ OUT 		
										 with axis(1)
ADDAX(1) AXIS(2) 		 ‘Superimpose axis 1 demand on axis 2
							 ‘the axes are now set up and ready to
move
MOVE(1200)
WAIT IDLE

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-16

ADDAX

Type:	 Axis Command

Syntax:	 ADDAX(axis)

Description:	 The ADDAX command is used to superimpose 2 or more movements to build up a
more complex movement profile:

The ADDAX command takes the demand position changes from the specified axis
and adds them to any movements running on the base axis.

After the ADDAX command has been issued the link between the two axes remains
until broken and any further moves on the specified axis will be added to the base
axis.

The specified axis can be any axis and does not have to physically exist in the system

The ADDAX command therefore allows an axis to perform the moves specified on
TWO axes added together.

When using an encoder with SERVO=OFF the MPOS is copied into the DPOS.
This allows ADDAX to be used to sum encoder inputs.

Parameter:	 axis:		 Axis to superimpose.
			 -1 breaks the link with the other axis.

The ADDAX command sums the movements in encoder edge units.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-17

Example 1:	 Using ADDAX on axis with different UNITS, Axis 0 will move 1*1000+2*20=1040
edges.

+

Motion Programmed on AXIS 1

Motion Programmed on AXIS 0

Physical AXIS 0

	 UNITS AXIS(0)=1000
	 UNITS AXIS(1)=20
		 ‘Superimpose axis 1 on axis 0
	 ADDAX(1) AXIS(0)
 	 MOVE(1) AXIS(0)
	 MOVE(2) AXIS(1)

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-18

Example 2:	 Pieces are placed randomly onto a continuously moving belt and further along
the line are transferred to a second flighted belt. A detection system gives an
indication as to whether a piece is in front of or behind its nominal position, and
how far.

MOTOR
AXIS 0 ENCODER

AXIS 2

R AXIS 0

expected=2000 				 ‘sets expected position
	 BASE(0)
	 ADDAX(1)
	 CONNECT(1,2) 			 ‘continuous geared connection to 	
								 flighted belt
	 REPEAT
	 GOSUB getoffset		 ‘get offset to apply
	 MOVE(offset) AXIS(1)	 ‘make correcting move on virtual
axis
	 UNTIL IN(2)=OFF			 ‘repeat until stop signal on input 2
	 RAPIDSTOP
	 ADDAX(-1) 					 ‘clear ADDAX connection
	 STOP

	 getoffset: 				 ‘sub routine to register the BASE(0)
	 REGIST(3)
	 WAIT UNTIL MARK
	 seenat=REG _ POS
	 offset=expected-seenat
	 RETURN

Axis 0 in this example is connected to the second conveyor’s encoder and a
superimposed MOVE on axis 1 is used to apply offsets.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-19

Example 3:	 An XY marking machine must mark boxes as they move along a conveyor. Using
CONNECT enables the X marking axis to follow the conveyor. A virtual axis is used
to program the marking absolute positions; this is then superimposed onto the X
axis using ADDAX.

R AXIS 0AXIS 0 AXIS 1

ENCODER
AXIS 2

 ATYPE AXIS(3)=0 		 ‘set axis 3 as virtual axis
 SERVO AXIS(3)=ON
 DEFPOS(0) AXIS(3)
 ADDAX (3)AXIS(0)		 ‘connect axis 3 requirement to axis 0
 WHILE IN(2)=ON
 REGIST(3)				 ‘registration input detects a box on 		
						 the conveyor
 WAIT UNTIL MARK OR IN(2)=OFF
 IF MARK THEN
 CONNECT(1,2) AXIS(0)’connect axis 0 to the moving belt
 BASE(3,1) ‘set the drawing motion to axis 3 and 1
 ‘Draw the M
 MOVEABS(1200,0)’move A > B
 MOVEABS(600,1500)’move B > C
 MOVEABS(1200,3000)’ move C > D
 MOVEABS(0,0)’move D > E
 WAIT IDLE
 BASE(0)
 CANCEL 			 ‘stop axis 0 from folowing the belt
 WAIT IDLE
 MOVEABS(0)			 ‘move axis 0 to home position
 ENDIF
 WEND
CANCEL

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-20

AXIS

Type:	 Modifier

Syntax:	 AXIS(expression)

Description:	 Assigns ONE command or axis parameter operation to a particular axis.

If it is required to change the axis used in every subsequent command, the BASE
command should be used instead.

Parameters:	 Expression:	Any valid TrioBASIC expression. The result of the expression should 	
			 be a valid integer axis number.

Example 1:	 The command line has a default base axis of 0. To print the measured position of
axis 3 to the terminal in Motion Perfect, you must add the axis number after the
parameter name.

>>PRINT MPOS AXIS(3)

Example 2:	 The base axis is 0, but it is required to start moves on other axes as well as the
base axis.

MOVE(450)							 ‘Start a move on the base axis (axis
0)
MOVE(300) AXIS(2)					 ‘Start a move on axis 2
MOVEABS(120) AXIS(5)				 ‘Start an absolute move on axis
5

Example 3:	 Set up the repeat distance and repeat option on axis 3, then return to using the
base axis for all later commands.

REP _ DIST AXIS(3)=100
REP _ OPTION AXIS(3)=1
SPEED=2.30			 ‘set speed accel and decel on the BASE axis
ACCEL=5.35
DECEL=8.55

See Also:	 BASE()

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-21

AXISVALUES

Type:	 Axis Command

Syntax:	 AXISVALUES(axis,bank)

Description:	 Used by Motion Perfect to read a bank of axis parameters.

The data is given in the format:

<Parameter><type>=<value>

<Parameter>		 is the name of the parameter.

<type>		 is the type of the value. 	

i			 integer.

f			 float.

s			 string.

c			 string of upper and lower case letters, where upper case 		
			 letters mean an error.

<value>	 	 an integer, a float or a string depending on the type.	

 Parameters:	 axis:	 the axis number where you want to read the parameters.

bank:	 the bank of parameters that you wish to read.

	 0: displays the data that is only adjusted through the TrioBASIC

	 1: displays the data that is changed by the motion generator.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-22

BACKLASH

Type:	 Axis Command

Syntax:	 BACKLASH(enable, distance, speed, acceleration)

Description:	 This axis function allows backlash compensation to be loaded. This is achieved by
applying an offset move when the motor demand is in one direction, then reversing
the offset move when the motor demand is in the opposite direction. These moves
are superimposed on the commanded axis movements.

The backlash compensation is applied after a reversal of the direction of change of the
DPOS parameter.

The backlash compensation can be seen in the TRANS _ DPOS axis parameter. This is
effectively DPOS + backlash compensation.

Parameters:	 Enable:		 ON to enable BACKLASH

			 OFF to disable the BACKLASH

distance:		 The distance to be offset in user units.

speed:			 The speed at which is the compensation move is applied in 	
			 user units.

acceleration:	 The accel/decel rate at which is compensation move is 		
			 applied in user units.

Example:	 ‘Apply backlash compensation on axes 0 and 1:

BACKLASH(ON,0.5,10,50) AXIS(0)
BACKLASH(ON,0.4,8,50) AXIS(1)

See Also:	 TRANS _ DPOS

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-23

BASE

Type:	 Process Command

Syntax:	 BASE(axis no<,second axis><,third axis>...)

Alternate Format:	BA(...)

Description:	 The BASE command is used to direct all subsequent motion commands and axis
parameter read/writes to a particular axis, or group of axes. The default setting is
a sequence: 0, 1, 2...

Each process has its own BASE group of axes and each program can set BASE values
independently. So the BASE array will be different for each of your programs and the
command line.

The BASE array can be printed on the command line by simply entering BASE

Parameters:	 axis numbers:	 The number of the axis or axes to become the new base axis 	
				 array, i.e. the axis/axes to send the motion commands to or 	
				 the first axis in a multi axis command.

The BASE array must use ascending values

Example 1:	 Setting the base array to non sequential values and printing them back on the
command line. This example uses a 16 axis controller.

The controller automatically continues the sequence with 10 and then fills in the
missed values at the end of the list.

BASE(1,5,9)
BASE(1, 5, 9, 10, 11, 12, 13, 14, 15, 0, 2, 3, 4, 6, 7, 8)

Example 2:	 Set up calibration units, speed and acceleration factors for axes 1 and 2.

BASE(1)
UNITS=2000					 ‘unit conversion factor
SPEED=100						 ‘Set speed axis 1 (units/sec)
ACCEL=5000					 ‘acceleration rate (units/sec/sec)
BASE(2)
UNITS=2000					 ‘unit conversion factor
SPEED=125						 ‘Set speed axis 2

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-24

ACCEL=10000					 ‘acceleration rate

Example 3:	 Set up an interpolated move to run on axes; 0 (x), 6 (y) and 9 (z). Axis 0 will move
100 units, axis 6 will move -23.1 and axis 9 will move 1250 units. The axes will
move along the resultant path at the speed and acceleration set for axis 0.

BASE(0,6,9)
SPEED=120
ACCEL=2000
DECEL=2500
MOVE(100,-23.1,1250)

See Also:	 AXIS()

CAM

Type:	 Axis Command

Syntax:	 CAM(start point, end point, table multiplier, distance)

Description:	 The CAM command is used to generate movement of an axis
according to a table of positions which define a movement profile. The table
of values is specified with the TABLE command. The movement may be defined
with any number of points from 3 up to the maximum table size available. The
controller performs linear interpolation between the values in the table to allow
small numbers of points to define a smooth profile.

The TABLE values are translated into positions by offsetting them by the first value
and then multiplying them by the multiplier parameter. This means that a non-zero
starting profile will be offset so that the first point is zero and then all values are
scaled with the multiplier. These are then used as absolute positions from the start
position.

Two or more CAM commands executing simultaneously can use the same values in the
table.

The speed of the CAM profile is defined through the SPEED of the BASE axis and
the distance parameter. You can use these two values to determine the time taken
to execute the CAM profile.

As with any motion command the SPEED may be changed at any time to any positive
value. The SPEED is ramped up to using the current ACCEL value.To obtain a CAM

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-25

shape where ACCEL has no effect the value should be set to at least 1000 times the
SPEED value (assuming the default SERVO _ PERIOD of 1ms).

When the CAM command is executing, the ENDMOVE parameter is set to the end of
the PREVIOUS move

Parameters:	 start point:		 The start position of the cam profile in the TABLE.

end point:			 The start position of the cam profile in the TABLE.

table multiplier:		 The table values are multiplied by this value to 		
				 generate the positions.

distance:			 The distance parameter relates the speed of the axis 	
				 to the time taken to complete the cam profile. 		
				 The time taken can be calculated using the current 	
				 axis speed and this distance parameter (which are in 	
				 user units).

Example 1:	 A system is being programmed in mm and the speed is set to 10mm/sec. It is
required to take 10 seconds to complete the profile, so a distance of 100mm should
be specified.

SPEED = 10							 ‘axis SPEED
time = 10								 ‘time to complete profile
distance = SPEED* time				 ‘distance parameter for CAM
CAM(0, 100, 1, distance)

Example 2:	 Motion is required to follow the POSITION equation:

t(x) = x*25 + 10000(1-cos(x))

Where x is in degrees. This example table provides a simple oscillation
superimposed with a constant speed. To load the table and cycle it continuously
the program would be:

FOR deg=0 TO 360 STEP 20				 ‘loop to fill in the table
	 rad = deg * 2 * PI/360			 ‘convert degrees to radians
	 x = deg * 25 + 10000 * (1-COS(rad))
	 TABLE(deg/20,x)					 ‘place value of x in table
NEXT deg

WHILE IN(2)=ON							 ‘repeat cam motion while
input 2 is on
	 CAM(0,18,1,200)
	 WAIT IDLE
WEND

The subroutine camtable loads the data into the cam TABLE, as shown in the graph
below.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-26

Table
Position

Degrees Value

1 0 0

2 20 1103

3 40 3340

4 60 6500

5 80 10263

6 100 14236

7 120 18000

8 140 21160

9 160 23396

10 180 24500

11 200 24396

12 220 23160

13 240 21000

14 260 18236

15 280 15263

16 300 12500

17 320 10340

18 340 9103

19 360 9000

Example 3:	 A masked wheel is used to create a stencil for a laser to shine through for use in a
printing system for the ten numerical digits. The required digits are transmitted
through port 1 serial port to the controller as ASCII text.

The encoder used has 4000 edges per revolution and so must move 400 between
each position. The cam table goes from 0 to 1, which means that the CAM
multiplier needs to be a multiple of 400 to move between the positions.

The wheel is required to move to the pre-set positions every 0.25 seconds. The
speed is set to 10000 edges/second, and we want the profile to be complete in
0.25 seconds. So multiplying the axis speed by the required completion time

(10000 x 0.25) gives the distance parameter equals 2500.

 GOSUB profile _ gen
 WHILE IN(2)=ON
 WAIT UNTIL KEY#1 ‘Waits for character on port 1
 GET#1,k

0

5000

10000

15000

20000

25000

1 3 5 7 9 11 13 15 17 19

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-27

 IF k>47 AND k<58 THEN ‘check for valid ASCII
character
 position=(k-48)*400 ‘convert to absolute position
 multiplier=position-offset ‘calculate relative movement
 ‘check if it is shorter to move in reverse direction
 IF multiplier>2000 THEN
 multiplier=multiplier-4000
 ELSEIF multiplier<-2000 THEN
 multiplier=multiplier+4000
 ENDIF
 CAM(0,200,multiplier,2500) ‘set the CAM movment
 WAIT IDLE
 OP(15,ON) ‘trigger the laser flash
 WA(20)
 OP(15,OFF)
 offset=(k-48)*400 		 ‘calculates current absolute
position
 ENDIF
 WEND

profile _ gen:
	 num _ p=201
	 scale=1.0
	 FOR p=0 TO num _ p-1
		 TABLE(p,((-SIN(PI*2*p/num _ p)/(PI*2))+p/num _ p)*scale)
	 NEXT p
	 RETURN

1 0 3 6 5 20 1 2 3 4 5 6 7

8

 9
 LASER

LASER

MOTOR

OP(15)
TRIGGER

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-28

Example 4:	 A suction pick and place system must vary its speed depending on the load carried.
The mechanism has a load cell which inputs to the controller on the analogue
channel (AIN).

The move profile is fixed, but the time taken to complete this move must be varied
depending on the AIN. The AIN value varies from 100 to 800, which has to result
in a move time of 1 to 8 seconds. If the speed is set to 10000 units per second and
the required time is 1 to 8 seconds, then the distance parameter must range from
10000 to 80000 (distance = speed x time).

The return trip can be completed in 0.5 seconds and so the distance value of 5000
is fixed for the return movement. The Multiplier is set to -1 to reverse the motion.

GOSUB profile _ gen			 ‘loads the cam profile into the table
SPEED=10000:ACCEL=SPEED*1000:DECEL=SPEED*1000
WHILE IN(2)=ON
 OP(15,ON					 ‘turn on suction
 load=AIN(0)				 ‘capture load value
 distance = 100*load	 ‘calculate the distance parameter
 CAM(0,200,50,distance)	‘move 50mm forward in time calculated
 WAIT IDLE
 OP(15,OFF)				 ‘turn off suction
 WA(100)
 CAM(0,200,-50,5000)		 ‘move back to pick up position
WEND
profile _ gen:
	 num _ p=201
	 scale=400				 ‘set scale so that multiplier is in mm
	 FOR p=0 TO num _ p-1
		 TABLE(p,((-SIN(PI*2*p/num _ p)/(PI*2))+p/num _ p)*scale)
	 NEXT p
	 RETURN

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-29

CAMBOX

Type:	 Axis Command

Syntax:	 CAMBOX(start point, end point, table multiplier, link distance ,
link axis[, link options][, link pos])

Description:	 The CAMBOX command is used to generate movement of an axis according to a
table of POSITIONS which define the movement profile. The motion is linked to
the measured motion of another axis to form a continuously variable software
gearbox. The table of values is specified with the TABLE command. The
movement may be defined with any number of points from 3 up to the maximum
table size available. The controller interpolates between the values in the table to
allow small numbers of points to define a smooth profile.

The TABLE values are translated into positions by offsetting them by the first value
and then multiplying them by the multiplier parameter. This means that a non-
zero starting profile will be offset so that the first point is zero and then all values
are scaled with the multiplier. These are then used as absolute positions from the
start position.

Two or more CAMBOX commands executing simultaneously can use the same values in
the table.

When the CAMBOX command is executing the ENDMOVE parameter is set to the end
of the PREVIOUS move. The REMAIN axis parameter holds the remainder of the
distance on the link axis.

Parameters:	 start point:		 The start position of the cam profile in the TABLE.

end point:			 The end position of the cam profile in the TABLE.

table multiplier:		 The table values are multiplied by this value to 		
				 generate the positions.

link distance:		 The distance the link axis must move to complete 	
				 CAMBOX profile.

The link distance is in the user units of the link axis and should always be specified as
a positive distance.

link axis:			 The axis to link to.

link options:		 Options to customize how your CAMBOX operates.

				 Bit Values:

				 1 - link commences exactly when registration event 	
				 occurs on link axis.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-30

				 2 - link commences at an absolute position on link axis 	
				 (see link pos).

				 4 - CAMBOX repeats automatically and bi-directionally 	
				 when this bit is set. (This mode can be cleared by 	
				 setting bit 1 of the REP _ OPTION axis parameter).

				 8 - PATTERN mode. Advanced use of CAMBOX: allows 	
				 multiple scale values to be used. Normally combined 	
				 with the automatic repeat mode. See example 4.

				 32 - Link is only active during a positive move on the 	
				 link axis.

				 Note: The start options (1 and 2) may be combined 	
				 with the repeat options (4 and 8).

link pos:			 This parameter is the absolute position where the 	
				 CAMBOX link is to be started when parameter 6 is set 	
				 to 2.

				 Note: Link pos cannot be at or within one servo 		
				 period’s worth of movement of the REP _ DIST 		
				 position

Example 1:	 A subroutine can be used to generate a SIN shaped speed profile. This profile is
used in the other examples.

	 ‘ p is loop counter
	 ‘ num _ p is number of points stored in tables pos
0..num _ p
	 ‘ scale is distance travelled scale factor
profile _ gen:
	 num _ p=30
	 scale=2000
	 FOR p=0 TO num _ p
		 TABLE(p,((-SIN(PI*2*p/num _ p)/(PI*2))+p/num _ p)*scale)
	 NEXT p
	 RETURN

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-31

0

500

1000

1500

2000

0 3 6 9 12 15 18 21 24 27 30

This graph plots TABLE contents against table array position. This corresponds to
motor POSITION against link POSITION when called using CAMBOX. The SPEED of
the motor will correspond to the derivative of the position curve above:

Speed Curve

0

40

80

120

160

0 3 6 9 12 15 18 21 24 27 30

Example 2:	 A pair of rollers feeds plastic film into a machine. The feed is synchronised to a
master encoder and is activated when the master reaches a position held in the
variable “start”. This example uses the table points 0...30 generated in Example 1:

0 	 The start of the profile shape in the TABLE.

30 	 The end of the profile shape in the TABLE.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-32

800 	 This scales the TABLE values. Each CAMBOX motion would therefore total 	
	 800*2000 encoder edges steps.

80 	 The distance on the product conveyor to link the motion to. The units for 	
	 this parameter are the programmed distance units on the link axis.

15 	 This specifies the axis to link to.

2 	 This is the link option setting - Start at absolute position on the link axis.

	 “start” variable “start”. The motion will execute when the position 		
	 “start” is reaches on axis 15.

	 start=1000
	 FORWARD AXIS(1)
	 WHILE IN(2)=OFF
		 CAMBOX(0,30,800,80,15,2,start)
		 WA(10)
		 WAIT UNTIL MTYPE=0 OR IN(2)=ON
	 WEND
	 CANCEL
	 CANCEL AXIS(1)
	 WAIT IDLE

MOTOR
AXIS 0

Example 3:	 A motor on Axis 0 is required to emulate a rotating mechanical CAM. The position
is linked to motion on axis 3. The “shape” of the motion profile is held in TABLE
values 1000..1035.

The table values represent the mechanical cam but are scaled to range from
0-4000

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-33

	 TABLE(1000,0,0,167,500,999,1665,2664,3330,3497,3497)
	 TABLE(1010,3164,2914,2830,2831,2997,3164,3596,3830,3996,3996)
	 TABLE(1020,3830,3497,3330,3164,3164,3164,3330,3467,3467,3164)
	 TABLE(1030,2831,1998,1166,666,333,0)

	 BASE(3)
	 MOVEABS(130)
	 WAIT IDLE
	 ‘start the continuously repeating cambox
	 CAMBOX(1000,1035,1,360,3,4) AXIS(0)
	 FORWARD ‘start camshaft axis
	 WAIT UNTIL IN(2)=OFF
	 REP _ OPTION = 2 ‘cancel repeating mode by setting bit 1
	 WAIT IDLE AXIS(0) ‘waits for cam cycle to finish
	 CANCEL ‘stop camshaft axis
	 WAIT IDLE

The firmware resets bit 1 of REP _ OPTION after the repeating mode has been
cancelled.

12

25

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-34

CAMBOX Pattern Mode:

Syntax:	 CAMBOX(start, end, control block pointer, link dist, link axis,
options)

Description:	 Setting bit 3 (value 8) of the link options parameter enables the CAMBOX pattern
mode. This mode enables a sequence of scale values to be cycled automatically.
This is normally combined with the automatic repeat mode, so the options
parameter should be set to 12. This diagram below shows a typical repeating
pattern which can be automated with the CAMBOX pattern mode:

AXIS 0 SPEED

The start and end parameters specify the basic shape profile ONLY. The pattern
sequence is specified in a separate section of the TABLE memory. There is a new
TABLE block defined: The “Control Block”. This block of seven TABLE values
defines the pattern position, repeat controls etc. The block is fixed at 7 values
long.

Therefore in this mode only there are 3 independently positioned TABLE blocks
used to define the required motion:

SHAPE BLOCK		 This is directly pointed to by the CAMBOX command as in any 	
			 CAMBOX.

CONTROL BLOCK	 This is pointed to by the third CAMBOX parameter in this 		
			 options mode only. It is of fixed length (7 table values). It is 	
			 important to note that the control block is modified 			
			 during the CAMBOX operation. It must therefore be 			
			 re-initialised prior to each use.

PATTERN BLOCK	 The start and end of this are pointed to by 2 of the CONTROL 	
			 BLOCK values. The pattern sequence is a sequence of scale 	
			 factors for the SHAPE.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-35

Negative motion on link axis:
The axis the CAMBOX is linked to may be running in a positive or negative direction.
In the case of a negative direction link the pattern will execute in reverse. In the case
where a certain number of pattern repeats is specified with a negative direction link,
the first control block will produce one repeat less than expected. This is because the
CAMBOX loads a zero link position which immediately goes negative on the next servo
cycle triggering a REPEAT COUNT. This effect only occurs when the CAMBOX is
loaded, not on transitions from CONTROL BLOCK to CONTROL BLOCK. This effect
can easily be compensated for either by increasing the required number of repeats, or
setting the initial value of REPEAT POSITION to 1.

Control Block Parameters

start point:	 The start position of the shape block in the TABLE.

end point:		 The end position of the shape block in the TABLE.

control block
pointer:		 The position in the table of the 7 point control block.

link distance:	 The distance the link axis must move to complete CAMBOX 	
			 profile.

link axis:		 The axis to link to.

link options:	 As CAMBOX, bit 3 must be enabled.

R/W Description

0 CURRENT
POSITION

R The current position within the TABLE of the pattern
sequence. This value should be initialised to the START
PATTERN number.

1 FORCE
POSITION

R/W Normally this value is -1. If at the end of a SHAPE
the user program has written a value into this TABLE
position the pattern will continue at this position. The
system software will then write -1 into this position. The
value written should be inside the pattern such that the
value: CB(2)<=CB(1)<=CB(3).

2 START
PATTERN

R The position in the TABLE of the first pattern value.

3 END
PATTERN

R The position in the TABLE of the final pattern value.

4 REPEAT
POSITION

R/W The current pattern repeat number. Initialise this
number to 0. The number will increment when the
pattern repeats if the link axis motion is in a positive
direction. The number will decrement when the pattern
repeats if the link axis motion is in a negative direction.
Note that the counter runs starting at zero: 0,1,2,3…

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-36

5 REPEAT
COUNT

R/W Required number of pattern repeats. If -1 the pattern
repeats endlessly. The number should be positive.
When the ABSOLUTE value of CB(4) reaches CB(5) the
CAMBOX finishes if CB(6)=-1. The value can be set to
0 to terminate the CAMBOX at the end of the current
pattern. See note below, next page, on REPEAT COUNT
in the case of negative motion on the link axis.

6 NEXT
CONTROL
BLOCK

R/W If set to -1 the pattern will finish when the required
number of repeats are done. Alternatively a new control
block pointer can be used to point to a further control
block.

READ/WRITE values can be written to by the user program during the pattern
CAMBOX execution.

Example 4:	 A quilt stitching machine runs a feed cycle which stiches a plain pattern before
starting a patterned stitch. The plain pattern should run for 1000 cycles prior to
running a pattern continuously until requested to stop at the end of the pattern.
The cam profile controls the motion of the needle bar between moves and the
pattern table controls the distance of the move to make the pattern.

AXIS 1

AXIS 0

The same shape is used for the initialisation cycles and the pattern. This shape is
held in TABLE values 100..150

The running pattern sequence is held in TABLE values 1000..4999

The initialisation pattern is a single value held in TABLE(160)

The initialisation control block is held in TABLE(200)..TABLE(206)

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-37

The running control block is held in TABLE(300)..TABLE(306)

‘ Set up Initialisation control block:
TABLE(200,160,-1,160,160,0,1000,300)

‘ Set up running control block:
TABLE(300,1000,-1,1000,4999,0,-1,-1)

‘ Run whole lot with single CAMBOX:
‘ Third parameter is pointer to first control block

CAMBOX(100,150,200,5000,1,20)
WAIT UNTIL IN(7)=OFF

TABLE(305,0) ‘ Set zero repeats: This will stop at end of pattern

See also:	 REP _ OPTION

CANCEL

Type:	 Axis Command

Syntax:	 CANCEL([mode])

Alternate Format:	CA([mode])

Description:	 Used to cancel current or buffered axis commands on an axis or an interpolating
axis group. Velocity profiled moves, for example; FORWARD, REVERSE, MOVE,
MOVEABS, MOVECIRC, MHELICAL, MOVEMODIFY, will be ramped down at the
programmed DECEL or FAST _ DEC rate then terminated. Other move types will
be terminated immediately.

Parameters:	 Mode:	 0 = Cancels axis commands from the MTYPE buffer. Can be used without 	
		 the parameter

	 1 = Cancels all buffered moves on the base axis

CANCEL WILL ONLY CANCEL THE PRESENTLY EXECUTING MOVE. IF FURTHER MOVES
ARE BUFFERED THEY WILL THEN BE LOADED AND THE AXIS WILL NOT STOP.

!

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-38

Example 1:	 Move the base axis forward at the progammed SPEED, wait for 10 seconds, then
slow down and stop the axis at the programmed DECEL rate.

0 5 10
TIME (SECS)

V

FORWARD
WA(10000)
CANCEL’ stop movement after 10 seconds

Example 2:	 A flying shear uses a sequence of MOVELINKs to make the base axis follow a
reference encoder on axis 4. When the shear returns to the top position an
input is triggered, this removes the buffered MOVELINK and replaces it with a
decelrating MOVELINK to ramp down the slave (base) axis.

ref _ axis = 4
REPEAT
 MOVELINK(100,100,0,0,ref _ axis)
 WAIT LOADED ‘make sure the NTYPE buffer is empty each time
UNTIL IN(5)=ON
CANCEL(1) ‘cancel the movelink in the NTYPE buffer
MOVELINK(100,200,0,200,ref _ axis) ‘ deceleration ramp
CANCEL ‘cancel the main movelink, this starts the decel

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-39

Example 3:	 Two axes are connected with a ratio of 1:2. Axis 0 is cancelled after 1 second,
then axis 1 is cancelled when the speed drops to a specified level. Following the
first cancel axis 1 will decelerate at the DECEL rate. When axis 1’s CONNECT is
cancelled it will stop instantly.

0

5000

10000

15000

AXIS 0

AXIS 1

1000 MSEC

7500

BASE(0)
SPEED=10000
FORWARD
CONNECT(0.5,0) AXIS(1)
WA(1000)
CANCEL
WAIT UNTIL VP _ SPEED<=7500
CANCEL AXIS(1)

See Also:	 RAPIDSTOP, FAST _ DEC

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-40

CONNECT

Type:	 Axis Command

Syntax:	 CONNECT(ratio, driving axis)

Alternate Format:	 CO(...)

Description:	 Links the demand position of the base axis to the measured movements of the
driving axes to produce an electronic gearbox.

The ratio can be changed at any time by issuing another CONNECT command which
will automatically update the ratio without the previous CONNECT being cancelled.
The command can be cancelled with a CANCEL or RAPIDSTOP command

You can prevent CONNECT from being canceled when a hardware or software
limit is reached by setting the bit in AXIS _ MODE. When this bit is set the ratio is
temporarily set to zero while the limit is active so the axis will slow to a stop at
the programmed CLUTCH _ RATE.

Parameters:	 ratio:			 This parameter holds the number of edges the base axis is 	
				 required to move per increment of the driving axis. 			
				 The ratio value can be either positive or negative and has 	
				 sixteen bit fractional resolution. The ratio is always specified 	
				 as an encoder edge ratio.

driving axis:	 This parameter specifies the axis to link to.

As CONNECT uses encoder data it is not affected by UNITS, if you need to change
the scale of your encoder feedback you should use ENCODER _ RATIO.

0 1

	 CONNECT(1,1)			 CONNECT(0.5,1)	 CONNECT(2,1)

To achieve an exact connection of fractional ratio’s of values such as 1024/3072. The
MOVELINK command can be used with the continuous repeat link option set to ON.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-41

Example 1:	 In a press feed a roller is required to rotate at a speed one quarter of the
measured rate from an encoder mounted on the incoming conveyor. The roller is
wired to the master axis 0. The reference encoder is connected to axis 1.

BASE(0)

SERVO=ON
CONNECT(0.25,1)

Example 2:	 A machine has an automatic feed on axis 1 which must move at a set ratio to axis
0. This ratio is selected using inputs 0-2 to select a particular “gear”, this ratio
can be updated every 100msec. Combinations of inputs will select intermediate
gear ratios. For example 1 ON and 2 ON gives a ratio of 6:1.

1:1 2:1 4:1

	 BASE(1)
	 FORWARD AXIS(0)
	 WHILE IN(3)=ON
		 WA(100)
		 gear = IN(0,2)
		 CONNECT(gear,0)
	 WEND
	 RAPIDSTOP ‘cancel the FORWARD and the CONNECT

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-42

Example 3:	 Axis 0 is required to run a continuous forward, axis 1 must connect to this but
without the step change in speed that would be caused by simply calling the
CONNECT. CLUTCH _ RATE is used along with an initial and final connect ratio of
zero to get the required motion.

0

5

10

15

AXIS 1

AXIS 0

4 SEC
CONNECT (2,0)

8 SEC
CONNECT (0,0)

12 SEC
CANCEL

 FORWARD AXIS(0)
 BASE(1)
 CONNECT(0,0) ‘set intitial ratio to zero
 CLUTCH _ RATE=0.5 ‘set clutch rate
 CONNECT(2,0) ‘apply the required connect ratio
 WA(8000)
 CONNECT(0,0) ‘apply zero ratio to disconnect
 WA(4000) ‘wait for deceleration to complete
 CANCEL ‘cancel connect

See Also:	 AXIS _ MODE, CLUTCH _ RATE, ENCODER _ RATIO

CONNPATH

Type:	 Axis Command

Syntax:	 CONNPATH(ratio , driving axis)

Description:	 Enables you to link to the path of an interpolated movement by
linking the demand position of the base axis, to the interpolated path distance of
the driving axis.

The ratio can be changed at any time by issuing another CONNPATH command
which will automatically update the ratio without the previous CONNPATH being
cancelled. The command can be cancelled with a CANCEL or RAPIDSTOP command

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-43

As CONNPATH uses encoder data it is not affected by UNITS, if you need to change
the scale of your encoder feedback you should use ENCODER _ RATIO

Parameters:	 ratio:			 This is the ratio between the interpolated distance moved on 	
				 the driving axis to the distance moved on the base axis.

driving axis:	 This parameter specifies the axis to link to.

Example 1:	 A glue laying robot uses a screw feed for the adhesive, this needs to turn a quarter
of a revolution for every unit of distance moved.

BASE(0)
SERVO=ON
CONNPATH (0.25,1)

Example 2:	 It is required to move 156mm on axis 0 through an interpolated path distance
of 100mm on axes 1,2 and 3. This is achieved by using virtual axis 4 as the path
distance of the interpolated group and applying a MOVELINK from axis 0 to it.
SPEED is initially set to zero so that the MOVE and MOVLINK start at the same
time.

CONNPATH(1,1)AXIS(4)
a=100
b=100
c=100

BASE(1,2,3)
SPEED=0
MERGE=ON

MOVE(a,b,c)
WA(1)
MOVELINK(156,REMAIN AXIS(1),0,0,4)AXIS(0)
SPEED=10

See Also:	 ENCODER _ RATIO

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-44

DATUM

Type:	 Axis Command

Syntax:	 DATUM(sequence no)

Description:	 Performs one of 6 datuming sequences to locate an axis to an absolute position.
The creep speed used in the sequences is set using CREEP. The programmed
speed is set with the SPEED command.

DATUM(0) is a special case used for resetting the system after an axis critical error.
It leaves the positions unchanged.

Parameter:

Seq. Description

0 DATUM(0) clears the following error exceeded FE _ LIMIT condition for
ALL axes by setting these bits in AXISSTATUS to zero:
BIT 1 Following Error Warning
BIT 2 Remote Drive Comms Error
BIT 3 Remote Drive Error
BIT 8 Following Error Limit Exceeded
BIT 11 Cancelling Move

For stepper axes with position verification, the current measured position
of ALL axes are set as demand position. FE is therefore set to zero.
DATUM(0) must only be used after the WDOG is set to OFF, otherwise
there will be unpredictable effects on the motion.

1 The axis moves at creep speed forward till the Z marker is encountered.
The Demand position is then reset to zero and the Measured position
corrected so as to maintain the following error.

2 The axis moves at creep speed in reverse till the Z marker is
encountered. The Demand position is then reset to zero and the
Measured position corrected so as to maintain the following error.

3 The axis moves at the programmed speed forward until the datum switch
is reached. The axis then moves backwards at creep speed until the
datum switch is reset. The Demand position is then reset to zero and the
Measured position corrected so as to maintain the following error.

4 The axis moves at the programmed speed reverse until the datum switch
is reached. The axis then moves at creep speed forward until the datum
switch is reset. The Demand position is then reset to zero and the
Measured position corrected so as to maintain the following error.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-45

Seq. Description

5 The axis moves at programmed speed forward until the datum switch is
reached. The axis then reverses at creep speed until the datum switch
is reset. It then continues in reverse at creep speed looking for the Z
marker on the motor. The demand position where the Z input was seen
is then set to zero and the measured position corrected so as to maintain
the following error.

6 The axis moves at programmed speed forward until the datum switch is
reached. The axis then reverses at creep speed until the datum switch
is reset. It then continues in reverse at creep speed looking for the Z
marker on the motor. The demand position where the Z input was seen
is then set to zero and the measured position corrected so as to maintain
the following error.

7 Clear AXISSTATUS error bits for the BASE axis only. Otherwise the
action is the same as DATUM(0).

The datuming input set with the DATUM _ IN which is active low so is set when the
input is OFF. This is similar to the FWD, REV and FHOLD inputs which are designed to
be “fail-safe”.

Example 1:	 A production line is forced to stop if something jams the product belt, this causes
a motion error. The obstacle has to be removed, then a reset switch is pressed to
restart the line.

RESET

 FORWARD ‘start production line

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-46

 WHILE IN(2)=ON
 IF MOTION _ ERROR=0 THEN
 OP(8,ON) ‘green light on; line is in motion
 ELSE
 OP(8, OFF)
 GOSUB error _ correct
 ENDIF
 WEND
 CANCEL
 STOP

error _ correct:
 REPEAT
 OP(10,ON)
 WA(250)
 OP(10,OFF) ‘flash red light to show crash
 WA(250)
 UNTIL IN(1)=OFF
 DATUM(0) ‘reset axis status errors
 SERVO=ON ‘turn the servo back on
 WDOG=ON ‘turn on the watchdog
 OP(9,ON) ‘sound siren that line will restart
 WA(1000)
 OP(9,OFF)
 FORWARD ‘restart motion
RETURN

Example 2:	 An axis requires its position to be defined by the Z marker. This position should be
set to zero and then the axis should move to this position. Using the datum 1 the
zero point is set on the Z mark, but the axis starts to decelerate at this point so
stops after the mark. A move is then used to bring it back to the Z position.

0

5

10

15

0
Z MARK

MOVE

 SERVO=ON
 WDOG=ON
 CREEP=1000 ‘set the search speed
 SPEED=5000 ‘set the return speed
 DATUM(1) ‘register on Z mark and sets this to datum

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-47

 WAIT IDLE
MOVEABS (0) ‘moves to datum position

Example 3:	 A machine must home to its limit switch which is found at the rear of the travel
before operation. This can be achieved through using DATUM(4) which moves in
reverse to find the switch.

0

5

10

15

0 SWITCH

SERVO=ON
WDOG=ON
REV _ IN=-1 ‘temporarily turn off the limit switch function
DATUM _ IN=5 ‘sets input 5 for registration
SPEED=5000 ‘set speed, for quick location of limit switch
CREEP=500 ‘set creep speed for slow move to find edge of switch
DATUM(4) ‘find “edge” at creep speed and stop
WAIT IDLE
DATUM _ IN=-1
REV _ IN=5 ‘restore input 5 as a limit switch again

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-48

Example 4:	 A similar machine to Example 3 must locate a home switch, which is at the forward
end of travel, and then move backwards to the next Z marker and set this as the
datum. This is done using DATUM(5) which moves forwards at speed to locate the
switch, then reverses at creep to the Z marker. A final move is then needed, if
required, as in Example 2 to move to the datum Z marker.

0

5

10

15

0
Z MARK

SWITCH

SERVO=ON
WDOG=ON
DATUM _ IN=7 ‘sets input 7 as home switch
SPEED=5000 ‘set speed, for quick location of switch
CREEP=500 ‘set creep speed for slow move to find edge of switch
DATUM(5) ‘start the homing sequence
WAIT IDLE

See Also:	 CREEP, DATUM _ IN

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-49

DEFPOS

Type:	 Axis Command

Syntax:	 DEFPOS(pos1 [,pos2[, pos3[, pos4.....]]])

Alternate Format:	DP(pos1 [,pos2[, pos3[, pos4]]])

Description:	 Defines the current position(s) as a new absolute value. The value pos# is
placed in DPOS, while MPOS is adjusted to maintain the FE value. This function
is completed after the next servo-cycle. DEFPOS may be used at any time, even
whilst a move is in progress, but its normal function is to set the position values of
a group of axes which are stationary.

Parameters:	 pos1:	 Absolute position to set on current base axis in user units.

pos2:	 Abs. position to set on the next axis in BASE array in user units.

pos3:	 Abs. position to set on the next axis in BASE array in user units.

As many parameters as axes on the system may be specified.

Example 1:	 After homing 2 axes, it is required to change the DPOS values so that the “home”
positions are not zero, but some defined positions instead.

PROXIMITY SENSOR

DEFPOS -10

DEFPOS -35

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-50

DATUM(5) AXIS(1)								 ‘home both axes. At the
end of the DATUM
DATUM(4) AXIS(3)								 ‘procedure, the positions
will be 0,0.
WAIT IDLE AXIS(1)
WAIT IDLE AXIS(3)
BASE(1,3)										 ‘set up the BASE array
DEFPOS(-10,-35)								 ‘define positions of the
axes to be -10 and -35

Example 2:	 Define the axis position to be 10, then start an absolute move, but make sure the
axis has updated the position before loading the MOVEABS.

15.03
25.03

10

DEFPOS(10.0)
WAIT UNTIL OFFPOS=0’ Ensures DEFPOS is complete before next line
MOVEABS(25.03)

Example 3:	 From the Motion Perfect terminal, quickly set the DPOS values of the first four axes
to 0.

AXIS 0 1 2 3

DPOS 12 168 37 21

AXIS 0 1 2 3

DPOS 0 0 0 0

BEFORE AFTER

>>BASE	(0)

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-51

>>DP(0,0,0,0)

See Also:	 OFFPOS

DISABLE_GROUP

Type:	 System Command

Syntax:	 DISABLE _ GROUP(parameter[,parameters…])

Description:	 Used to create a group of axes which will be disabled if there is a motion error in
one or more of the group. After the group is created, when an error occurs all the
axes in the group will have their AXIS _ ENABLE set to OFF and SERVO set to OFF.

Multiple groups can be made, although one axis cannot belong to more than one
group.

WARNING: ONLY AXES THAT HAVE INDIVIDUAL ENABLES SHOULD BE USED IN A DISABLE
GROUP. SUCH AS DIGITAL DRIVES AND STEPPERS.

Syntax:	 DISABLE _ GROUP(-1)

Description:	 Clears all groups

Syntax:	 DISABLE _ GROUP(axis1 [,axis2[, axis3[, axis4.....]]])

Description:	 Assigns the listed axis to a group

Parameters:	 axis1:		 Axis number of first axis in group.

axis2:		 Axis number of second axis in group.

axisN:		 Axis number of Nth axis in group.

As many parameters as axes on the system may be specified.

!

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-52

Example 1:	 A machine has 2 functionally separate systems, which have their own emergency
stop and operator protection guarding. If there is an error on one part of the
machine, the other part can safely remain running while the cause of the error
is removed and the axis group re-started. We need to set up 2 separate axis
groupings

DISABLE _ GROUP(-1)											 ‘remove any
previous axis groupings
DISABLE _ GROUP(0,1,2,6)											 ‘group
axes 0 to 2 and 6
DISABLE _ GROUP(3,4,5,7)											 ‘group
axes 3 to 5 and 7

WDOG=ON 					 ‘turn on the enable relay and the remote
drive enable

FOR ax=0 TO 7
 AXIS _ ENABLE AXIS(ax)=ON ‘enable the 8 axes
 SERVO AXIS(ax)=ON 											 ‘start
position loop servo for each axis
NEXT ax

Example 2:	 Two conveyors operated by the same Motion Coordinator are required to run
independently so that if one has a “jam” it will not stop the second conveyor.

RESET

0
1

1
RESET

0

AXIS 1

AXIS 0

DISABLE _ GROUP(0) ‘put axis 0 in its own group
DISABLE _ GROUP(1) ‘put axis 1 in another group

GOSUB group _ enable0

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-53

GOSUB group _ enable1
WDOG=ON

FORWARD AXIS(0)
FORWARD AXIS(1)

WHILE TRUE
 IF AXIS _ ENABLE AXIS(0)=0 THEN
 PRINT “motion error axis 0”
 reset _ 0 _ flag=1
 ENDIF
 IF AXIS _ ENABLE AXIS(1)=0 THEN
 PRINT “motion error axis 1”
 reset _ 1 _ flag=1
 ENDIF
 IF reset _ 0 _ flag=1 AND IN(0)=ON THEN
 GOSUB group _ enable0
 FORWARD AXIS(0)
 reset _ 0 _ flag=0
 ENDIF
 IF reset _ 1 _ flag=1 AND IN(1)=ON THEN
 GOSUB group _ enable1
 FORWARD AXIS(1)
 reset _ 1 _ flag=0
 ENDIF
WEND

group _ enable0:
 BASE(0)
 DATUM(7) ‘ clear motion error on axis 0
 WA(10)
 AXIS _ ENABLE=ON
 SERVO=ON
RETURN
group _ enable1:
 BASE(1)
 DATUM(7) ‘ clear motion error on axis 0
 WA(10)
 AXIS _ ENABLE=ON
 SERVO=ON
RETURN

Example 3:	 One group of axes in a machine require resetting, without affecting the remaining
axes, if a motion error occurs. This should be done manually by clearing the cause
of the error, pressing a button to clear the controllers’ error flags and re-enabling
the motion.

 DISABLE _ GROUP(-1) ‘remove any previous axis groupings
 DISABLE _ GROUP(0,1,2) ‘group axes 0 to 2
 GOSUB group _ enable ‘enable the axes and clear errors
 WDOG=ON

 SPEED=1000
 FORWARD

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-54

WHILE IN(2)=ON
 ‘check axis 0, but all axes in the group will disable
together
 IF AXIS _ ENABLE =0 THEN
 PRINT “Motion error in group 0”
 PRINT “Press input 0 to reset”
 IF IN(0)=0 THEN	 ‘checks if reset button is pressed
 GOSUB group _ enable ‘clear errors and enable axis
 FORWARD ‘restarts the motion
 ENDIF
 ENDIF
 WEND
 STOP ‘stop program running into sub
routine

group _ enable: ‘Clear group errors and enable axes
 DATUM(0) ‘clear any motion errors
 WA(10)
 FOR axis _ no=0 TO 2
 AXIS _ ENABLE AXIS(axis _ no)=ON ‘enable axes
 SERVO AXIS(axis _ no)=ON ‘start position loop servo
 NEXT axis _ no
 RETURN

See Also:	 AXIS _ ENABLE, SERVO

ENCODER_RATIO

Type:	 Function

Syntax:	 ENCODER _ RATIO(mpos _ count, input _ count)

Description:	 This command allows the incoming encoder count to be scaled by a non integer
ratio;

MPOS = (mpos _ count / input _ count) x encoder _ edges _ input

WHEN USING THE SERVO LOOP YOU WILL NEED TO ADJUST THE GAINS TO MAINTAIN
PERFORMANCE AND STABILITY.
UNLIKE THE UNITS PARAMETER, WHICH ONLY AFFECTS THE SCALING SEEN BY THE
USER PROGRAMS, ENCODER _ RATIO AFFECTS ALL MOTION COMMANDS.

!

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-55

ENCODER _ RATIO does not replace UNITS. Only use ENCODER _ RATIO where
absolutely necessary. PP _ STEP and ENCODER _ RATIO cannot be used at the
same time on the same axis.

Parameters:	 mpos _ count :	 A number which defines the numerator.

input _ count:	 A number which defines the denominator.

Large ratios should be avoided as they will lead to either loss of resolution or much
reduced smoothness in the motion. The actual physical encoder count is the basic
resolution of the axis and use of this command may reduce the ability of the Motion
Coordinator to accurately achieve all positions.

Example 1:	 A rotary table has a servo motor connected directly to its centre of rotation. An
encoder is mounted to the rear of the servo motor and returns a value of 8192
counts per rev. The application requires the table to be calibrated in degrees so
that each degree is an integer number of counts.

As 8192 cannot be exactly divided into 360 ENCODER _ RATIO is used to adjust the
encoder feedback.

The highest value that is less than 8192 yet divides into 360 should be chosen. This
is 7200 (7200 / 20 = 360). This reduces the resolution from 0.044 to 0.055 degrees,
but enables you to program easily in degrees.

ENCODER _ RATIO(7200,8192)
UNITS = 20 ‘ axis calibrated in degrees

Example 2:	 An X-Y system has 2 different gearboxes on its vertical and horizontal axes. The
software needs to use interpolated moves, including MOVECIRC and MUST therefore
have UNITS on the 2 axes set the same. Axis 3 (X) is 409 counts per mm and axis
4 (Y) has 560 counts per mm. So as to use the maximum resolution available, set
both axes to be 560 counts per mm with the ENCODER _ RATIO command.

ENCODER _ RATIO(560,409) AXIS(3) ‘axis 3 is now 560 counts/mm
UNITS AXIS(3) = 56 ‘X axis calibrated in mm x 10
UNTIS AXIS(4) = 56 ‘Y axis calibrated in mm x 10
MOVECIRC(200,100,100,0,1) ‘move axes in a semicircle

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-56

ENCODER_WRITE

Type:	 Axis Command

Syntax:	 Value = ENCODER _ WRITE (address, data)

Description:	 Write an internal register to an Absolute Encoder on an EnDat absolute encoder.

Parameters:	 Value:		 Returns TRUE if the write was successful and FALSE if it fails.

address:	 The address of the EnDat encoder register to be written to.

data:		 Value to be written to the specified register.

Example:	 Write a value to the EnDat encoder and check it has been written, then set the
encoder back to position mode.

IF NOT ENCODER _ WRITE (endat _ address, setvalue) THEN
 PRINT “Fail to write to encoder”
ENDIF
ENCODER _ CONTROL=0

See Also:	 ENCODER _ CONTROL, ENCODER _ READ

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-57

FLEXLINK

Type:	 Axis Command

Syntax:	 FLEXLINK(base _ dist, excite _ dist, link _ dist, base _ in, base _
out, excite _ acc, excite _ dec, link _ axis, options, start _ pos)

Description:	 The FLEXLINK command is used to generate movement of an axis according to a
defined profile. The motion is linked to the measured motion of another axis. The
profile is made up of 2 parts, the base move and the excitation move both of which
are specified in the parameters. The base move is a constant speed movement.
The excitation movement uses sinusoidal profile and is applied on top of the base
movement.

SP
EE

D

BASE IN

EXCITE
ACC

EXCITE
DEC

TIME BASE OUT

base distance

excitation distance

This command allows you to simplify a CAMBOX type movement through not having to
use any table data.

Parameters:	 base _ dist:		 The distance the axis should move at a constant speed.

excite _ dist:	 The distance the axis should perform the profiled move.

link _ dist:		 The distance the link axis should move while the FLEXLINK 	
			 profile execute.

base _ in:		 The percentage of the base move that completes before the 	
			 excitation move starts.

base _ out:		 The percentage of the base move that completes after the 	
			 excitation move completes.

excite _ acc:	 The percentage of the excitation move used for acceleration.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-58

excite _ dec:	 The percentage of the excitation move used for deceleration.

link _ axis:		 The axis to link to.

options:		 Options to customize how your FLEXLINK operates.

Bit Values: 	 1 = link commences exactly when registration event occurs 	
			 on link axis.

			 2 = link commences at an absolute position on link axis

			 4 = FLEXLINK repeats automatically and bi-directionally 		
			 when this bit is set. (This mode can be cleared by setting bit 	
			 1 of the REP _ OPTION axis parameter).

			 32 = Link is only active during a positive move on the link 	
			 axis.

start _ pos:		 The absolute position on the link axis where the FLEXLINK is 	
			 to be start. Used with link option 2.

The options (1 and 2) may be combined with the repeat options (4).

START_POS CANNOT BE AT OR WITHIN ONE SERVO PERIOD’S WORTH OF MOVEMENT
OF THE REP _ DIST POSITION.

Example 1:	 Suppose you want a smooth curve for 40% of a cycle and to remain stationary for
the remainder:

FLEXLINK(0,10000,20000,60,0,50,50,1)

In this example the move length is 10000 and this is linked to 20000 distance on
the link axis (1). The axis is stationary for 60% of the cycle and the move is 50%
accel/50% decel.

Example 2:	 Suppose you want a 1:1 background link but to advance 500 using a smooth curve
between 80% and 95% of a cycle:

FLEXLINK(10000,500,10000,80,5,50,50,1)

In this example the base move length is 10000 and this is linked to 10000 distance
on the link axis (1). The excite distance is 500 and this starts after 80% of the
cycle, with 5% at the end also clear of excitation. The “excite” move is 50%
accel/50% decel.

!

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-59

FORWARD

Type:	 Axis Command

Syntax:	 FORWARD

Alternate Format:	FO

Description:	 Sets continuous forward movement. The axis accelerates at the programmed
ACCEL rate and continues moving at the SPEED value until either a CANEL or
RAPIDSTOP command are encountered. It then decclerates to a stop at the
programmed DECEL rate.

If the axis reaches either the forward limit switch or forward soft limit, the
FORWARD will be cancelled and the axis will decelerate to a stop.

Example 1:	 Run an axis forwards. When an input signal is detected on input 12, bring the axis
to a stop.

IN(12)
NC

AXIS 0

FORWARD
‘ wait for stop signal
WAIT UNTIL IN(12)=ON
CANCEL
WAIT IDLE

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-60

Example 2:	 Move an axis forwards until it hits the end limit switch, then move it in the reverse
direction for 25 cm.

12CM

IN(7)
NCAXIS 3

BASE(3)
FWD _ IN=7 ‘limit switch connected to input 7
FORWARD
WAIT IDLE ‘ wait for motion to stop on the switch
MOVE(-25.0)
WAIT IDLE

Example 3:	 A machine that applies lids to cartons uses a simulated line shaft. This example
sets up a virtual axis running forward, this is to simulate the line shaft. Axis 0 is
then CONNECTed to this to run the conveyor. Axis 1 controls a vacuum roller that
feeds the lids on to the cartons using the MOVELINK control.

 BASE(4)
 ATYPE=0				 ‘Set axis 4 to virtual axis
 REP _ OPTION=1
 SERVO=ON
 FORWARD				 ‘starts line shaft
 BASE(0)
 CONNECT(-1,4)		 ‘Connects base 0 to virtual axis in reverse
 WHILE IN(2)=ON
 BASE(1)			 ‘Links axis 1 to the shaft in reverse
direction
 MOVELINK(-4000,2000,0,0,4,2,1000)
 WAIT IDLE
 WEND
 RAPIDSTOP

See Also:	 REVERSE

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-61

MHELICAL

Type:	 Axis Command.

Syntax:	 MHELICAL(end1,end2,centre1,centre2,direction,distance3,[mode])

Alternate Format:	MH()

Description:	 Performs a helical move. Moves 2 orthogonal axes in such a way as to produce
a circular arc at the tool point with a simultaneous linear move on a third axis.
The first 5 parameters are similar to those of an MOVECIRC command. The sixth
parameter defines the simultaneous linear move.

Parameters:	 end1:		 position on BASE axis to finish at.

end2:		 position on next axis in BASE array to finish at.

centre1:	 position on BASE axis about which to move.

centre2:	 position on next axis in BASE array about which to move.

direction:	 The “direction” is a software switch which determines whether the 	
		 arc is interpolated in a clockwise or anti- clockwise direction. The 	
		 parameter is set to 1 or 0. See MOVECIRC.

distance3:	 The distance to move on the third axis in the BASE array axis in 	
		 user units.

mode:		 0 = Interpolate the 3rd axis with the main 2 axes when calculating 	
		 path speed. (True helical path).

		 1= Interpolate only the first 2 axes for path speed, but move the 	
		 3rd axis in coordination with the other 2 axes. (Circular path with 	
		 following 3rd axis).

The first 4 distance parameters are scaled according to the current unit conversion
factor for the BASE axis. The sixth parameter uses its own axis units.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-62

Example 1:	 The command sequence follows a rounded rectangle path with axis 1 and 2. Axis
3 is the tool rotation so that the tool is always perpendicular to the product. The
UNITS for axis 3 are set such that the axis is calibrated in degrees.

r3

AXIS 1

AXIS 0

AXIS 2

	 REP _ DIST AXIS(3)=360
	 REP _ OPTION AXIS(3)=ON
		 ‘all 3 axes must be homed before starting
	 MERGE=ON
	 MOVEABS(360) AXIS(3) ‘point axis 3 in correct starting 		
	 direction
	 WAIT IDLE AXIS(3)
	 MOVE(0,12)
	 MHELICAL(3,3,3,0,1,90)
	 MOVE(16,0)
	 MHELICAL(3,-3,0,-3,1,90)
	 MOVE(0,-6)
	 MHELICAL(-3,-3,-3,0,1,90)
	 MOVE(-2,0)
	 MHELICAL(-3,3,0,3,1,90)

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-63

Example 2:	 A PVC cutter uses 2 axis similar to a xy plotter, a third axis is used to control the
cutting angle of the knife. To keep the resultant cutting speed for the x and y axis
the same when cutting curves, mode 1 is applied to the helical command.	

AXIS 1

AXIS 0

AXIS 2

+

+

+

START

BASE(0,1,2) : MERGE=ON ‘merge moves into one continuous movement
MOVE(50,0)
MHELICAL(0,-6,0,-3,1,180,1)
MOVE(-22,0)
WAIT IDLE
MOVE(-90) AXIS(2) ‘rotate the knife after stopping at corner
WAIT IDLE AXIS(2)
MOVE(0,-50)
MHELICAL(-6,0,-3,0,1,180,1)
MOVE(0,50)
WAIT IDLE ‘pause again to rotate the knife
MOVE(-90) AXIS(2)
WAIT IDLE AXIS(2)
MOVE(-22,0)
MHELICAL(0,6,0,3,1,180,1)
WAIT IDLE

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-64

MHELICALSP

Type:	 Axis Command.

Syntax:	 MHPHERICAL({parameters}, mode)

Description:	 Moves the three axis group defined in BASE along a spherical path with a vector
speed determined by the SPEED set in the first axis of the BASE array. There are
2 modes of operation with the option of finishing the move at an endpoint different
to the start, or returning to the start point to complete a circle. The path of the
movement in 3D space can be defined either by specifying a point somewhere
along the path, or by specifying the centre of the sphere.

Parameters:	 mode:		 0 = specify end point and mid point on curve.

		 1 = specify end point and centre of sphere.

		 2 = two mid point are specified and the curve completes a full 		
		 circle.

		 3 = mid point on curve and centre of sphere are specified and the 	
		 curve completes a full circle.

If you specify the parameters for the third axis as 0 and assign it to a virtual, you can
use MSPHERICAL to perform circular movements. This allows you to specify the arc
without knowing the centre point.

Syntax:	 MSPHERICAL(endx, endy, endz, midx, midy, midz, 0)

Description:	 Move the three axis, set in the BASE array through a section of a sphere by
specifying the end point and a mid point on the curve.

Parameters:	 endx:		 End position of the first axis.

endy:		 End position of the second axis.

endz:		 End position of the third axis.

midx:		 Mid position of the first axis.

midy:		 Mid position of the second axis.

midz:		 Mid position of the third axis.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-65

Syntax:	 MSPHERICAL(endx, endy, endz, centrex, centrey, centrez, 1)

Description:	 Move the three axis, set in the BASE array through a section of a sphere by
specifying the end point and the centre of the sphere. The profile will always go
the shortest path to the endpoint, this may be clockwise or counterclockwise.

THE COORDINATES OF THE CENTRE POINT AND END POINT MUST NOT BE CO-LINEAR.
SEMI-CIRCLES CANNOT BE DEFINED BY USING MODE 1 BECAUSE THE SPHERE CENTRE
WOULD BE CO-LINEAR WITH THE ENDPOINT. IF CO-LINIER POINTS ARE SPECIFIED THE
CONTROLLER WILL STOP THE PROGRAM WITH A RUN _ ERROR.

Parameters:	 endx:		 End position of the first axis.

endy:		 End position of the second axis.

endz:		 End position of the third axis.

centrex:	 Centre position of the first axis.

centrey:	 Centre position of the second axis.

centrez:	 CentreMid position of the third axis.

Syntax:	 MSPHERICAL(midx1, midy1, midz1, midx, midy, midz, 2)

Description:	 Move the three axis, set in the BASE array through a full circle on a sphere by
specifying two mid points of the curve. The profile will move through the first mid
position, then the second and finally back to the start point.

Parameters:	 midx1:		 Second mid position of the first axis.

midy1:		 Second mid position of the second axis.

midz1:		 Second mid position of the third axis.

midx:		 First mid position of the first axis.

midy:		 First mid position of the second axis.

midz:		 First mid position of the third axis.

!

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-66

Syntax:	 MSPHERICAL(midx, midy, midz, centrex, centrey, centrez, 3)

Description:	 Move the three axis, set in the BASE array through a full circle on a sphere by
specifying a mid point and the centre of the sphere. The profile will start by
heading in the shortest distance to the mid point, this enables you to define the
direction.

THE COORDINATES OF THE CENTRE POINT AND MID POINT MUST NOT BE CO-LINEAR.
IF CO-LINIER POINTS ARE SPECIFIED THE CONTROLLER WILL STOP THE PROGRAM
WITH A RUN _ ERROR.

Parameters:	 midx:		 Mid position of the first axis.

midy:		 Mid position of the second axis.

midz:		 Mid position of the third axis.

centrex:	 Centre position of the first axis.

centrey:	 Centre position of the second axis.

centrez:	 Centre position of the third axis.

Example 1:	 A move is needed that follows a spherical path which ends 30mm up in the Z
direction:

BASE(3,4,5)
MSPHERICAL(30,0,30,8.7868,0,21.2132,0)

Example 2:	 A similar move that follows a spherical path but at 45 degrees to the Y axis which
ends 30mm above the XY plane:

BASE(0,1,2)
MSPHERICAL(21.2132,21.2132,30,6.2132,6.2132,21.2132,0)

!

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-67

MOVE

Type:	 Axis Command

Syntax:	 MOVE(distance1 [,distance2 [,distance3 [,distance4...]]])

Alternate Format:	MO()

Description:	 Incremental move. One axis or multiple axes move at the programmed speed
and acceleration for a distance specified as an increment from the end of the last
specified move. The first parameter in the list is sent to the BASE axis, the second
to the next axis in the BASE array, and so on.

In the multi-axis form, the speed and acceleration employed for the movement are
taken from the first axis in the BASE group. The speeds of each axis are controlled
so as to make the resulting vector of the movement run at the SPEED setting.

Uninterpolated, unsynchronised multi-axis motion can be achieved by simply
placing MOVE commands on each axis independently. If needed, the target axis
for an individual MOVE can be specified using the AXIS() command. This overrides
the BASE axis setting for one MOVE only.

The distance values specified are scaled using the unit conversion factor axis
parameter; UNITS. Therefore if, for example, an axis has 400 encoder edges/mm
and UNITS for that axis are 400, the command MOVE(12.5) would move 12.5 mm.
When MERGE is set to ON, individual moves in the same axis group are merged
together to make a continuous path movement.

Parameters:	 distance1:	 distance to move on base axis from current position.

distance2:	 distance to move on next axis in BASE array from current position.]

[distance3:	 distance to move on next axis in BASE array from current position.]

[distance4:	 distance to move on next axis in BASE array from current position.]

The maximum number of parameters is the number of axes on the controller.

Example 1:	 A system is working with a unit conversion factor of 1 and has a 1000 line encoder.
Note that a 1000 line encoder gives 4000 edges/turn.

MOVE(40000) ‘ move 10 turns on the motor.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-68

Example 2:	 Axes 3, 4 and 5 are to move independently (without interpolation). Each axis will
move at its own programmed SPEED, ACCEL and DECEL etc.

‘setup axis speed and enable
BASE(3)
SPEED=5000
ACCEL=100000
DECEL=150000
SERVO=ON
BASE(4)
SPEED=5000
ACCEL=150000
DECEL=560000
SERVO=ON
BASE(5)
SPEED=2000
ACCEL=320000
DECEL=352000
SERVO=ON
WDOG=ON
MOVE(10) AXIS(5) ‘start moves
MOVE(10) AXIS(4)
MOVE(10) AXIS(3)
WAIT IDLE AXIS(5) ‘wait for moves to finish
WAIT IDLE AXIS(4)
WAIT IDLE AXIS(3)

Example 3:	 An X-Y plotter can write text at any position within its working envelope. Individual
characters are defined as a sequence of moves relative to a start point so that
the same commands may be used regardless of the plot origin. The command
subroutine for the letter ‘M’ might be:

A

B

C

D

E

write _ m:
 MOVE(0,12) ‘move A > B
 MOVE(3,-6) ‘move B > C
 MOVE(3,6) ‘move C > D
 MOVE(0,-12) ‘move D > E
RETURN

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-69

MOVEABS

Type:	 Motion Command.

Syntax:	 MOVEABS(position1[, position2[, position3[, position4...]]])

Alternate Format:	MA()

Description:	 Absolute position move. Move one axis or multiple axes to position(s) referenced
with respect to the zero (home) position. The first parameter in the list is sent to
the axis specified with the AXIS command or to the current BASE axis, the second
to the next axis, and so on.

In the multi-axis form, the speed, acceleration and deceleration employed for the
movement are taken from the first axis in the BASE group. The speeds of each
axis are controlled so as to make the resulting vector of the movement run at the
SPEED setting.

Uninterpolated, unsynchronised multi-axis motion can be achieved by simply
placing MOVEABS commands on each axis independently. If needed, the target
axis for an individual MOVEABS can be specified using the AXIS() command. This
overrides the BASE axis setting for one MOVEABS only.

The values specified are scaled using the unit conversion factor axis parameter;
UNITS. Therefore if, for example, an axis has 400 encoder edges/mm the UNITS
for that axis is 400. The command MOVEABS(6)would then move to a position 6
mm from the zero position. When MERGE is set to ON, absolute and relative moves
are merged together to make a continuous path movement.

Parameters:	 position1:	 position to move to on base axis.

position2:	 position to move to on next axis in BASE array.

position3:	 position to move to on next axis in BASE array.

position4:	 position to move to on next axis in BASE array.

The MOVEABS command can interpolate up to the full number of axes available on
the controller.

The position of the axes’ zero (home) positions can be changed by the commands:
OFFPOS, DEFPOS, REP _ DIST, REP _ OPTION, and DATUM

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-70

Example 1:	 A machine must move to one of 3 positions depending on the selection made by 2
switches. The options are home, position 1 and position 2 where both switches are
off, first switch on and second switch on respectively. Position 2 has priority over
position 1.

1
HOME

 ‘define absolute positions
 home=1000
 position _ 1=2000
 position _ 2=3000

 WHILE IN(run _ switch)=ON
 IF IN(6)=ON THEN			 ‘switch 6 selects position 2
 MOVEABS(position _ 2)
 WAIT IDLE
 ELSEIF IN(7)=ON THEN		 ‘switch 7 selects position 1
 MOVEABS(position _ 1)
 WAIT IDLE
 ELSE
 MOVEABS(home)
 WAIT IDLE
 ENDIF
 WEND

Example 2:	 An X-Y plotter has a pen carousel whose position is fixed relative to the plotter
absolute zero position. To change pen an absolute move to the carousel position
will find the target irrespective of the plot position when commanded.

MOVEABS(28.5,350) ‘move to just outside the pen holder area
WAIT IDLE
SPEED = pen _ pickup _ speed
MOVEABS(20.5,350) ‘move in to pick up the pen

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-71

Example 3:	 A pallet consists of a 6 by 8 grid in which gas canisters are inserted 185mm apart
by a packaging machine. The canisters are picked up from a fixed point. The first
position in the pallet is defined as position 0,0 using the DEFPOS() command. The
part of the program to position the canisters in the pallet is:

0,0 AXIS 1

AXIS 0

FOR x=0 TO 5
 FOR y=0 TO 7
 MOVEABS(-340,-516.5) ‘move to pick-up point
 WAIT IDLE
 GOSUB pick ‘call pick up subroutine
 PRINT “Move to Position: “;x*6+y+1
 MOVEABS(x*185,y*185) ‘move to position in grid
 WAIT IDLE
 GOSUB place ‘call place down subroutine
 NEXT y
NEXT x

Example 4:	 Using MOVEABS with REPDIST to move to a final position.

REPDIST = 360
DEFPOS(0)
MOVEABS(300)	‘will move through 300 deg to 300
MOVEABS(200)	‘will move back 100 deg to 200
MOVEABS(370)	‘will move through 170 deg to 10 crossing repdist
MOVEABS(350)	‘will move through 340 deg to 350

If you want to move in the shortest direction to the absolute position use MOVETANG.

See Also:	 MOVETANG

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-72

MOVEABSSP

Type:	 Axis Command.

Syntax:	 MOVEABSSP(position1[, position2[, position3[, position4…]]])

Description:	 Works as MOVEABS and additionally allows vector speed to be changed when
using multiple moves in the look ahead buffer when MERGE=ON, using additional
parameters FORCE _ SPEED, ENDMOVE _ SPEED and STARTMOVE _ SPEED.

Absolute moves are converted to incremental moves as they enter the buffer. This
is essential as the vector length is required to calculate the start of deceleration.
It should be noted that if any move in the buffer is cancelled by the programmer,
the absolute position will not be achieved.

Parameters:	 position1:	 position to move to on base axis.

position2:	 position to move to on next axis in BASE array.

position3:	 position to move to on next axis in BASE array.

position4:	 position to move to on next axis in BASE array.

The maximum number of parameters is the number of axes available on the
controller.

Example 1:	 In a series of buffered moves using the look ahead buffer with MERGE=ON, an
absolute move is required where the incoming vector speed is 40units/second and
the finishing vector speed is 20 units/second.	

FORCE _ SPEED=40
ENDMOVE _ SPEED=20
MOVEABSSP(100,100)

See Also:	 MOVEABS

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-73

MOVECIRC

Type:	 Motion Command.

Syntax: 	 MOVECIRC(end1, end2, centre1, centre2, direction)

Alternate Format:	MC()

Description:	 Moves 2 orthogonal axes in such a way as to produce a circular arc at the tool
point. The length and radius of the arc are defined by the five parameters in the
command line. The move parameters are always relative to the end of the last
specified move. This is the start position on the circle circumference. Axis 1 is the
current BASE axis. Axis 2 is the next axis in the BASE array. The first 4 distance
parameters are scaled according to the current unit conversion factor for the BASE
axis.

In order for the MOVECIRC() command to be correctly executed, the two axes
generating the circular arc must have the same number of encoder pulses/linear
axis distance. If this is not the case it is possible to adjust the encoder scales in
many cases by using ENCODER _ RATIO or STEP _ RATIO.

If the end point specified is not on the circular arc. The arc will end at the angle
specified by a line between the centre and the end point.

Neither axis may cross the set absolute repeat distance (REP _ DIST) during a
MOVECIRC. Doing so may cause one or both axes to jump or for their FE value to
exceed FE _ LIMIT.

Parameters:	 end1:		 position on BASE axis to finish at.

end2:		 position on next axis in BASE array to finish at.

centre1:	 position on BASE about which to move.

centre2:	 position on next axis in BASE array about which to move.

direction:	 The “direction” is a software switch which determines whether the 	
		 arc is interpolated in a clockwise or anti- clockwise direction.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-74

2

1
DIRECTION = 1

2

1DIRECTION = 0

SPECIFIED END POINT

ACTUAL END POINT

Example 1:	 The command sequence to plot the letter ‘0’ might be:

A

B

C D

E

F

GH

MOVE(0,6) ‘move A -> B
MOVECIRC(3,3,3,0,1) ‘move B -> C
MOVE(2,0) ‘move C -> D
MOVECIRC(3,-3,0,-3,1) ‘move D -> E
MOVE(0,-6) ‘move E -> F
MOVECIRC(-3,-3,-3,0,1) ‘move F -> G
MOVE(-2,0) ‘move G -> H
MOVECIRC(-3,3,0,3,1) ‘move H -> A

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-75

Example 2:	 A machine is required to drop chemicals into test tubes. The nozzle can move up
and down as well as along its rail. The most efficient motion is for the nozzle to
move in an arc between the test tubes.

(0,5)

END

AXIS 0

A
X

IS
 1

 BASE(0,1)
 MOVEABS(0,5) ‘move to position above first tube
 MOVEABS(0,0) ‘lower for first drop
 WAIT IDLE
 OP(15,ON) ‘apply dropper
 WA(20)
 OP(15,OFF)
 FOR x=0 TO 5
 MOVECIRC(5,0,2.5,0,1) 	 ‘arc between the test tubes
 WAIT IDLE
 OP(15,ON) ‘Apply dropper
 WA(20)
 OP(15,OFF)
 NEXT x
 MOVECIRC(5,5,5,0,1) ‘move to rest position)

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-76

MOVECIRCSP

Type:	 Axis Command.

Syntax: 	 MOVECIRCSP(end1, end2, centre1, centre2, direction)

Description:	 Works as MOVECIRC and additionally allows vector speed to be changed when
using multiple moves in the look ahead buffer when MERGE=ON, using additional
parameters FORCE _ SPEED and ENDMOVE _ SPEED.

Example 1:	 In a series of buffered moves using the look ahead buffer with MERGE=ON, a
circular move is required where the incoming vector speed is 40units/second and
the finishing vector speed is 20 units/second.

FORCE _ SPEED=40
ENDMOVE _ SPEED=20
MOVECIRCSP(100,100,0,100,1)

See Also:	 MOVECIRC

MOVELINK

Type:	 Axis Command.

Syntax:	 MOVELINK (distance, link dist, link acc, link dec, link axis[,
link options][, link pos]).

Alternate Format:	ML()

Description:	 The linked move command is designed for controlling movements such as:

•	Synchronization to conveyors

•	Flying shears

•	Thread chasing, tapping etc.

•	Coil winding

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-77

The motion consists of a linear movement with separately variable acceleration
and deceleration phases linked via a software gearbox to the MEASURED position
(MPOS) of another axis. The command uses the BASE() and AXIS(), and unit
conversion factors in a similar way to other move commands.

The “link” axis may move in either direction to drive the output motion. The link
distances specified are always positive.

Parameters:	 distance:		 incremental distance in user units to be moved on the 		
				 current base axis, as a result of the measured movement on 	
				 the “input” axis which drives the move.	

link dist:		 positive incremental distance in user units which is required 	
			 to be measured on the “link” axis to result in the motion on 	
			 the base axis.	

link acc:		 positive incremental distance in user units on the input axis 	
			 over which the base axis accelerates. 	

link dec:		 positive incremental distance in user units on the input axis 	
			 over which the base axis decelerates.

NOTE: If the sum of parameter 3 and parameter 4 is greater than parameter 2, they
are both reduced in proportion until they equal parameter 2.	

link axis:		 Specifies the axis to “link” to. It should be set to a value 	
			 between 0 and the number of available axes.	

link options:	 1	 link commences exactly when registration event 		
				 occurs on link axis.

			 2	 link commences at an absolute position on link axis 	
				 (see link start parameter).

			 4	 MOVELINK repeats automatically and bi-directional 	
				 when this bit is set. (This mode can be cleared by 	
				 setting bit 1 of the REP _ OPTION axis parameter).

			 32	 Link is only active during positive moves on the link 	
				 axis.

link pos:		 This parameter is the absolute position where the 			
			 MOVELINK link is to be started when parameter 6 is set to 	
			 2.	

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-78

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

INPUT AXIS MEASURED POSITION

O
U

TP
U

T
PO

SI
TI

O
N

MOVELINK (75,100,0,0,link axis)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100

INPUT AXIS MEASURED POSITION

O
U

TP
U

T
PO

SI
TI

O
N

MOVELINK (75,100,25,15,link axis)

PARAMETER 3 PARAMETER 4

Example 1:	 A flying shear cuts a long sheet of paper into cards every 160 m whilst moving at
the speed of the material. The shear is able to travel up to 1.2 metres of which
1m is used in this example. The paper distance is measured by an encoder, the
unit conversion factor being set to give units of metres on both axes: (Note that
axis 7 is the link axis)

ENCODER (AXIS 7)

SERVO MOTOR
(AXIS 0)

LEAD SCREW

	 WHILE IN(2)=ON
		 MOVELINK(0,150,0,0,7) ‘ dwell (no movement) for 150m
		 MOVELINK(0.3,0.6,0.6,0,7) ‘ accelerate to paper speed
		 MOVELINK(0.7,1.0,0,0.6,7) ‘ track the paper then
decelerate
		 WAIT LOADED ‘ wait until acceleration movelink is
finished
		 OP(8,ON) ‘ activate cutter
		 MOVELINK(-1.0,8.4,0.5,0.5,7) ‘ retract cutter back to start

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-79

		 WAIT LOADED
		 OP(8,OFF) ‘ deactivate cutter at end of outward
stroke
	 WEND

In this program the controller firstly waits for the roll to feed out 150m in the
first line. After this distance the shear accelerates up to match the speed of
the paper, moves at the same speed then decelerates to a stop within the 1m
stroke. This movement is specified using two separate MOVELINK commands. This
allows the program to wait for the next move buffer to be clear, NTYPE=0, which
indicates that the acceleration phase is complete. Note that the distances on the
measurement axis (link distance in each MOVELINK command): 150, 0.8, 1.0 and
8.2 add up to 160m.

To ensure that speed and positions of the cutter and paper match during the cut
process the parameters of the MOVELINK command must be correct: It is normally
easiest to consider the acceleration, constant speed and deceleration phases
separately then combine them as required:

Rule 1:	 In an acceleration phase to a matching speed the link distance should be twice the
movement distance. The acceleration phase could therefore be specified alone as:

MOVELINK(0.3,0.6,0.6,0,1)’ move is all accel

Rule 2:	 In a constant speed phase with matching speed the two axes travel the same
distance so distance to move should equal the link distance. The constant speed
phase could therefore be specified as:

MOVELINK(0.4,0.4,0,0,1)’ all constant speed

The deceleration phase is set in this case to match the acceleration:

MOVELINK(0.3,0.6,0,0.6,1)’ all decel

The movements of each phase could now be added to give the total movement.

MOVELINK(1,1.6,0.6,0.6,1)’ Same as 3 moves above

But in the example above, the acceleration phase is kept separate:

MOVELINK(0.3,0.6,0.6,0,1)
MOVELINK(0.7,1.0,0,0.6,1)

This allows the output to be switched on at the end of the acceleration phase.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-80

Example 2:	 Exact Ratio Gearbox

MOVELINK can be used to create an exact ratio gearbox between two axes.
Suppose it is required to create gearbox link of 4000/3072. This ratio is inexact
(1.30208333) and if entered into a CONNECT command the axes will slowly creep
out of synchronisation. Setting the “link option” to 4 allows a continuously
repeating MOVELINK to eliminate this problem:

MOVELINK(4000,3072,0,0,linkaxis,4)

Example 3:	 Coil Winding

In this example the unit conversion factors UNITS are set so that the payout
movements are in mm and the spindle position is measured in revolutions. The
payout eye therefore moves 50mm over 25 revolutions of the spindle with the
command MOVELINK(50,25,0,0,linkax). If it were desired to accelerate up over the
first spindle revolution and decelerate over the final 3 the command would be

ENCODER
AXIS 1

NON-SERVO
SPINDLE MOTOR

SERVO MOTOR
AXIS 0

MOVELINK(50,25,1,3,linkax).
OP(motor,ON) ‘- Switch spindle motor on
FOR layer=1 TO 10
	 MOVELINK(50,25,0,0,1)
	 MOVELINK(-50,25,0,0,1)
NEXT layer
WAIT IDLE
OP(motor,OFF)

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-81

MOVEMODIFY

Type:	 Axis Command.

Syntax:	 MOVEMODIFY(position)

Alternate Format:	MM()

Description:	 MOVEMODIFY will change the absolute end position of the MOVE, MOVEABS,
MOVESP, MOVEABSSP or MOVEMODIFY in the MTYPE. If there is no motion command
in the MTYPE or the MTYPE is not a linear move then MOVEMODIFY is loaded.

If the change in end position requires a change in direction the move in MTYPE is
CANCEL ed. This will use DECEL unless FASTDEC has been specified.

If there are multiple buffered moves the MOVEMODIFY will only act on the
command in font of it in the buffer.

Parameters:	 position:	 Absolute position for the current move to complete at.

Example 1:	 A seet of glass is fed on a conveyor and is required to be stopped 250mm after the
leading edge is sensed by a proximity switch. The proximity switch is connected to
the registration input:

SENSOR

SHEET GLASS

250mm

MOVE(10000) ‘Start a long move on conveyor

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-82

REGIST(3) ‘set up registration
WAIT UNTIL MARK ‘MARK goes TRUE when sensor detects glass
edge
OFFPOS = -REG _ POS ‘set position where mark was seen to 0
WAIT UNTIL OFFPOS=0’wait for OFFPOS to take effect
MOVEMODIFY(250) ‘change move to stop at 250mm

SENSOR SEEN

250mm
ORIGINAL MOVE

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-83

Example 2:	 A paper feed system slips. To counteract this, a proximity sensor is positioned
one third of the way into the movement. This detects at which position the paper
passes and so how much slip has occurred. The move is then modified to account
for this variation.

SENSOR

MC224

SERVO DRIVE

paper _ length=4000
DEFPOS(0)
REGIST(3)
MOVE(paper _ length)
WAIT UNTIL MARK
slip=REG _ POS-(paper _ length/3)
offset=slip*3
MOVEMODIFY(paper _ length+offset)

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-84

Example 3:	 A satellite receiver sits on top of a van; it has to align correctly to the satellite
from data processed in a computer. This information is sent to the controller
through the serial link and sets VR’s 0 and 1. This information is used to control
the two axes. MOVEMODIFY is used so that the position can be continuously
changed even if the previous set position has not been achieved.

 bearing=0																	
‘set lables for VRs
 elevation=1
 UNITS AXIS(0)=360/counts _ per _ rev0
 UNITS AXIS(1)=360/counts _ per _ rev1
 WHILE IN(2)=ON
 MOVEMODIFY(VR(bearing))AXIS(0)										
							 ‘adjust bearing to match VR0
 MOVEMODIFY(VR(elevation))AXIS(1)										
							 ‘adjust elev to match VR1
 WA(250)
 WEND
 RAPIDSTOP 																	
‘stop movement
 WAIT IDLE AXIS(0)
 MOVEABS(0) AXIS(0) ‘return to transport position
 WAIT IDLE AXIS(1)
 MOVEABS(0) AXIS (1)

See also:	 ENDMOVE

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-85

MOVESP

Type:	 Axis Command

Syntax:	 MOVESP(distance1[,distance2[,distance3[,distance4]]])

Description:	 Works as MOVE and additionally allows vector speed to be changed when using
multiple moves in the look ahead buffer when MERGE=ON, using additional
parameters FORCE _ SPEED, ENDMOVE _ SPEED and STARTMOVE _ SPEED.

Parameters:	 distance1:	 distance to move on base axis from current position.

distance2:	 distance to move on next axis in BASE array from current position.

distance3:	 distance to move on next axis in BASE array from current position.

distance4:	 distance to move on next axis in BASE array from current position.

The maximum number of parameters is the number of axes available on the
controller.

Example:	 In a series of buffered moves using the look ahead buffer with MERGE=ON, an
incremental move is required where the incoming vector speed is 40units/second
and the finishing vector speed is 20 units/second.

FORCE _ SPEED=40
ENDMOVE _ SPEED=20
MOVESP(100,100)

See also:	 MOVE

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-86

MOVETANG

Type:	 Axis Command

Syntax:	 MOVETANG(absolute _ position, [link _ axis])

Description:	 Moves the axis to the required position using the programmed SPEED, ACCEL and
DECEL for the axis. The direction of movement is determined by a calculation of
the shortest path to the position assuming that the axis is rotating and that REP _
DIST has been set to PI radians (180 degrees) and that REP _ OPTION=0.

The REP _ DIST value will depend on the UNITS value and the number of steps
representing PI radians. For example if the rotary axis has 4000 pulses/turn and
UNITS=1 the REP _ DIST value would be 2000.

If a MOVETANG command is running and another MOVETANG is executed for the
same axis, the original command will not stop, but the endpoint will become the
new absolute position.

Parameters:	 absolute _ position:	 The absolute position to be set as the endpoint of the 	
					 move. Value must be within the range –PI to +PI in 	
					 the units of the rotary axis. For example if the rotary 	
					 axis has 4000 pulses/turn, the UNITS value=1 and the 	
					 angle required is PI/2 (90 deg) the position value 	
					 would be 1000.

link _ axis			 An optional link axis may be specified. When a link_	
				 axis is specified the system software calculates 		
				 the absolute position required each servo cycle 		
				 based on the link axis TANG _ DIRECTION. The 		
				 TANG _ DIRECTION is multiplied by the REP _			
				 DIST/PI to calculate the required position. Note 	
				 that when using a link_axis the absolute_position 	
				 parameter becomes unused. The position is copied 	
				 every servo cycle until the MOVETANG is CANCELled.

Example 1:	 An X-Y positioning system has a stylus which must be turned so that it is facing in
the same direction as it is travelling at all times. A tangential control routine is
run in a separate process.

BASE(0,1)
WHILE TRUE
	 angle=TANG _ DIRECTION
	 MOVETANG(angle) AXIS(2)
WEND

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-87

Example 2:	 An X-Y positioning system has a stylus which must be turned so that it is facing in
the same direction as it is travelling at all times.

The XY axis pair are axes 4 and 5. The tangential stylus axis is 2:

MOVETANG(0,4) AXIS(2)

Example 3:	 An X-Y cutting table has a “pizza wheel” cutter which must be steered so that it is
always aligned with the direction of travel. The main X and Y axes are controlled
by Motion Coordinator axes 0 and 1, and the pizza wheel is turned by axis 2.

Control of the Pizza Wheel is done in a separate program from the main X-Y motion
program. In this example the steering program also does the axis initialisation.

Program TC _ SETUP.BAS:
‘Set up 3 axes for Tangential Control

WDOG=OFF
BASE(0)
P _ GAIN=0.9
VFF _ GAIN=12.85
UNITS=50 ‘set units for mm
SERVO=ON

BASE(1)
P _ GAIN=0.9
VFF _ GAIN=12.30
UNITS=50 ‘units must be the same for both axes
SERVO=ON

BASE(2)
UNITS=1 ‘ make units 1 for the setting of rep _ dist
REP _ DIST=2000 ‘encoder has 4000 edges per rev.
REP _ OPTION=0
UNITS=4000/(2*PI) ‘set units for Radians
SERVO=ON

WDOG=ON
‘ Home the 3rd axis to its Z mark
DATUM(1) AXIS(2)
WAIT IDLE
WA(10)

‘start the tangential control routine
BASE(0,1) ‘define the pair of axes which are for X and Y
‘ start the tangential control
BASE(2)
MOVETANG(0, 0) ‘ use axes 0 and 1 as the linked pair

Program MOTION.BAS:
‘program to cut a square shape with rounded corners
MERGE=ON

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-88

SPEED=300

nobuf=FALSE					 ‘when true, the moves are not buffered
size=120						 ‘size of each side of the square
c=30							 ‘size (radius) of quarter circles on
each corner

DEFPOS(0,0)
WAIT UNTIL OFFPOS=0
WA(10)

MOVEABS(10,10+c)
REPEAT
 MOVE(0,size)
 MOVECIRC(c,c,c,0,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(size,0)
 MOVECIRC(c,-c,0,-c,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(0,-size)
 MOVECIRC(-c,-c,-c,0,1)
 IF nobuf THEN WAIT IDLE:WA(2)
 MOVE(-size,0)
 MOVECIRC(-c,c,0,c,1)
 IF nobuf THEN WAIT IDLE:WA(2)
UNTIL FALSE

MSPHERICAL

Type:	 Axis Command

Syntax:	 MSPHERICAL({parameters}, mode)

Description:	 Moves the three axis group defined in BASE along a spherical path with a vector
speed determined by the SPEED set in the first axis of the BASE array. There are
2 modes of operation with the option of finishing the move at an endpoint different
to the start, or returning to the start point to complete a circle. The path of the
movement in 3D space can be defined either by specifying a point somewhere
along the path, or by specifying the centre of the sphere.

Parameters:	 mode:	 0 = specify end point and mid point on curve.

	 1 = specify end point and centre of sphere.

	 2 = two mid point are specified and the curve completes a full circle.

	 3 = mid point on curve and centre of sphere are specified and the curve 	
	 completes a full circle.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-89

If you specify the parameters for the third axis as 0 and assign it to a virtual, you can
use MSPHERICAL to perform circular movements. This allows you to specify the arc
without knowing the centre point.

Syntax:	 MSPHERICAL(endx, endy, endz, midx, midy, midz, 0)

Description:	 Move the three axis, set in the BASE array through a section of a sphere by
specifying the end point and a mid point on the curve.

Parameters:	 endx:	 End position of the first axis.

endy:	 End position of the second axis.

endz:	 End position of the third axis.

midx:	 Mid position of the first axis.

midy:	 Mid position of the second axis.

midz:	 Mid position of the third axis.

Syntax:	 MSPHERICAL(endx, endy, endz, centrex, centrey, centrez, 1)

Description:	 Move the three axis, set in the BASE array through a section of a sphere by
specifying the end point and the centre of the sphere. The profile will always go
the shortest path to the endpoint, this may be clockwise or counter clockwise.

THE COORDINATES OF THE CENTRE POINT AND END POINT MUST NOT BE CO-LINEAR.
SEMI-CIRCLES CANNOT BE DEFINED BY USING MODE 1 BECAUSE THE SPHERE CENTRE
WOULD BE CO-LINEAR WITH THE ENDPOINT. IF CO-LINEAR POINTS ARE SPECIFIED THE
CONTROLLER WILL STOP THE PROGRAM WITH A RUN _ ERROR.

Parameters:	 endx:		 End position of the first axis.

endy:		 End position of the second axis.

endz:		 End position of the third axis.

centrex:	 Centre position of the first axis.

centrey:	 Centre position of the second axis.

centrez:	 Centre position of the third axis.

!

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-90

Syntax:	 MSPHERICAL(midx1, midy1, midz1, midx, midy, midz, 2)

Description:	 Move the three axis, set in the BASE array through a full circle on a sphere by
specifying two mid points of the curve. The profile will move through the first mid
position, then the second and finally back to the start point.

Parameters:	 midx1:		 Second mid position of the first axis.

	 midy1:		 Second mid position of the second axis.

midz1:		 Second mid position of the third axis.

midx:		 First mid position of the first axis.

midy:		 First mid position of the second axis.

midz:		 First mid position of the third axis.

Syntax:	 MSPHERICAL(midx, midy, midz, centrex, centrey, centrez, 3)

Description:	 Move the three axis, set in the BASE array through a full circle on a sphere by
specifying a mid point and the centre of the sphere. The profile will start by
heading in the shortest distance to the mid point, this enables you to define the
direction.

THE COORDINATES OF THE CENTRE POINT AND MID POINT MUST NOT BE CO-LINEAR.
IF CO-LINEAR POINTS ARE SPECIFIED THE CONTROLLER WILL STOP THE PROGRAM
WITH A RUN _ ERROR.

Parameters:	 midx:		 Mid position of the first axis.

miy:		 Mid position of the second axis.

midz:		 Mid position of the third axis.

centrex:	 Centre position of the first axis.

centrey:	 Centre position of the second axis.

centrez:	 Centre position of the third axis.

!

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-91

Example 1:	 A move is needed that follows a spherical path which ends 30mm up in the Z
direction:

30

30

BASE(3,4,5)
MSPHERICAL(30,0,30,8.7868,0,21.2132,0)

Example 2:	 A similar move that follows a spherical path but at 45 degrees to the Y axis which
ends 30mm above the XY plane:

30

30

45º

BASE(0,1,2)
MSPHERICAL(21.2132,21.2132,30,6.2132,6.2132,21.2132,0)

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-92

MSPHERICALSP

Type:	 Axis Command

Syntax:	 MSPHERICALSP({parameters}, mode)

Description:	 Performs a spherical move the same as MSPHERICAL and additionally allows vector
speed to be changed when using multiple moves in the look ahead buffer when
MERGE=ON, using additional parameters FORCE _ SPEED, ENDMOVE _ SPEED and
STARTMOVE _ SPEED.

Example 1:	 A move is needed that follows a spherical path which ends 30mm up in the Z
direction, the profile should decelerate from the previous move so that it is
performed at 30units/second:

BASE(3,4,5)
FORCE _ SPEED=30
ENDMOVE _ SPEED=30
MSPHERICALSP(30,0,30,8.7868,0,21.2132,0)

See Also:	 MSPHERICAL

RAPIDSTOP

Type:	 Axis Command

Syntax:	 RAPIDSTOP

Alternate Format:	RS

Description:	 The RAPIDSTOP command cancels the currently executing move on ALL axes.
Velocity profiled moves, for example; FORWARD, REVERSE, MOVE, MOVEABS,
MOVECIRC, MHELICAL, MOVEMODIFY, will be ramped down at the programmed
DECEL or FAST _ DEC rate then terminated. Other move types will be terminated
immediately.

The next-move buffers and the process buffers are NOT cleared.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-93

RAPIDSTOP WILL ONLY CANCEL THE PRESENTLY EXECUTING MOVES. IF FURTHER
MOVES ARE BUFFERED THEY WILL THEN BE LOADED AND THE AXIS WILL NOT STOP.

Example 1:	 Implementing a stop override button that cuts out all motion.

STOP

 CONNECT (1,0) AXIS(1)		 ‘axis 1 follows axis 0
 BASE(0)
 REPAEAT
 MOVE(1000) AXIS (0)
 MOVE(-100000) AXIS (0)
 MOVE(100000) AXIS (0)
 UNTIL IN (2)=OFF			 ‘stop button pressed?
 RAPIDSTOP
 WA(10)		 ‘wait to allow running move to decal and be
terminated
 RAPIDSTOP	 ‘cancel the second buffered move
 WA(10)
 RAPIDSTOP	 ‘cancel the third buffered move

!

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-94

Example 2:	 Using RAPIDSTOP to cancel a MOVE on the main axis and a FORWARD on the second
axis. After the axes have stopped, a MOVEABS is applied to re-position the main
axis.

0

5

10

15

MARK

SP
EE
D

AXIS 0
AXIS 1

ORIGINAL
MOVE

 BASE(0)
 REGIST(3)
 FORWARD AXIS(1)
 MOVE (100000) ‘apply a long move
 WAIT UNTIL MARK
 RAPIDSTOP
 WAIT IDLE ‘for MOVEABS to be accurate, the axis must stop
 MOVEABS(3000)

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-95

Example 3:	 Using RAPIDSTOP to break a connect, and stop motion. The connected axis stops
immediately on the RAPIDSTOP command, the forward axis decelerates at the
decel value.

-50

0

-150

-100

50

100

150

1 SECOND

SP
EE
D

AXIS 0
AXIS 1

TIME

0 .5 1 1.5 2 2.5 3 3.5 4

BASE(0)
CONNECT(1,1)
FORWARD AXIS(1)
WAIT UNTIL VPSPEED=SPEED ‘let the axis get to full speed
WA(1000)
RAPIDSTOP
WAIT IDLE AXIS(1) ‘wait for axis 1 to decel
CONNECT(1,1) ‘re-connect axis 0
REVERSE AXIS(1)
WAIT UNTIL VPSPEED=SPEED
WA(1000)
RAPIDSTOP
WAIT IDLE AXIS(1)

See Also:	 CANCEL, FAST _ DEC

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-96

REGIST

Type:	 Axis Command

Syntax:	 REGIST(mode [,parameters])

Description:	 The REGIST command initiates a capture of an axis position when it sees a
registration input or the Z mark on the encoder. Once a registration event is
captured MARK is set and the position and speed at the event can be read back.

See the Hardware Chapter to understand which registration mode your hardware
supports.

Filtering can be applied to the input as well as defining a window of where to
capture.

Hardware registration captures the encoder count against the registration input in
hardware

Time based registration captures the time of the registration event and
interpolates the position values being sent back from the drive against it.

Although all modes are available it is recommended to use modes 20-22 for new
applications. Other modes have been provided for compatibility with older products.

The REGIST command must be re-issued for each position capture.

Parameters:	 mode:		 1..4 	 = Single channel hardware registration.

		 5 	 = reserved.

		 6..13 	 = Dual channel hardware registration.

		 14..17	 = Single channel hardware registration.

		 20	 = Single channel hardware registration.

		 21	 = Single channel time based registration.

		 22 	 = 8 channel hardware registration.

		 23 	 = Sets 2.4usec minimum pulse width.

		 24	 = Sets 0.15usec minimum pulse width (default).

		 32..39 	 = Rising edge on time based registration.

		 64..71	 = Falling edge on time based registration.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-97

Syntax:	 REGIST(1..4)

Description:	 Modes 1 to 4 work with the first channel or Z mark of hardware based registration.

You can add values to enable windowing.

This mode works with MARK, REG _ POS and REGIST _ SPEED.

Parameters:	 mode:	 1 =	 Z Mark rising into REG _ POS.

	 2 = 	 Z Mark falling into REG _ POS.

	 3 = 	 RA Input rising into REG _ POS.

	 4 = 	 RA Input falling into REG _ POS.

	 +256 =	Position must be inside OPEN _ WIN..CLOSE _ WIN.

	 +768 = 	Position must be outside OPEN _ WIN..CLOSE _ WIN.

Example1:	 A disc used in a laser printing process requires registration to the Z marker before
printing can start. This routine locates to the Z marker, then sets that as the zero
position.

0 1 2 3 4 5 6 7

8
 9

Z MARK

SERVO MOTOR

	 BASE(0)
	 REGIST(1) ‘Initialise to Z mark
	 FORWARD ‘start movement
	 WAIT UNTIL MARK
	 CANCEL ‘stops movement after Z mark
	 WAIT IDLE
	 MOVEABS (REG _ POS) ‘relocate to Z mark
	 WAIT IDLE

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-98

 DEFPOS(0) ‘set zero position

Syntax:	 REGIST(6..13)

Description:	 Modes 6 to 13 work with hardware based registration but enable you to arm 2
registration registers at once.

You can add 256 or 768 to enable windowing.

The first channel will use MARK, REG _ POS and REGIST _ SPEED and the second
will use MARKB, REG _ POSB and REGIST _ SPEEDB.

Parameters:	 mode:	 6 = 	 RA Input rising into REG _ POS & Z Mark rising into REG _ POSB.

	 7 = 	 RA Input rising into REG _ POS & Z Mark falling into REG _ POSB.

	 8 = 	 RA Input falling into REG _ POS & Z Mark rising into REG _ POSB

	 9 = 	 RA Input falling into REG _ POS & Z Mark falling into REG _ POSB

	 10 = 	 RA Input rising into REG _ POS & RB Input rising into REG _ POSB.

	 11 = 	 RA Input rising into REG _ POS & RB Input falling into REG _ POSB.

	 12 = 	 RA Input falling into REG _ POS & RB Input rising into REG _ POSB.

	 13 = 	 RA Input falling into REG _ POS & RB Input falling into REG _ POSB.

	 +256 = Position must be inside OPEN _ WIN..CLOSE _ WIN.

	 +768 = Position must be outside OPEN _ WIN..CLOSE _ WIN.

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-99

Example 2:	 A machine adds glue to the top of a box by switching output 8. It must detect the
rising edge (appearance) of and the falling edge (end) of a box. Additionally it is
required that the MPOS be reset to zero on the detection of the Z position.

ENCODER

SENSOR

GLUE APPLICATOR

	 reg=6 ‘select registration mode 6 (rising edge R, rising
edge Z)
	 REGIST(reg)
	 FORWARD
	 WHILE IN(2)=OFF
		 IF MARKB THEN 		 ‘on a Z mark mpos is reset to zero
			 OFFPOS=-REG _ POSB
			 REGIST(reg)
		 ELSEIF MARK THEN ‘on R input output 8 is toggled
			 IF reg=6 THEN
			 ‘select registration mode 8 (falling edge R, rising
edge Z)
			 reg=8
			 OP(8,ON)
		 ELSE
			 reg=6
			 OP(8,OFF)
 		 ENDIF
		 REGIST(reg)
	 ENDIF
	 WEND
CANCEL

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-100

Syntax:	 REGIST(14..17)

Description:	 Modes 14 to 17 work with the second channel or Z mark of hardware based
registration.

You can add 256 or 768 to enable windowing.

This mode works with MARKB, REG _ POSB and REGIST _ SPEEDB.

Parameters:	 mode:	 14 = 	 ZB Mark rising into REG _ POSB.

	 15 = 	 ZB Mark falling into REG _ POSB.

	 16 = 	 RB Input rising into REG _ POSB.

	 17 = 	 RB Input falling into REG _ POSB.

	 +256 = Position must be inside OPEN _ WIN..CLOSE _ WIN.

	 +768 = Position must be outside OPEN _ WIN..CLOSE _ WIN.

Example 3:	 It is required to detect if a component is placed on a flighted belt so windowing
is used to avoid sensing the flights. The flights are at a pitch of 120 mm and the
component will be found between 30 and 90mm. If a component is found then an
actuator is fired to push it off the belt.

RAM

SENSOR BEAM

SENSOR

 REP _ DIST=120 ‘sets repeat distance to pitch of belt
flights
 REP _ OPTION=ON
 OPEN _ WIN=30 ‘sets window open position

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-101

 CLOSE _ WIN=90 ‘sets window close position
 REGIST(17+256) ‘RB input registration with windowing
 FORWARD ‘start the belt
 box _ seen=0
 REPEAT
 WAIT UNTIL MPOS<60 ‘wait for centre point between flights
 WAIT UNTIL MPOS>60 ‘so that actuator is fired between
flights
 IF box _ seen=1 THEN ‘was a box seen on the previous cycle?
 OP(8,ON) ‘fire actuator
 WA(100)
 OP(8,OFF) ‘retract actuator
 box _ seen=0
 ENDIF
 IF MARKB THEN box _ seen=1 ‘set “box seen” flag
 REGIST(17+256)
 UNTIL IN(2)=OFF
 CANCEL 											 ‘stop the belt
 WAIT IDLE

Syntax:	 REGIST(20, channel, source, edge, window)

Description:	 Mode 20 is used to set the hardware registration inputs A or B. Alternatively A or B
can be replaced with the Z mark. A and B are completely independent.

When using a FlexAxis the actual input used for channel A and channel B can be
selected with the REG _ INPUTS command.

This mode can be used instead of REGIST modes 1..4 and 14..17.

Parameters:	 mode:		 0 = Selects channel A.

		 1 = Selects channel B.

source: 	 0 = Selects the first 24V input.

		 1 = Selects the Z mark.

		 2 = Selects the second 24V input

		 3 = Selects the 5V registration pin (built-in axis only)

edge:		 0 = Rising edge

		 1 = Falling edge

window:	 0 = No windowing.

		 1 = Position must be inside OPEN _ WIN..CLOSE _ WIN.

		 2 = Position must be outside OPEN _ WIN..CLOSE _ WIN.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-102

If channel = 0, MARK, REG _ POS and REGIST _ SPEED are used.
If channel = 1, MARKB, REG _ POSB and REGIST _ SPEEDB are used.

Example 4:	 Configure the windowing which will be used on channel B and then arm both
channel B and the Z mark.

OPEN _ WIN=200
CLOSE _ WIN=400
REGIST(20,0,1,0,0)
REGIST(20,1,0,1,2)

Syntax:	 REGIST(21, channel, source, edge, window)

Description:	 REGIST mode 21 is used to arm the time based registration.

This can be used instead of REGIST modes 32..39 and 64..71.

This mode operates with the parameters R _ MARK(channel) , R _ REGPOS(channel)
and R _ REG _ SPEED(channel).

Parameters:	 mode:		 This is the registration channel to be used (range 0..7).

source: 	 Has no function, set to 0.

edge:		 0 = Rising edge.

		 1 = Falling edge.

window:	 0 = No windowing

		 1 = Position must be inside OPEN _ WIN..CLOSE _ WIN.

		 2 = Position must be outside OPEN _ WIN..CLOSE _ WIN.

Syntax:	 REGIST(22, channel, source, edge, window)

Description:	 This mode allows up to 8 hardware registration inputs to be assigned to one axis.

IF THIS MODE IS USED ALL 8 INPUTS ARE ASSIGNED TO THE ONE AXIS. YOU CANNOT
MIX REGIST(22) AND REGIST(20) ON ONE BANK OF INPUTS.

This mode operates with the parameters R _ MARK(channel) , R _ REGPOS(channel)
and R _ REG _ SPEED(channel).

!

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-103

To use this mode REG _ INPUTS must be set to $10 before you call the REGIST
command.

Parameters:	 channel:	 This is the registration channel to be used (range 0..7)

mode:		 This is the registration channel to be used (range 0..7).

source: 	 0 = Selects the 24V registration input.

		 1 = Selects the Z mark.

edge:		 0 = Rising edge.

		 1 = Falling edge.

window:	 0 = No windowing.

		 1 = Position must be inside OPEN _ WIN..CLOSE _ WIN.

		 2 = Position must be outside OPEN _ WIN..CLOSE _ WIN.

Syntax:	 REGIST(23)

Description:	 This mode assigns a 2.4usec minimum pulse width to the axis. This affects any
REGIST mode that is used.

The default value is 0.15usec.

Syntax:	 REGIST(24)

Description:	 This mode assigns a 0.15usec minimum pulse width to the axis. This affects any
REGIST mode that is used.

This is the default value.

See Also:	 MARK, MARKB, R _ MARK, REG _ POS, REG _ POSB, R _ REGPOS, REGIST _
SPEED, REGIST _ SPEEDB, R _ REGIST _ SPEED, REGIST _ DELAY, REG _
INPUTS

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-104

REVERSE

Type:	 Axis Command

Syntax:	 REVERSE

Alternate Format:	RE

Description:	 Sets continuous reverse movement on the specified or base axis. The axis
accelerates at the programmed ACCEL rate and continues moving at the SPEED
value until either a CANCEL or RAPIDSTOP command are encountered. It then
decelerates to a stop at the programmed DECEL rate.

If the axis reaches either the reverse limit switch or reverse soft limit, the
REVERSE will be cancelled and the axis will decelerate to a stop.

Example 1:	 Run an axis in reverse. When an input signal is detected on input 5, stop the axis.

back:

	 REVERSE
	 ‘Wait for stop signal:
	 WAIT UNTIL IN(5)=ON
	 CANCEL
	 WAIT IDLE

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-105

Example 2:	 Run an axis in reverse. When it reaches a certain position, slow down.

-30

-20

-50

-40

-10

0

MPOS=-129.45

SP
EE
D

AXIS 0

MPOS0 -300

	 DEFPOS(0) ‘set starting position to zero
	 REVERSE
	 WAIT UNTIL MPOS<-129.45
	 SPEED=slow _ speed
	 WAIT UNTIL VP _ SPEED=slow _ speed ‘wait until the axis
slows
	 OP(11,ON) ‘turn on an output to show that speed is now
slow

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-106

Example 3:	 A joystick is used to control the speed of a platform. A dead-band is required to
prevent oscillations from the joystick midpoint. This is achieved through setting
reverse, which sets the correct direction relative to the operator, the joystick then
adjusts the speed through analogue input 0.

 REVERSE
 WHILE IN(2)=ON
 IF AIN(0)<50 AND AIN(0)>-50 THEN ‘sets a dead-band in the
input
 SPEED=0
 ELSE
 SPEED=AIN(0)*100 ‘sets speed to a scale of
AIN
 ENDIF
 WEND
 CANCEL

See Also:	 Forward

Technical Reference Manual

Triobasic Commands
Motion and Axis Commands

8-107

SERVO_READ

Type:	 Axis Command

Syntax:	 SERVO _ READ(vr start, p0[,p1[,p2[,p3[,p4[,p5[,p6[,p7]]]]]]])

Description:	 Provides servo-synchronized access to axis/system parameters. Between 1 and
8 axis/system parameters can be read synchronously on the next servo cycle for
consistent data access when required. The data read is stored in successive VR
memory locations commencing from ‘vr start’.

Parameters:	 vr start:	 base index of VR memory to store data read from parameters.

p0..p7:	 Axis/System parameters to be read.

Example:	 SERVO _ READ(100, MPOS AXIS(0), FE AXIS(0), MPOS AXIS(1), FE AXIS(1))

Reads MPOS & FE for axes 0 & 1 and stores in VR locations 100,101,102 & 103.

STEP_RATIO

Type:	 Axis Command

Syntax:	 STEP _ RATIO(output _ count, dpos _ count)

Description:	 This command sets up an integer ratio for the axis’ stepper output. Every servo-
period the number of steps is passed through the STEP _ RATIO function before it
goes to the step pulse output.

The STEP _ RATIO function operates before the divide by 16 factor in the stepper
axis. This maintains the good timing resolution of the stepper output circuit.

STEP _ RATIO does not replace UNITS. Do not use STEP _ RATIO to remove the
x16 factor on the stepper axis as this will lead to poor step frequency control. You
should use PP _ STEP for this.

Parameters:	 output _ count:	 Number of counts to output for the given dpos_count value. 	
				 Range: 0 to 16777215.

dpos _ count:	 Change in DPOS value for corresponding output count. 		
			 Range: 0 to 16777215.

Trio Motion Technology

Triobasic Commands
Motion and Axis Commands

8-108

Large ratios should be avoided as they will lead to either loss of resolution or
much reduced smoothness in the motion. The actual physical step size x 16 is the
basic resolution of the axis and use of this command may reduce the ability of the
Motion Coordinator to accurately achieve all positions.

Example 1:	 Two axes are set up as X and Y but the axes’ steps per mm are not the same.
Interpolated moves require identical UNITS values on both axes in order to keep
the path speed constant and for MOVECIRC to work correctly. The axis with
the lower resolution is changed to match the higher step resolution axis so as to
maintain the best accuracy for both axes.

‘Axis 0: 500 counts per mm (31.25 steps per mm)
‘Axis 1: 800 counts per mm (50.00 steps per mm)
	 BASE(0)
	 STEP _ RATIO(500,800)
	 UNITS = 800
	 BASE(1)
 UNITS = 800

Example 2:	 A stepper motor has 400 steps per revolution and the installation requires that it
is controlled in degrees. As there are 360 degrees in one revolution, it would be
better from the programmer’s point of view if there are 360 counts per revolution.

BASE(2)

STEP _ RATIO(400, 360)
‘Note: this has reduced resolution of the stepper axis
MOVE(360*16) ‘move 1 revolution

Example 3:	 Remove the step ratio from an axis.

BASE(0)
STEP _ RATIO(1, 1

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-109

Input / Output Commands

.. (Range)

Type:	 Reserved Keyword

AIN

Type:	 System Command

Syntax:	 AIN(channel)

Description	 Reads a value from an analogue input. Analogue inputs are either built in to the
Motion Coordinator or available from the CAN Analogue modules.

The value returned is the decimal equivalent of the binary number read from the A
to D converter.

The built in analogue inputs are updated every servo period. The CAN analogue
inputs are updated every 10msec.

If no CAN Analogue modules are fitted, AIN(0) and AIN(1) will read the first two
built-in channels so as to maintain compatibility with previous versions.

Parameters:	 channel:	 Analogue input channel number 0...35.

		 0 to 31: CAN analogue input channel number.

		 32 to 35: Built in analogue input channel number.

Example:	 Material is to be fed off a roll at a constant speed. There is an ultrasonic height
sensor that returns 4V when the roll is empty and 0V when the roll is full. A lazy
loop is written in the BASIC to control the speed of the roll.

	 MOVE(-5000)
	 REPEAT
		 a=AIN(1)
		 IF a<0 THEN a=0
		 SPEED=a*0.25
	 UNTIL MTYPE=0

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-110

The analogue input value is checked to ensure it is above zero even though it
always should be positive. This is to allow for any noise on the incoming signal
which could make the value negative and cause an error because a negative speed
is not valid for any move type except FORWARD or REVERSE.

AIN0..3 / AINBI0..3

Type:	 System Parameter

Description:	 These system parameters duplicate the AIN() command.

AIN0..3 is used for single sided analogue inputs.

AINBI0..3 is used for bipolar inputs.

They provide the value of the analogue input channels in system parameter
format to allow the SCOPE function (Which can only store parameters) to read the
analogue inputs.

If no CAN Analogue modules are fitted, AIN0 and AIN1 will read the first two built-
in channels.

CHANNEL_READ

Type: 	 System Command

Syntax:	 CHANNEL _ READ(channel, buffer _ base, size[, delimiter _ base,
delimiter _ size[, escape _ character[, crc]]])

Description:	 CHANNEL _ READ will read bytes from the channel and store them into the VR data
starting at buffer_base.

CHANNEL _ READ will stop when it has read size bytes, the channel is empty, or
the character read from the channel is specified in the delimiter buffer.

If the escape character received then the next character is not interpreted. This
allows delimiter characters to be received without stopping the CHANNEL _ READ.

The calculated CRC will be stored in the VR(crc).

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-111

Parameters:	 channel:			 Communication or file channel.

buffer _ base:		 Number of the first VR for the buffer.

size:				 Size of the buffer.

delimeter _ base:		 Position in the VR data to the start of the delimiter 	
				 list.

delimeter _ size:		 Size of the delimiter list.

escape _ charactor:	 escape_character: When this character is received the 	
				 following character is not interpreted.

crc:				 Position in the VR data where the CRC will be stored.

CHANNEL_WRITE

Type: 	 System Command

Syntax:	 CHANNEL _ WRITE(channel, buffer _ base, buffer _ size)

Description:	 CHANNEL _ WRITE will send buffer_size bytes from the VR data starting at buffer_
base to the channel.

Parameters:	 channel:		 Communication or file channel.

buffer _ base:	 Position in the VR data to the start of the buffer.

buffer _ size:	 Size of the buffer.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-112

CLOSE

Type: 	 Command

Syntax:	 CLOSE #<channel>

Description:	 CLOSE will close the file on the specified channel.

Parameters:	 <channel>	 The TrioBASIC I/O channel to be associated with the file. It is in the 	
			 range 40 to 44.

See also:	 OPEN

FILE

Type:	 System Command

Syntax:	 value = FILE “function” [parameters]

Description:	 This command enables the user to manage the data on the SDCARD.

When the command prints to the selected channel, this channel can be selected
using OUTDEVICE

Parameters:	 Function:	 CD			 Change directory.

		 DEL			 Delete file.

		 DETECT		 Check for SD card.

		 DIR			 Print the current directory contents.

		 FIND _ FIRST	 Finds the first entry in the directory structure 	
					 of the specified file type.

		 FIND _ NEXT		 Finds the next entry in the directory structure 	
					 of the specified file type.

		 FIND _ PREV		 Finds the previous entry in the directory 		
					 structure of the specified file type.

		 LOAD _ PROGRAM	 Loads the specified program to the controllers 	
					 memory.

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-113

		 LOAD _ PROJECT	 Loads the specified project into the controllers 	
					 memory.

		 LOAD _ SYSTEM	 Loads the specified firmware into the 			
			 controller.

		 RD			 Delete a directory.

		 MD			 Create a directory.

		 PWD			 Prints the path of the directory.

		 SAVE _ PROGRAM	 Saves the specified program to the SD card.

		 SAVE _ PROJECT	 aves all programs from the controller to the SD 	
					 card.

		 TYPE			 Prints the selected file.

value:		 returns TRUE if the function was successful otherwise returns 		
		 FALSE.	

Syntax:	 value = FILE “CD” “directory”

Description:	 Change to the given directory. There is one active directory on the controller all
SDCARD commands are relative to this directory.

Parameters:	 directory:	 The name of the directory to change to.

Example:	 Use the command line to change to a new directory.

>>file “CD” “new _ directory”
OK \NEW _ DIRECTORY
>>

Syntax:	 value = FILE “DEL” “file”

Description:	 Delete the given file inside the current directory.

Parameters:	 file:	 The name of the file to be deleted, you must include the file extension.

Example:	 Delete a BASIC program from the SD card using the command line.

>>FILE “DEL” “STARTUP.bas”

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-114

OK
>>

Syntax:	 value = FILE “DETECT”

Description:	 Checks if a SD card is present in the slot

Parameters:	 parameters:	Returns TRUE if an SDCARD is detected correctly.

Example:	 Check if an SD card is present before saving the table data.

IF FILE “DETECT” THEN
 STICK _ WRITE(1501, 1000, 2000, 0)
ENDIF

Syntax:	 value = FILE “DIR”

Description:	 Print the contents of the current directory to the current output channel.

Example:	 Print the contents of the SD card on the command line.

>>FILE “DIR”
 Volume is NO NAME
 Volume Serial Number is 00C8-B79F
 Directory of /
 07/Aug/2009 15:50 1169978 MC60CC~1.OUT MC464 _ 20055 _ _
BOOT _ 013.out

 20/Nov/2009 15:25 <DIR> MC464 _ ~1 MC464 _ Panasonic _ Home
 16/Feb/2009 13:16 1619 TRIOINIT.BAS TRIOINIT.BAS
 20/Nov/2009 15:21 <DIR> SHOW1 Show1
 07/Jan/2000 04:54 <DIR> NEW _ DI~1 NEW _ DIRECTORY
>>

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-115

Syntax:	 value = FILE “FIND _ FIRST”, type, vr

Description:	 Initialises the internal FIND structures and locates the first directory entry of the
given type. The found directory entries name is stored in a VRSTRING

Parameters:	 value:		 TRUE if a directory entry is found otherwise FALSE.

type:		 0 = FILE or DIRECTORY

		 1 = FILE

		 2 = DIRECTORY

vr:		 The start position in VR memory where the VRSTRING is stored.

If there is an error initialising the internal FIND structures then the function
returns FALSE.

Syntax:	 value = FILE “FIND _ NEXT”, vr

Description:	 Finds the next directory entry of the type given in the corresponding FIND _
FIRST command.

Parameters:	 value:	TRUE if a directory entry is found otherwise FALSE.

vr:	 The start position in VR memory where the VRSTRING is stored.

If there is an error initialising the internal FIND structures then the function
returns FALSE.

Syntax:	 value = FILE “FIND _ PREV”, vr

Description:	 Finds the previous directory entry of the type given in the corresponding FIND _
FIRST command.

Parameters:	 value:	TRUE if a directory entry is found otherwise FALSE.

vr:	 The start position in VR memory where the VRSTRING is stored.

If there is an error initialising the internal FIND structures then the function
returns FALSE.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-116

Syntax:	 value = FILE “LOAD _ PROGRAM” “file”

Description:	 Load the given program into the Motion Coordinator. Only .BAS files are handled
at the moment.

Parameters:	 file:	 The name of the file that you wish to load.

Syntax:	 value = FILE “LOAD _ PROJECT” “name”

Description:	 Read the given Motion Perfect project file and load all the programs into the
Motion Coordinator, once loaded any RUNTYPES are automatically set.

Parameters:	 name:	 The name of the project that you wish to load.

Syntax:	 value = FILE “LOAD _ SYSTEM” “name”

Description:	 Read the given Motion Perfect project file and load all the programs into the
Motion Coordinator, once loaded any RUNTYPES are automatically set.

Parameters:	 name:	 The name of the firmware that you wish to load.

Syntax:	 value = FILE “RD” “name”

Loading incorrect firmware can prevent your controller from operating

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-117

Description:	 Delete the given directory inside the current directory.

Parameters:	 name:	 The name of the directory that you wish to delete.

Syntax:	 value = FILE “MD” “name”

Description:	 Create the given directory inside the current directory.

Parameters:	 name:	 The name of the directory that you wish to create.

Example:	 Using the command line create a new directory.

>>FILE “MD” “new _ directory”
OK
>>

Syntax:	 value = FILE “PWD”

Description:	 Prints the path of the current directory to the current output channel.

Syntax:	 value = FILE “SAVE _ PROGRAM” “name”

Description:	 Save the given program to the corresponding file on the SDCARD inside the current
directory. Only .BAS files are handled at the moment.

Parameters:	 name:	 The name of the file that you wish to save to the SD card.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-118

Syntax:	 value = FILE “SAVE _ PROJECT” “name”

Description:	 Create a Motion Perfect project with the given name inside the current directory.
This implies creating the directory and the corresponding project and program files
within this directory.

Parameters:	 name:	 The name of the project that you are creating on the SD card.

Syntax:	 value = FILE “TYPE” “name”

Description:	 Read the contents of the file inside the current directory and print
it to the current output channel.

Parameters:	 name:	 The name of the file that you wish to print.

See also 	 OUT _ DEVICE, STICK _ READ, STICK _ WRITE, STICK _ READVR, STICK _
WRITEVR

FLAG

Type:	 Logical and Bitwise Command

Syntax:	 value = FLAG(flag _ no [,state])

Description:	 The FLAG command is used to set and read a bank of 24 flag bits.

The FLAG command is provided to aid compatibility with earlier controllers and is not
recommended for new programs.

Parameters:	 value:	With one parameter it returns the state of the flag .

flag _ no:	 The flag number is a value from 0..31.

state:		 The state to set the given flag to. ON or OFF.

Example 1:	 Toggle a flag depending on a VR value.

IF FLAG(21) and VR(100)=123 THEN

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-119

 FLAG(21,OFF)
ELSE IF NOT FLAG(21) and VR(100)<>123 THEN
 FLAG(21,ON)
ENDIF

FLAGS

Type:	 Logical and Bitwise Command

Syntax:	 value = FLAGS([state])

Description:	 Read or Set the 32bit FLAGS as a block.

The FLAGS command is provided to aid compatibility with earlier controllers and is
not recommended for new programs.

Parameters:	 value:		 no parameters = returns the status of all flag bits

		 with parameter = returns -1

stste:		 The decimal equivalent of the bit pattern to set the flags to.

Example 1:	 Set Flags 1,4 and 7 ON, all others OFF

Bit # 7 6 5 4 3 2 1 0

Value 128 64 32 16 8 4 2 1

FLAGS(146)’ 2 + 16 + 128

Example 2:	 Test if FLAG 3 is set.

IF (FLAGS and 8) <>0 then GOSUB somewhere

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-120

GET

Type:	 System Command

Syntax:	 GET [#channel,] variable

Description:	 Waits for the arrival of a single character on the serial. The ASCII value of the
character is assigned to the variable specified. The user program will wait until a
character is available.

Poll KEY to check to if a character has been received before performing a GET.

Parameters:	 #channel:	 See # for the full channel list (default 0 if omitted).

variable:	 The variable to store the received character, this may be local 	
		 variable, VR or TABLE.

PERFORMING A GET OR GET#0 WILL SUSPEND THE COMMAND LINE UNTIL A
CHARACTER IS SENT ON THAT CHANNEL.

Example 1:	 Ask a user to enter y for yes and n for no on channel 5.

start:
PRINT#5, “Press ‘y’ for YES and ‘n’ for NO.”
GET#5, char
IF char = 121 THEN
 PRINT#5, “YES selected”
ELSEIF char = 110 THEN
 PRINT#5, “NO selected”
ELSE
 PRINT#5, “BAD selection”
 GOTO start
ENDIF

Example 2:	 Clear the serial buffer then request the user to enter a name.

WHILE KEY#2
 GET#2, dump
WEND

PRINT#2, “ENTER NAME”
WAIT UNTIL KEY#2
count=0
WHILE char<> $D ‘carrage return

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-121

 GET#2, char
 VR(count)=char
 count=count+1
WEND

See Also:	 LINPUT, PRINT, KEY

HW_PSWITCH

Type:	 Axis command

Syntax: 	 HW _ PSWITCH(mode, direction, opstate, table _ start, table _ end)

Description:	 The HW _ PSWITCH command turns on the PS output for the axis when the
predefined axis measured position is reached, and turns the output off when
another measured position is reached. Positions are defined as a sequence in the
TABLE memory in range from table_start to table_end, and on execution of the
HW _ PSWITCH command the positions are stored in a FIFO (first in - first out)
queue. This command is applicable only to Flexible Axis axes with ATYPE values
43, 44 and 45.

The command can be used with either 1 or 5 parameters. Only 1 parameter is
needed to disable the switch or clear FIFO queue. All five parameters are needed
to enable the switch.

After loading the FIFO and going through the sequence of positions in it, if the

same sequence has to be executed again, the FIFO must be cleared before
executing another HW _ PSWITCH command with the same parameters.

Parameters:	 mode:			 0 = disable switch

			 1 = on and load FIFO

			 2 = clear FIFO

direction:		 0 = MPOS decreasing

			 1 = MPOS increasing.

opstate:		 Output state to set in the first position in the FIFO; ON or 	
			 OFF.

table _ start:	 Starting TABLE address of the sequence.

table _ end:		 Ending TABLE address of the sequence.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-122

Example 1: 	 Load the table with 30 ON/OFF positions then run the command to load the FIFO
with these positions. When the position stored in TABLE(21) is reached, the PSn
output will be set ON and then alternatively OFF and ON on reaching the following
positions in the sequence, until the position stored in TABLE(50) is reached.

TABLE(21,5,10,15,18,20,24,30,33,45,51,56,57,65,76,79,84,88,90,94)
TABLE(40,99,105,120,140,145,190,235,260,271,280,300)
HW _ PSWITCH(1, 1, ON, 21, 50)

Example 2:	 Disable the switch if it was enabled previously. Does not clear the FIFO queue.

HW _ PSWITCH(0)

Example 3: 	 Clear the FIFO queue of a switch not on the BASE axis.

HW _ PSWITCH(2) AXIS(8)

Outputs are assigned to the axes of the FlexAxis module in a fixed way. One output
per axis; axis 0 - PS4, axis 1 - PS5, axis 2 - PS6, axis 3 - PS7.)

IN

Type:	 Function

Syntax:	 value = IN[(input _ no[,final _ input])]

Description:	 IN is used to read the state of the inputs.

If called with no parameters, IN returns the binary sum of the first 32 inputs. If
called with one parameter it returns the state (1 or 0) of that particular input
channel. If called with 2 parameters IN() returns in binary sum of the group of
inputs.

In the 2 parameter case the inputs should be less than 24 apart. IN is equivalent to
IN(0,31).

Parameter:	 value:			 The state of the selected input or range of inputs.

none:			 Returns the binary sum of the first 24 inputs.

input _ no:		 Input to return the value of/start of input group.

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-123

final _ input:	 last input of group.

Example 1:	 In this example a single input is tested:

WAIT UNTIL IN(4)=ON
GOSUB place

Example 2:	 Move to the distance set on a thumb wheel multiplied by a factor. The thumb
wheel is connected to inputs 4,5,6,7 and gives output in binary coded decimal.

The move command is constructed in the following order:

Step 1: IN(4,7) will get a number 0..15

Step 2: multiply by 1.5467 to get required distance

Step 3: absolute MOVE to this position

WHILE TRUE
	 MOVEABS(IN(4,7)*1.5467)
	 WAIT IDLE
WEND

Example 3:	 Test if either input 2 or 3 is ON.

If (IN and 12) <> 0 THEN GOTO start
‘(Bit 2 = 4 + Bit 3 = 8) so mask = 12

INPUT

Type:	 System Command.

Syntax:	 INPUT [#channel,] variable [, variable…]

Description:	 Waits for an ASCII string to be received on the current input device, terminated
with a carriage return <CR>. If the string is valid its numeric value is assigned to
the specified variable. If an invalid string is entered it is ignored, an error message
displayed and input repeated. Multiple values may be requested on one line, the
values are separated by commas, or by carriage returns <CR>.

Poll KEY to check to if a character has been received before performing an INPUT.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-124

Parameters:	 #channel:	 See # for the full channel list (default 0 if omitted).

variable:	 The variable to store the received character, this may be local 	
		 variable, VR or TABLE.

PERFORMING A INPUT OR INPUT#0 WILL SUSPEND THE COMMAND LINE UNTIL A
CHARACTER IS SENT ON THAT CHANNEL.

Example 1:	 Receive a single value and store it in a local variable num.

INPUT num
PRINT “BATCH COUNT=”;num[0]

On terminal:
123 <CR>
BATCH COUNT=123

Example 2:	 Get the length and width variables using one INPUT.

	 PRINT “ENTER LENGTH AND WIDTH?”;
	 INPUT VR(11),VR(12)

This will display on terminal:		

ENTER LENGTH AND WIDTH ? 1200,
1500 <CR>

See Also:	 #, KEY

INPUTS0 / INPUTS1

Type:	 System Parameter

Description:	 The INPUTS 0 / INPUTS 1 parameters holds the state of the Input channels as a
system parameter.

Reading the inputs using these system parameters is not normally required. The
IN(x,y) command should be used instead. They are made available in this format
to make the input channels accessible to the SCOPE command which can only store
parameters.

!

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-125

Parameters:	 value:		 INPUTS 0 = the binary sum of IN(0)..IN(15).

		 INPUTS 1 = the binary sum of IN(16)..IN(31).

See Also:	 IN

INVERT_IN

Type:	 System Function

Syntax:	 INVERT _ IN(input, state)

Description:	 The INVERT _ IN command allows the input channels to be individually inverted in
software.

This is important as these input channels can be assigned to activate functions such as
feedhold.

Parameters:	 input:		 The input to invert.

state:		 ON = the input is inverted in software.

		 OFF = the input is not inverted.

Example:	 Invert input 7 so that when the input is low the FWD _ JOG is off

INVERT _ IN(7,ON)
FWD _ JOG=7

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-126

KEY

Type:	 System Function.

Syntax:	 value = KEY [#channel]

Description:	 Key is used to check if there are characters in a channel buffer. This command
does not read the character but allows the program to test if any character has
arrived.

A TRUE result will be reset when the character is read with GET.

Parameters:	 #channel:	 See # for the full channel list (default 0 if omitted).

value:	A negative value representing the number of characters in the channel
buffer.

Example:	 Call a subroutine if a character has been received on channel 1.

main:
	 IF KEY#1 THEN GOSUB read
...
read:
	 GET#1 k
RETURN

See Also:	 GET

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-127

LINPUT

Type:	 System Command

Syntax:	 LINPUT [#channel,] variable

Description:	 Waits for an input string and stores the ASCII values of the string in an array of
variables starting at a specified numbered variable. The string must be terminated
with a carriage return <CR> which is also stored. The string is not echoed by the
controller.

You can print the string from the VR’s using VRSTRING.

Parameters:	 #channel:	 See # for the full channel list (default 0 if omitted).

variable:	 The VR variable to store the received character.

Example:	 LINPUT VR(0)

Now entering: START<CR> will give:

VR(0)	 83	 ASCII ‘S’

VR(1)	 84	 ASCII ‘T’

VR(2)	 65	 ASCII ‘A’

VR(3)	 82	 ASCII ‘R’

VR(4)	 84	 ASCII ‘T’

VR(5)	 13	 ASCII carriage return

See Also:	 #, VRSTRING

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-128

MODULE_IO_MODE

Type: 	 Slot Parameter

Syntax:	 MODULE _ IO _ MODE = mode

Description:	 This parameter sets the start address of any expansion module I/O channels. You
can also turn off module I/O for backwards compatibility.

This parameter is stored in Flash EPROM and should only be entered in the command
line.

Parameters:	 mode:	 0 = Module I/O disabled

	 1 = Module I/O is after controller I/O and before CANIO (default)

	 2 = Module I/O is after CANIO

IF YOU ARE UPGRADING THE FIRMWARE IN AN EXISTING CONTROLLER, THIS
PARAMETER MAY BE SET TO 0. THE DEFAULT OF 1 IS ON A FACTORY INSTALLED
SYSTEM.

Example:	 A system with MC464, a Panasonic module (slot 0), a FlexAxis (slot 1) and a CANIO
Module will have the following I/O assignment:

MODULE _ IO _ MODE=1 (default)
0-7	 Built in inputs
8-15	 Built in bi-directional I/O
16-23 	Panasonic inputs
24-27	 FlexAxis inputs
28-31	 FlexAxis bi-directional I/O
32-47	 CANIO bi-directional I/O

MODULE _ IO _ MODE=0 (off)
0-7 	 Built in inputs
8-15 	Built in bi-directional I/O
16-31 	CANIO bi-directional I/O

MODULE _ IO _ MODE=2 (end)
0-7 	Built in inputs
8-15	 Built in bi-directional I/O
16-31	 CANIO bi-directional I/O
32-39	 Panasonic inputs
40-43	FlexAxis inputs
44-47	FlexAxis bi-directional I/O

!

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-129

OP

Type:	 System Command.

Description:	 Sets output(s) and allows the state of the first 32 outputs to be read back.

There are four modes of operation for the OP command, using up to three
parameters:

Syntax:	 value =OP

Description:	 Return the state of the first 32 outputs as a binary pattern

Parameters:	 value:		 Binary pattern of the first 32 outputs.

Syntax:	 OP(state)

Description:	 Simultaneously set the first 32 outputs with the binary pattern of the state.

Parameters:	 state:		 Decimal equivalent of binary number to set on outputs.

Syntax:	 OP(output, state)

Description:	 Set the state of an individual output

Parameters:	 output:	 Output number to set.

state:		 0 or OFF

		 1 or ON

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-130

Syntax:	 OP(start, end, state)

Description:	 Simultaneously set a defined group of outputs with the binary pattern of the state.

Parameters:	 start:		 First output in the group.

end:		 Last output in the group.

state:		 Decimal equivalent of binary number to set on the group.

Example 1:	 Turn on a single output 44

OP(44,1)

This is equivalent to:

OP(44,ON)

Example 2:	 Sets the bit pattern 10010 on the first 5 physical outputs, outputs 13-31 will be
cleared. Note how the bit pattern is shifted 8 bits by multiplying by 256 to set the
first available outputs as 0 to 7 do not exist.

OP (18*256)

Example 3:	 Read the first 32 outputs, clear 0-7 as they are only inputs and 16-32. Then set 16-
32 leaving 8-15 in their original state.

read _ output:
	 VR(0)=OP		 ‘clear 0-7 and 16-32
	 VR(0)=VR(0) AND $0000FF00	 ‘set $1A42 in outputs 16-32,
8-15 will remain in their original state

 VR(0)=VR(0) OR $1A420000
	 OP(VR(0))

Example 4:	 Simultaneously setting outputs 10 to 13 all on.

OP(10,13, $F)

See also:	 READ _ OP()

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-131

OPEN

Type: 	 Command

Syntax:	 OPEN # channel AS “[location:]name” FOR access

Description:	 OPEN will provide access to a text file on the controller. The text file can be
initialised as a file that Motion Perfect can synchronise with, a temporary file or as
a FIFO buffer. All files are in the file list however only a text file can be viewed or
edited in Motion Perfect.

Once the file has been opened then it can be manipulated by the standard
TrioBASIC channel commands. If the file is opened with read access then any
TrioBASIC GET type commands such as GET, INPUT, LINPUT and KEY can be
used on the channel. If the file is opened with write access then the PRINT type
commands can be used on the channel.

Parameters:

The TrioBASIC I/O channel to be associated with the file. It is in the
range 40 to 44.

access: The operations permitted on the file. The valid access types are:

INPUT

The file will be opened for reading. When the end of the file is
reached KEY will return FALSE, and the GET and INPUT functions will
fail.

OUTPUT(mode)

The file will be opened for writing. If the file does not exist then it
will be created. If the file does exist then it will be cleared.

mode = 0 opens a text file that Motion Perfect can read, edit and
save into the project.

mode = 1 opens a temporary file that is only accessible by the
controller.

FIFO_READ

The file will be opened for reading and will be managed as a circular
buffer. This is only valid for files stored in internal RAM.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-132

FIFO_WRITE(size)

The file will be opened for writing and will be managed as a circular
buffer. This is only valid for files in internal RAM. If the file does not
exist it will be created <size> bytes long. If the file does exist then it
must be of type FIFO, the size parameter is ignored and the contents
are cleared.

name: Name of the file to be opened. The format is “[RAM|SD:]filename”.
If the prefix is omitted or is RAM: then filename refers to an internal
RAM directory entry. If the prefix is SD: then filename refers to an
SDCARD directory entry.

If you are creating a file on the SD card you will need to append the file extension. A
text file stored in RAM will be saved as a .txt file in the project by Motion Perfect.
This enables you to generate and read files on the SD card in any text based format.

Example 1:	 Open a file that can be used to log information to a .txt file on the SD card then
print end of shift information to the file.

OPEN #40 AS “SD:product _ log.txt” FOR OUTPUT (0)
PRINT#40, DATE$ ‘Print the date
PRINT#40, products _ complete[0]; “ products completed”
PRINT#40, product _ failures[0]; “ products failed”
CLOSE# 40

Example 2:	 A G-Code file is loaded from a serial port into the controller, it is saved into a temp
file on the controller for use later on.

OPEN #41, AS “gcodeprogram” for OUTPUT (1)
WHILE file _ downloading
 IF KEY#1
 GET#1, char
 PRINT#40, char;
 ENDIF
 Length=length + 1
WEND

Example 3:	 The G-Code program has been downloaded to a temp file, it then should be
transferred to a FIFO so that it can be interpreted into motion.

OPEN #41, AS “gcodeprogram” for INPUT
OPEN#42, AS “gcodefifo” for FIFO _ WRITE(length)
WHILE KEY#41
 GET#41, char
 PRINT#42, char;
WEND

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-133

PRINT

Type:	 Command.

Alternate format:	 ?

Syntax:	 PRINT [#number,] print _ expression

Description:	 The PRINT command allows the TrioBASIC program to output a series of characters
to a channel. A channel may be a serial port or some other type of connection to
the Motion Coordinator.

A print_expression may include parameters, fixed ASCII strings, single ASCII
characters and the returned values from functions. Multiple items to be printed
can be put on the same PRINT line provided they are separated by a comma or
semi-colon. The items can be modified using print formatters including HEX, CHR
and [w,x].

Any value larger than 1e19 and smaller than 1e-18 will be printed in scientific format.
You can still use [w,x] to format how this is displayed. A value is normally printed to 4
decimal places.

Parameters:	 #channel:		 See # for the full channel list (default 0 if omitted).

value[w,x]:		 Separates items with no space, omits carriage return line 	
			 feed if used after the last item.

			 w = total number of characters to display, 29 maximum 	
			 (optional).

			 x = number of decimal places to use, 15 maximum.

“string”:		 Prints the string.

CHR(value):		 Prints the ASCII character referred to by the number.

HEX(expression):	 Prints the value in hexadecimal format.

TIME$			 Prints the time from the real time clock in 24hr format.

When using value[w,x], if the number is too big the field will be filled with question
marks to signify that there was not sufficient space to display the number. The
numbers are right justified in the field with any unused leading characters being filled
with spaces.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-134

Example 1:	 Print a string using quotation marks.

PRINT “CAPITALS and lower case CAN BE PRINTED”

Example 2:	 Print a number and a value from a VR, separated by a comma to make the VR
value in the next tab space.

>>PRINT 123.45,VR(1)
123.4500 1.5000
>>

Example 3:	 Print a VR with 4 characters and 1 decimal place, then in the next tab a local
variable with 2 decimal places.

VR(1)=6
variable=410.5:
PRINT VR(1)[4,1],variable[2]
print output will be:
6.0 410.50

Example 4:	 Print a string directly followed by a numerical value. Note how in this example the
semi-colon separator is used. This does not tab into the next column, allowing the
programmer more freedom in where the print items are put.

>>PRINT “DISTANCE=”;MPOS
DISTANCE=123.0000
>>

Example 5:	 Print a carriage return and no line feed at the end of a message. The semi-colon on
the end of the print line suppresses the carriage return normally sent at the end of
a print line. ASCII (13) generates CR without a line feed. The string is to output
from serial port channel 1.

PRINT #1,”ITEM “;total;” OF “;limit;CHR(13);

Example 6:	 Print the status of inputs 8-16 in hexadecimal format to terminal channel 5 in
Motion Perfect.

PRINT #5, HEX(IN(8,16))

Example 7: 	 Print AXISSTATUS for axis 6 in the hexadecimal format on the command line. (Bits
1 and 8 are set).

>>?hex(AXISSTATUS AXIS(6))

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-135

102
>>

See Also:	 #

PSWITCH

Type:	 Command

Syntax:	 PSWITCH(switch, enable [,axis, output, state, setpos, resetpos])

Description:	 The PSWITCH command allows an output to be set when a predefined position is
reached, and to be reset when a second position is reached. There are 16 position
switches each of which can be assigned to any axis and to any output, virtual or
real.

Multiple PSWITCH’s can be assigned to a single output.

The actual output is the OR of all position switches on the output OR the OP setting.
This means that OP(output,ON) can override a PSWITCH.

After switching the PSWITCH OFF, the output will remain at the current state. You
can use the OP command to then set it to the state you require.

Parameters:	 switch:	 The switch number in the range 0..15.

enable:	 1 or ON = Enable software PSWITCH (requires all parameters)

		 0 or OFF = Disable PSWITCH

		 5 = Enable PSWITCH on DPOS

axis:		 Axis to link the PSWITCH to, may be any real or virtual axis.

output:	 Selects the output to set, can be any real or virtual output.

state:		 1 or ON = turn the output ON at setpos

		 0 or OFF = turn the output OFF at setpos

setpos:	 The position at which output is set, in user units.

resetpos:	 The position at which output is reset, in user units.

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-136

Example:	 A rotating shaft has a cam operated switch which has to be changed for different
size work pieces. There is also a proximity switch on the shaft to indicate TDC
of the machine. With a mechanical cam the change from job to job is time
consuming but this can be eased by using the PSWITCH as a software ‘cam switch’.
The proximity switch is wired to input 7 and the output is fired by output 11. The
shaft is controlled by axis 0 of a 3 axis system. The motor has a 900ppr encoder.
The output must be on from 80° after TDC for a period of 120°. It can be assumed
that the machine starts from TDC.

The PSWITCH command uses the unit conversion factor to allow the positions to
be set in convenient units. So first the unit conversion factor must be calculated
and set. Each pulse on an encoder gives four edges which the controller counts,
therefore there are 3600 edges/rev or 10 edges/°. If we set the unit conversion
factor to 10 we can then work in degrees.

Next we have to determine a value for all the PSWITCH parameters.

This can all be put together to form the two lines of TrioBASIC code that set up the
position switch:.

axis:		 We are told that the shaft is controlled by axis 0, thus axis is set to 	
		 0.

output:	 We are told that output 11 is the one to fire, so set opno to 11.

state:		 When the output is set it should be ON.

setpos:	 The output is to fire at 80° after TDC hence the set position is 80 as 	
		 we are working in degrees.

resetpos:	 The output is to be on for a period of 120° after 80° therefore it 	
		 goes off at 200°. So the reset position is 200.

This can all be put together to form the two lines of TrioBASIC code that set up the
position switch:

switch:

	 UNITS AXIS(0)=10’ Set unit conversion factor (°)
	 REPDIST=360
	 REP _ OPTION=ON
	 PSWITCH(0,ON,0,11,ON,80,200)

This program uses the repeat distance set to 360 degrees and the repeat option ON
so that the axis position will be maintained in the range 0..360 degrees.

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-137

READ_OP

Type:	 System Command

Syntax:	 value = READ _ OP(output [,finaloutput])

Description:	 Returns the state of digital output logic.

If called with one parameter, it returns the state (1 or 0) of that particular output
channel. If called with 2 parameters READ _ OP() returns, in binary, the sum of
the group of outputs.

READ _ OP checks the state of the output logic. The output may be virtual or not
powered and you will still see the logic state.

Parameters:	 value:	The binary pattern of the selected outputs.

output:	 Output to return the value of/start of output group.

finaloutput:	 Last output of group.

The range of output to finaloutput must not exceed 32.

Example 1:	 In this example a single output is tested:

test:
	 WAIT UNTIL READ _ OP(12)=ON
	 GOSUB place

Example 2:	 Check the group of 8 outputs and call a routine if any of them are ON.

	 op _ bits = READ _ OP(16,23)
	 IF op _ bits<>0 THEN
		 GOSUB check _ outputs
	 ENDIF

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-138

SETCOM

Type:	 Command

Syntax:	 SETCOM(baudrate,databits,stopbits,parity,port[,mode][,variable]
,timeout][,linetype])

Description:	 Allows the user to configure the serial port parameters and enable communication
protocols.

By default the controller sets the serial ports to 38400 baud, 8 data bits, 1 stop bits
and even parity.

Parameters:	 baudrate:	 1200, 2400, 4800, 9600, 19200 or 38400.

databits:	 7 or 8.

stopbits:	 1 or 2.

parity:	 0 = none, 1 = odd, 2 = even.

port:		 1 or 2.

mode:		 0 = XON/XOFF inactive

		 1 = XON/XOFF active

		 4 = MODBUS protocol (16 bit Integer)

		 5 = Hostlink Slave

		 6 = Hostlink Master

		 7 = MODBUS protocol (32 bit IEEE floating point)

		 8 = Reserved mode

		 9 = MODBUS protocol (32bit long word integers)

variable:	 0 = Modbus uses VR

		 1 = Modbus uses TABLE

Timeout:	 Communications timeout (msec). Default is 3.

linetype:	 0 = 4 wire RS485,

		 1 = 2 wire RS485

PCMotion (mode=8) only supports port 1.

Technical Reference Manual

Triobasic Commands
Input / Output Commands

8-139

Example 1:	 Set port 1 to 19200 baud, 7 data bits, 2 stop bits even parity and XON/XOFF
enabled.

SETCOM(19200,7,2,2,1,1)

Example 2:	 Set port 2 (RS485) to 9600 baud, 8 data bits, 1 stop bit no parity and no XON/XOFF
handshake.

SETCOM(9600,8,1,0,2,0)

Example 3:	 The Modbus protocol is initialised by setting the mode parameter of the SETCOM
instruction to 4. The ADDRESS parameter must also be set before the Modbus
protocol is activated.

ADDRESS=1
SETCOM(19200,8,1,2,2,4)

TIMER

Type: 	 Command

Syntax:	 TIMER(switch, output, pattern, time[,option])

Description:	 The TIMER command allows an output or a selection of outputs to be set or
cleared for a predefined period of time. There are 8 timer slots available, each
can be assigned to any outputs. The timer can be configured to turn the output ON
or OFF.

Parameters:	 switch:	 The timer number in the range 0-7.

output:	 Selects the physical output or first output in a group. Range 0-31.

pattern:	 1 = for a single output.

		 Number = If set to a number this represents a binary array of 		
		 outputs to be turned on. Range 0-65535.

time:		 The period of operation in milliseconds.

option:	 Inverts the output, set to 1 to turn OFF at start and ON at end.

Example 1:	 Use the TIMER function to flash an output when there is a motion error. The
output lamp should flash with a 50% duty cycle at 5Hz.

 WAIT UNTIL MOTION _ ERROR

Trio Motion Technology

Triobasic Commands
Input / Output Commands

8-140

 WHILE MOTION _ ERROR
 TIMER(0,8,1,100) ‘turns ON output 8 for 100milliseconds
 WA(200) ‘Waits 200 milliseconds to complete the 5Hz period
 WEND

Example 2:	 Setting outputs 10, 12 and 13 OFF for 70 milliseconds following a registration event.
The first output is set to 10 and the pattern is set to 13 (1 0 1 1 in binary) to enable
the three outputs. Output 11 is still available for normal use. The option value
is set to 1 to turn OFF the outputs for the period, they return to an ON state after
the 70 milliseconds has elapsed.

 WHILE running
 REGIST(3)
 WAIT UNTIL MARK
 TIMER(1,10,13,70,1)
 WEND

Example 3:	 Firing output 10 for 250 milliseconds during the tracking phase of a MOVELINK
Profile.

 WHILE feed=ON
 MOVELINK(30,60,60,0,1)
 MOVELINK(70,100,0,60,1)
 WAIT LOADED ‘Wait until the tracking phase starts
 TIMER(2,10,1,250) ‘Fire the output during the tracking phase
 MOVELINK(-100,200,50,50,1)
 WEND

Technical Reference Manual

Triobasic Commands
Program Loops and Structures

8-141

Program Loops and Structures

_ (Line Cont)

Type:	 Special Character

Syntax:	 expression _ start _ expression _ end

Description:	 The line extension allows the user to split a long expression or command over more
than one lines in the TrioBASIC program.

The split must be at the end of a parameter or keyword.

Parameters:	 expression _ start:	 The start of the command or expression.

expression _ start:	 The end of the command or expression.

Example:	 Split the SERVO _ READ command over 2 lines so you can use all 8 parameters.

SERVO _ READ(123, MPOS AXIS(0), MPOS AXIS(1), MPOS AXIS(2), _
MPOS AXIS(3), MPOS AXIS(4), MPOS AXIS(5), MPOS AXIS(6))

BASICERROR

Type:	 System Command

Description:	 This command is used as part of an ON... GOSUB or ON... GOTO. This lets the
user handle program errors. If the program ends for a reason other than normal
stopping then the subroutine is executed, this is when RUN _ ERROR<>31.

You should include the BASICERROR statement as the first line of the program.

Trio Motion Technology

Triobasic Commands
Program Loops and Structures

8-142

Example:	 When a program error occurs, print the error to the terminal and record the error
number in a VR so that it can be displayed on an HMI through Modbus.

ON BASICERROR GOTO error _ routine
....(rest of program)
	
error _ routine:
	 VR(100) = RUN _ ERROR
	 PRINT “The error “;RUN _ ERROR[0];
	 PRINT “ occurred in line “;ERROR _ LINE[0]
STOP

See Also:	 RUN _ ERROR, ERROR _ LINE

FOR..TO.. STEP.. NEXT

Type:	 Program Structure

Syntax:	 FOR variable = start TO end [STEP increment]
	 commands
NEXT variable

Description:	 A FOR program structure is used to execute a block of code a number of times.

On entering this loop the variable is initialised to the value of start and the block
of commands is then executed. Upon reaching the NEXT command the variable
defined is incremented by the specified STEP. If the value of the variable is less
than or equal to the end parameter then the block of commands is repeatedly
executed. Once the variable is greater than the end value the program drops out
of the FOR..NEXT LOOP.

FOR..NEXT loops can be nested up to 8 deep in each program.

Parameters:	 commands:	 TrioBASIC statements that you wish to execute.

variable:	 A valid TrioBASIC variable. Either a global VR variable, or a local 	
		 variable may be used.

start:		 Initial value for the variable.

end:		 Final value for the variable.

increment:	 The value that the variable is incremented by , this may be positive 	
		 or negative.

Technical Reference Manual

Triobasic Commands
Program Loops and Structures

8-143

The STEP increment is optional, if this is omitted then the FOR NEXT will increment
by 1.

The variable can be adjusted or used within the structure.

Example 1:	 Turn ON outputs 10 to 18, using the variable to change the output.

FOR op _ num=10 TO 18

		 OP(op _ num,ON)
NEXT op _ num

Example 2:	 Index an axis from 5 to -5 using a negative STEP.
	 FOR dist=5 TO -5 STEP -0.25
		 MOVEABS(dist)
		 WAIT IDLE
		 GOSUB pick _ up
	 NEXT dist

Example 3:	 Using a FOR structure to move through a set of x,y positions. If there is a
MOTIONERROR then the variables are set to a large values so the loop no longer
repeats.w

FOR x=1 TO 8
 FOR y=1 TO 6
		 MOVEABS(x*100,y*100)
		 WAIT IDLE
		 GOSUB operation
		 IF MOTIONERROR THEN
		 x=10
		 y = 10
		 ENDIF
 	 NEXT y
NEXT x

Trio Motion Technology

Triobasic Commands
Program Loops and Structures

8-144

GOSUB..RETURN

Type:	 Program Structure

Syntax:	 GOSUB label

Description:	 Stores the position of the line after the GOSUB command and then branches to the
label specified. Upon reaching the RETURN statement, control is returned to the
stored line.

GOSUB..RETRUN loops can be nested up to 8 deep in each program.

Parameters:	 commands:	 TrioBASIC statements that you wish to execute.

label:		 A valid label that occurs in the program.

If the label does not exist an error message will be displayed at run time and the
program execution halted.
You must not execute a RETURN without a GOSUB as a runtime error will be
displayed and your program will stop.

Example:	 WHILE machine _ active

	 GOSUB routine1
	 GOSUB routine2
WEND
STOP	 ‘prevents running into sub routines when machine stopped.	

routine1:
	 PRINT “Measured Position=”;MPOS;CHR(13);
RETURN

routine2:
	 PRINT “Demand Position=”;DPOS;CHR(13);
RETURN

Example 2:
Calculating values in a subroutine.
y=1
z=4
GOSUB calc
PRINT “New value = “, x
STOP	

calc:

Technical Reference Manual

Triobasic Commands
Program Loops and Structures

8-145

 x=y+z/2
RETURN

See Also:	 GOTO

GOTO

Type:	 Program Structure

Syntax:	 GOTO label

Description:	 Identifies the next line of the program to be executed.

If the label does not exist an error message will be displayed at run time and the
program execution halted

Parameters:	 label:	A valid label that occurs in the program.

Example:	 Use a GOTO to repeat a section of your program after a bad input

start:
PRINT#5, “Press ‘y’ for YES and ‘n’ for NO.”
GET#5, char
IF char = 121 THEN
 PRINT#5, “YES selected”
ELSEIF char = 110 THEN
 PRINT#5, “NO selected”
ELSE
 PRINT#5, “BAD selection”
 GOTO start
ENDIF

See Also:	 GOSUB

Trio Motion Technology

Triobasic Commands
Program Loops and Structures

8-146

IDLE

Type:	 Axis Parameter

Description:	 Checks to see if an axis MTYPE is IDLE

Parameters:	 value:	TRUE = MTYPE is empty (MTYPE=0).

		 FALSE = MTYPE has a command loaded (MTYPE<>0).

Example 1:	 Start a move and then suspend program execution until the move has finished.
Note: This does not necessarily imply that the axis is stationary in a servo motor
system.

MOVE(100)
WAIT IDLE
PRINT “Move Done”

Example 2:	 If the axis does not have any moves loaded then load a new sequence.

IF IDLE AXIS(1) THEN
	 MOVE(100)
	 MOVE(50)
	 MOVE(-150)
ENDIF

IF..THEN..ELSEIF..ELSE..ENDIF

Type:	 Program Structure

Syntax:	 IF expression THEN (commands)

ELSEIF expression THEN (commands)
ELSE (commands)
ENDIF

Technical Reference Manual

Triobasic Commands
Program Loops and Structures

8-147

Description: 	 An IF program structure is used to execute a block of code after a valid
expression. The structure will execute only one block of commands depending
on the conditions. If multiple expressions are valid then the first will have its
commands executed. If no expressions are valid and an ELSE is present the
commands under the ELSE will be executed.

Parameters:	 expression:		 Any valid TrioBASIC expression.

commands:		 TrioBASIC statements that you wish to execute.

IF..THEN:		 The fist condition of an IF statement.

ELSEIF:		 An optional condition, can have multiple ELSEIFs.

ELSE:			 An optional catch condition if no others expressions are valid.

ENDIF:			 The end of the IF statement.

Example 1:	 Check for the batch to be complete, if it is then tell the user and process the
batch.

IF count >= batch _ size THEN
	 PRINT #3,CURSOR(20);” BATCH COMPLETE “;
	 GOSUB index ‘Index conveyor to clear batch
	 count=0
ENDIF

Example 2:	 Use an IF statement to light a warning lamp when machine is running.

IF WDOG=ON THEN
 OP(warning, ON)
ELSE
 OP(warning, OFF)
ENDIF

Example 3:	 Use an IF structure to report the operating state of a machine.

IF operating _ state=0 THEN
 PRINT#5, “Machine Running”
ELSEIF operating _ state=1 THEN
 PRINT#5, “Machine Idle”
ELSEIF operating _ state=2 THEN
 PRINT#5, “Machine Jammed”
ELSE
 PRINT#5, “Machine in unknown state”
ENDIF

Trio Motion Technology

Triobasic Commands
Program Loops and Structures

8-148

NEXT

Type:	 Program Structure

Description:	 Used to mark the end of a FOR..NEXT loop.

See 	 FOR

ON.. GOSUB / GOTO

Type:	 Program Structure

Syntax:	 ON expression GOxxx label[,label1[,...]]

…
label:
commands
RETURN
…
label1:
commands

RETURN

Description:	 The expression is evaluated and then the integer part is used to select a label
from the list. If the expression has the value 1 then the first label is used, 2 then
the second label is used, and so on. Once a label is selected it is used with either
GOSUB or GOTO.

If the value of the expression is less than 1 or greater than the number of labels the
command is stepped through with no action. Once the label is selected a GOSUB is
performed.

Parameters:	 expression:	Any valid TrioBASIC expression, should return a value 1 or greater.

commands:	 TrioBASIC statements that you wish to execute.

label:		 A valid label that occurs in the program.

GOXXX:	 GOSUB or GOTO.

Technical Reference Manual

Triobasic Commands
Program Loops and Structures

8-149

If the label does not exist an error message will be displayed at run time and the
program execution halted.

Example 1:	 REPEAT

	 GET #3,char
UNTIL 1<=char AND char<=3
ON char GOSUB mover,stopper,change

Example 2:	 Use inputs from a PLC to determine which program to run.

 ON (IN(4,6)+1)GOTO prog0, prog1, prog2, prog3, prog ‘select prog
 GOTO continue ‘skip progs if unknown input selected
 prog0:
 RUN “tuning”,2
 GOTO continue
 prog1:
 RUN “cutting”,2
 GOTO continue
 prog2:
 RUN “packing”,2
 GOTO continue
 prog3:
 RUN “moving”,2
 GOTO continue
 Prog4:
 RUN “lifting”,2
 GOTO continue

 continue:
 …

See Also:	 GOSUB, GOTO

Trio Motion Technology

Triobasic Commands
Program Loops and Structures

8-150

REPEAT.. UNTIL

Type:	 Program Structure

Syntax:	 REPEAT commands UNTIL expression

Description:	 The REPEAT..UNTIL construct allows a block of commands to be continuously
repeated until an expression becomes TRUE. REPEAT..UNTIL loops can be nested
without limit.

The commands inside a REPEAT..UNTIL structure will always be executed at least
once, if you want them to only be executed on the expression you can use a WHILE..
WEND.

Parameters:	 expression:		 Any valid TrioBASIC expression.

commands:		 TrioBASIC statements that you wish to execute.

Example:	 A conveyor is to index 100mm at a speed of 1000mm/s wait for 0.5s and then
repeat the cycle until an external counter signals to stop by setting input 4 on.

	 SPEED=1000
	 REPEAT
		 MOVE(100)
		 WAIT IDLE
		 WA(500)
	 UNTIL IN(4)=ON

THEN

Type:	 Program Structure

Description:	 Forms part of an IF expression. See IF for further information.

Example:	 IF MARK THEN

		 offset=REG _ POS
ELSE
		 offset=0
ENDIF

Technical Reference Manual

Triobasic Commands
Program Loops and Structures

8-151

TO

Type:	 Program Structure

See Also:	 FOR.. TO.. NEXT

UNTIL

Type:	 Program Structure

Description:	 Defines the end of a REPEAT..UNTIL multi-line loop, or part of a WAIT UNTIL
structure. After the UNTIL statement is a condition which decides if program flow
continues on the next line or at the REPEAT statement. REPEAT..UNTIL loops can
be nested without limit.

Example:	 ‘ This loop loads a CAMBOX move each time Input 0 comes on.

‘ It continues until Input 6 is switched OFF.	

REPEAT

	 WAIT UNTIL IN(0)=OFF

	 WAIT UNTIL IN(0)=ON

	 CAMBOX(0,150,1,10000,1)

UNTIL IN(6)=OFF

Trio Motion Technology

Triobasic Commands
Program Loops and Structures

8-152

WA

Type:	 Program Structure

Syntax:	 WA(time)

Description:	 Holds up program execution for the number of milliseconds specified in the
parameter.

Parameters:	 time:		 The number of milliseconds to wait for.

Example:	 Turn output 17 off 2 seconds after switching output 11 off.

OP(11,OFF)
WA(2000)
OP(17,ON)

WAIT

Type:	 Command

Syntax:	 WAIT UNTIL expression

Description:	 Suspends program execution until the expression is TRUE.

It is very common to use only IDLE and LOADED as the expression. In this situation
the UNTIL is optional. When IDLE and LOADED are part of an expression UNTIL is
required.

Parameters:	 condition:		 Any valid TrioBASIC expression.

Example 1:	 The program waits until the measured position on axis 0 exceeds 150 then starts a
movement on axis 7.

WAIT UNTIL MPOS AXIS(0)>150
MOVE(100) AXIS(7)

Technical Reference Manual

Triobasic Commands
Program Loops and Structures

8-153

Example 2:	 Start a move and then suspend program execution until the move has finished.
Note: This does not necessarily imply that the axis is stationary in a servo motor
system.

MOVE(100)
WAIT IDLE
PRINT “Move Done”

Example 3:	 Switch output 45 ON at start of MOVE(350) and OFF at the end of that move.

MOVE(100)
MOVE(350)
WAIT LOADED
OP(45,ON)
MOVE(200)
WAIT LOADED
OP(45,OFF)

Example 4:	 Force the program to wait until either the current move has finished or an input
goes ON.

As the expression contains UNTIL and IN(12) the UNTIL is required.

MOVELINK(distance, link _ dist, acceldist, deceldist, linkaxis)
WAIT UNTIL IDLE OR IN(12)=ON.

WEND

Type:	 Program Structure

Description:	 Marks the end of a WHILE..WEND loop.

See also:	 WHILE

WHILE..WEND loop can be nested without limit other than program size.

Trio Motion Technology

Triobasic Commands
Program Loops and Structures

8-154

WHILE

Type:	 Program Structure

Syntax:	 WHILE condition

Description:	 The commands contained in the WHILE..WEND loop are continuously executed until
the condition becomes FALSE. Execution then continues after the WEND. If the
condition is false when the WHILE is first executed then the loop will be skipped.

Parameters:	 condition:	 Any valid logical TrioBASIC expression.

Example:	 While input 12 is off, move the base axis and flash an LED on output 10.

WHILE IN(12)=OFF
	 MOVE(200)
	 WAIT IDLE
	 OP(10,OFF)
	 MOVE(-200)
	 WAIT IDLE
	 OP(10,ON)
WEND

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-155

System Parameters and Commands

: (Colon)

Type:	 Special Character

Syntax:	 label:

Description:	 The colon character is used to terminate labels used as destinations for GOTO and
GOSUB commands.

Labels can also be used to aid readability of code.

Parameters:	 Label:		 may be character strings of any length but only the first 32 			
			 characters are significant. Labels must be the first item on a line 	
			 and should have no leading spaces.

Example:	 Use an ON GOTO structure to assign a value into VR 10 depending on a local
variable ‘attempts’.

ON attempts GOTO label1, label2, label3
GOTO continue

label1:
VR(10)=1
GOTO continue

Label2:
VR(10)=5
GOTO continue

Label3:
VR(10)=2
GOTO continue

continue:

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-156

Syntax:	 statement: statement

Description:	 The colon is also used to separate TrioBASIC statements on a multi-statement line.

Parameters:	 statement:	 any valid TrioBASIC statement. The colon separator must not 		
			 be used after a THEN command in a multi-line IF..THEN construct. 	
			 If a multi-statement line contains a GOTO the remaining statements 	
			 will not be executed:
			 PRINT “Hello”:GOTO Routine:PRINT “Goodbye”
		 Goodbye will not be printed.

		 Similarly with GOSUB because subroutine calls return to the 			
		 following line.

Example:	 Set the speed, a position in the table and execute a move all in one line.

SPEED=100:TABLE(10,123):MOVE(TABLE(10)

’ (Comment)

Type:	 Special Character

Syntax:	 ‘text

Description:	 A single ‘ is used to mark the rest of a line as being a comment only with no
execution significance.

Comments use memory space and so should be concise in very long programs.
Comments have no effect on execution speed since they are not present in the
compiled code.

Parameters:	 text:	 text any text string.

Example:	 Adding comment lines and comments after executable sections of code.

‘PROGRAM TO ROTATE WHEEL
turns=10
‘turns contains the number of turns required
MOVE(turns)’ the movement occurs here

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-157

(Hash)

Type:	 Special Character

Syntax:	 command #channel

Description:	 The # symbol is used to specify a communications channel to be used for serial
input/output commands.

Parameters:	 channel:	 0	 Ethernet port 0 (the command line).

		 1	 RS232 port 1.

		 2	 RS485 port 2.

		 5	 Motion Perfect user channel.

		 6	 Motion Perfect user channel.

		 7	 Motion Perfect user channel.

		 8	 Used for Motion Perfect internal operations.

		 9	 Used for Motion Perfect internal operations.

		 40	 Channel configured using the OPEN command.

		 41	 Channel configured using the OPEN command.

		 42	 Channel configured using the OPEN command.

		 43	 Channel configured using the OPEN command.

		 44	 Channel configured using the OPEN command.

Channels 5 to 9 are logical channels which are superimposed on to Port 0 by Motion
Perfect.

Example 1:	 Printing Ascii strings to different channels.

PRINT #1,”Printing data to RS232 Channel”
PRINT #5,”Printing data to Motion Perfect Terminal 5”

Example 2:	 Checking for and receiving characters on Channel 6.

WHILE KEY #6
 GET #63, VR(123)
WEND

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-158

See Also:	 GET, KEY, LINPUT, OPEN, PRINT

$ (Dollar)

Type:	 Special Character

Syntax:	 $number

Description:	 The $ symbol is used to specify that the following signed 53bit number is in
hexadecimal format.

Example 1:	 Store the hexadecimal value of 38F3B into VR 10 and -A58 into VR 11

VR(10)=$38F3B
VR(11)=-$A58

Example 2:	 Turn on outputs 11,12,15,16

OP($CC00)

ADDRESS

Type:	 System Parameter

Syntax:	 ADDRESS=value

Description:	 Sets the RS485 or Modbus multi-drop address for the controller

Parameters:	 Node address:	 should be in the range of 1..32. If it is set to 255 addressing is 	
				 not used and all 8 characters from the packet are sent 		
				 through to the user.

Example:	 Initialise Modbus as node 5.

ADDRESS=5
SETCOM(19200,8,1,2,1,4)

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-159

ANYBUS

Type:	 System Function

Syntax:	 ANYBUS(function, slot [, parameters…])

Description:	 This function allows the user to configure the active Anybus module and set the
network to an operation state. Some networks have limitations on data types and
size, please refer the Anybus data sheet for details.

Passive modules require no setup and will appear as a communication channel, they
can then be used with PRINT, GET etc.

Parameters:	 function:	 0 = Configure map

		 1 = Configure module and start protocol

		 2 = Stop protocol

		 3 = Read status byte

		 4 = Auto configure mapping

Syntax:	 value = ANYBUS(0,slot [, map, source [, index, type, count,
direction]])

Description:	 Assigns a VR or table point to the memory area that is updated over the network.
Individual or all maps can be deleted using the first 4 parameters.

The current mapping can be printed to the terminal using the first 2 parameters.

Parameters:	 value:		 TRUE = the command was successful.

		 FALSE = the command was unsuccessful.

slot:		 Module slot in which the Anybus is fitted.

map:		 Map number, use -1 to delete all maps.

source:	 Location for data on the MC464

		 -1 	 delete map

		 0	 VR

		 1	 Table

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-160

index:	 Start position in data source.

type:		 The size and type of data that is sent across the bus

		 0 = boolean

		 1 = signed 8 bit integer

		 2 = signed 16 bit integer

		 3 = signed 32 bit integer

		 4 = unsigned 8 bit integer

		 5 = unsigned 16 bit integer

		 6 = unsigned 32 bit integer

		 7 = character

		 8 = enumeration

		 9-15 = Reserved

		 16 = signed 64 bit integer

		 17 = unsigned 64 bit integer

		 18 = floating point/real number

count:		 Number of data types mapped.

direction:	 Data direction

		 0 = data read into the controller

		 1 = data transmitted from the controller

Syntax:	 value = ANYBUS(1,slot, address [, baud])

Description:	 Resets the Anybus module, loads the mapping and then sets the network to
operational mode using the parameters provided.

Parameters:	 value:		 TRUE = the command was successful.

slot:		 Module slot in which the Anybus is fitted.

address:	 Module address, node number, MAC id. etc.

baud:		 Baud rate CC Link - required

		 0 = 156 kbps

		 1 = 625 kbps

		 2 = 2.5 mbps

		 3 = 5 mbps

		 4 = 10 mbps

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-161

		 Baud rate Devicenet - optional

		 0 = 125kbps

		 1 = 250kbps

		 2 = 500kbps

		 3 = autobaud (default)

		 Baud rate Profibus - automatic, not required.

Syntax:	 value = ANYBUS(2,slot)

Description:	 Stops the cyclic data transfer.

Parameters:	 value:		 TRUE = the command was successful.

		 FALSE = the command was unsuccessful.

slot:		 Module slot in which the Anybus is fitted.

Syntax:	 value = ANYBUS(3,slot)

Description:	 Reads the status byte from the Anybus module.

Parameters:	 value:	Anybus status byte:	

Bits 0-2	 Anybus State

		 0 = SETUP

		 1 = NW _ INIT

		 2 = WAIT _ PROCESS

		 3 = IDLE

		 4 = PROCESS _ ACTIVE

		 5 = ERROR

		 6 = (reserved)

		 7 = EXCEPTION

Bit 3		 Supervisory bit

		 0 = Module is not supervised.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-162

		 1 = Module is supervised by another network device.

Bits 4-7	 Reserved.

slot:		 Module slot in which the Anybus is fitted.	

Syntax:	 value = ANYBUS(4,slot, address, type, inoff, outoff)

Description:	 Auto-configure and start the cyclic network. The mapping can still be read using
function 0.

Currently only available for the Profibus network.

Parameters:	 value:		 TRUE = the command was successful.

		 FALSE = the command was unsuccessful.

slot:		 Module slot in which the Anybus is fitted.

address:	 Module address, node number, MAC id. Etc.

type:		 Data type and location

		 0 = VR Integer

		 1 = Table Integer

		 2 = VR Float

		 3 = Table Float

inoff:		 Offset for inputs.

outoff:	 Offset for outputs.

Example 1:	 Configure Device Net with 2 16-bit integer inputs and 2 16-bit integer outputs.
This data is transmitted cyclically using the ‘Polled Connection’ method. Ensure to
configure the master identically to the slave otherwise the data will not transmit.

device _ net:

slotnum=0 ‘Local variable with module slot number

‘Map data
 map=FALSE
‘Map received data
 map= ANYBUS(0, slotnum, 1, 0, 0, 2, 4, 0) ‘4*16-bit Int Rx
 IF map=TRUE THEN

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-163

‘Map transmit data
 map= ANYBUS(0, slotnum, 2, 0, 4, 2, 4, 1) ‘4*16-bit Int Tx
 ENDIF

 IF map=FALSE THEN
 PRINT#term, “Mapping failed”
 STOP
 ENDIF

‘Print mapped data to the terminal
 ANYBUS(0,slotnum)

‘Start Network
 map= ANYBUS(1, slotnum, 3, 2) ‘MAC ID=3, Baud=500k
 IF map=FALSE THEN
 PRINT#term, “Failed to start network”
 STOP
 ELSE
 PRINT#term, “Network Started”
 ENDIF
 RETURN

Example 2:	 Configure CC-Link with 2 stations, both with 16 bits in, 16 bits out, 2 SINT16 in
and 2 SINT16 out. Ensure that the master is configured identically and that the
handshaking bits are implemented.

cc _ link:
‘Function 0 - Set up mapping
‘station 1
 map = ANYBUS(0, slotnum, 0, 0, 0, 0, 16, 0) ‘16*BOOL Rx
 map = ANYBUS(0, slotnum, 1, 0, 1, 0, 16, 1) ‘16*BOOL Tx
 map = ANYBUS(0, slotnum, 2, 0, 2, 2, 2, 0)’2*16-bit Int Rx
 map = ANYBUS(0, slotnum, 3, 0, 4, 2, 2, 1) ‘2*16-bit Int Tx
‘station 2
 map = ANYBUS(0, slotnum, 4, 0, 6, 0, 16, 0) ‘16*BOOL Rx
 map = ANYBUS(0, slotnum, 5, 0, 7, 0, 16, 1) ‘16*BOOL Tx
 map = ANYBUS(0, slotnum, 6, 0, 8, 2, 2, 0) ‘2*16-bit Int Rx
 map = ANYBUS(0, slotnum, 7, 0, 10, 2, 2, 1) ‘2*16-bit Int Tx

 ANYBUS(0,slotnum) ‘print mapping to terminal

‘Function 1 - Start Protocol
 IF map = FALSE THEN
 map = ANYBUS(1, slotnum, 1, 2)
 ENDIF

Example 3:	 Configure Profibus using the automated mapping.

Profibus:
 vrint=0
 tableint=1
 vrfloat=2

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-164

 tablefloat=3
 slotnum=0

 ‘Function 4, read network mapping, configure and start.
 map= ANYBUS(4, slotnum, 5, vrint, 100, 200)

 IF map=FALSE THEN
 PRINT#term, “Failed to start network”
 STOP
 ENDIF
 ANYBUS(0,slotnum) ‘print mapping to terminal

AOUT

Type:	 Reserved Keyword

AUTORUN

Type:	 System Command

Description:	 Starts running all the programs that have been set to run at power up.

This command should not be used in a TrioBASIC program. You can use it in the
command line or a TRIOINIT.bas in a SD card.

Example:	 Using a TRIOINIT.bas file in a SD card to load and run a new project.

FILE “LOAD _ PROJECT” “ROBOT _ ARM”
AUTORUN

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-165

AXIS_OFFSET

Type:	 Slot Parameter

Description:	 This parameter allows the base axis of a hardware group to be defined.

AXIS _ OFFSET is set when the programmer wants to arrange the axis order on
power up to be different to the system default. After the next power up, the new
axis order will take effect. The value is saved in Flash memory.

Example 1:	 Set the built-in encoder port on a MC464 to be axis 16.

>>AXIS _ OFFSET SLOT(-1) = 16

‘ check and set the axis offset for a P874 module in slot 1
IF AXIS _ OFFSET SLOT(1)<>32 THEN
 ‘ change the axis _ offset and reset the controller.
 AXIS _ OFFSET SLOT(1) = 32
 EX
ENDIF

Example 2:	 Set the base axis for module in slot 0 back to the system default

>>AXIS _ OFFSET SLOT(0) = -1

BATTERY_LOW

Type:	 System Parameter (Read only)

Description:	 This parameter returns the condition of the non rechargeable battery.

Parameters:	 Battery State:	 0: Battery voltage is OK.

			 1: Battery voltage is low and needs replacing.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-166

BOOT_LOADER

Type:	 System Command (command line only)

Description:	 Used by Motion Perfect to enter the boot loader software.

DO NOT USE UNLESS INSTRUCTED BY TRIO OR A DISTRIBUTOR.

BREAK_ADD

Type:	 System Command

Syntax:	 BREAK _ ADD “program name” line _ number

Description:	 Used by Motion Perfect to insert a break point into the specified program at the
specified line number.

If there is no code at the given line number BREAK _ ADD will add the breakpoint
at the next available line of code. I.e. If line 8 is empty but line 9 has “NEXT x”
and a BREAK _ ADD is issued for line 8, the break point will be added to line 9.

If a non existent line number is selected (i.e. line 50 when the program only has 40
lines), the controller will return an error.

Parameters:	 Program Name:	 the name of any program existing on your controller.

Line Number:	 the line number where to insert the breakpoint.

Example:	 Will add a break point at line 8 of program “simpletest”

BREAK _ ADD “simpletest” 8

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-167

BREAK_DELETE

Type:	 System Command (command line only)

Syntax:	 BREAK _ DELETE “program name” line _ number

Description:	 Used by Motion Perfect to remove a break point from the specified program at the
specified line number.

If a non existent line number is selected (i.e. line 50 when the program only has 40
lines), the controller will return an error.

Parameters:	 Program Name:	 the name of any program existing on your controller.

Line Number:	 the line number where to remove the breakpoint.

Example:	 Remove the break point at line 8 of program “simpletest”

BREAK _ DELETE “simpletest” 8

BREAK_LIST

Type:	 System Command (command line only)

Syntax:	 BREAK _ LIST “program name”

Description:	 Used by Motion Perfect to returns a list of all the break points in the given
program name. The program name, line number and the code associated with that
line is displayed.

Parameters:	 Program Name:	 the name of any program existing on your controller.

Example:	 Show the breakpoints from a program called “simpletest” with break points
inserted on lines 8 and 11.

>>BREAK _ LIST “simpletest”

Program: SIMPLETEST
Line 8: SERVO=ON
Line 11: BASE(0)

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-168

BREAK_RESET

Type:	 System Command (command line only)

Syntax:	 BREAK _ RESET “program name”

Description:	 Used by Motion Perfect to remove all break points from the specified program.

Parameters:	 Program Name:	 the name of any program existing on your controller.

Example:	 Remove all break points from program “simpletest”.

BREAK _ RESET “simpletest”

CAN

Type:	 System Command

Syntax:	 CAN(slot, function[, parameters]

Description:	 This function allows the CAN communication channels to be controlled from the
TrioBASIC. All Motion Coordinator’s have a single built-in CAN channel which is
normally

In addition to using the CAN command to control CAN channels, there are specific
protocol functions into the firmware. These functions are dedicated software
modules which interface to particular devices. The built-in CAN channel will
automatically scan for Trio I/O modules if the system parameter CANIO _ ADDRESS
is set to its default value of 32.

Channel: Channel Number: Maximum Baudrate:

Built-in CAN -1 500 KHz

There are 16 message buffers in the controller.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-169

Parameters:	 Slot:		 Set to -1 for the built in CAN port.	

function: 	 0	 Read Register, do NOT use unless instructed by Trio or a 	
			 Distributor.

		 1	 Write Register, do NOT use unless instructed by Trio or a 	
			 Distributor.

		 2	 Initialise baud rate.

		 3	 Check for message received.

		 4	 Set transmit request.

		 5	 Initialise message.

		 6	 Read message.

		 7	 Write message.

		 8	 Read CANOpen Object.

		 9	 Write CANOpen Object.

		 11	 Initialise 29bit message

		 20	 CAN mode

		 21	 Enable CAN driver

		 22	 Reset CAN message buffer

		 23	 Specify CAN VR map

Syntax:	 CAN(channel#,2,baudrate)

Description:	 Initialise the baud rate of the CANBus

Parameters:	 baudrate:	 0	 1Mhz.

		 1	 500kHz(default value).

		 2	 250kHz.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-170

Syntax:	 value=CAN(channel, 3, message)

Description:	 Check to see if there is a new message in the message buffer

Parameters:	 message	 message buffer to check.

value:		 TRUE = new message available.

		 FALSE = no new message.

Syntax:	 CAN(channel, 4, message)

Description:	 Request to transmit the message in the specified buffer

Parameters:	 message	 message buffer to transmit.

Syntax:	 CAN(channel#, 5, message, identifier, length, rw)

Description:	 Initialise a message by configuring its buffers size and if it is transmit or receive.

Parameters:	 message:	 message buffer to initialise.

Identifier:	 the identifier which the message buffer appears on the CANBus.

length:	 the size of the message buffer.

rw:		 0 = read buffer

		 1 = write buffer

Syntax:	 (channel, 6, message, variable)

Description:	 Read in the message from the specified buffer to a VR array.

The first VR holds the identifier. The subsequent values hold the data bytes from
the CAN packet.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-171

Parameters:	 message	 the message buffer to read in.

variable:	 the start position in the VR memory for the message to be written.

Syntax:	 CAN(channel, 7, message, byte0, byte1..)

Description:	 Write a message to a message buffer.

Parameters:	 message:	 the message buffer to write the message in.

byte0:		 the first byte of the message.

byte1:		 the second byte of the message.

Syntax:	 CAN(channel, 8, transbuf, recbuf, object, subindex, variable)

Description:	 Read a CANopen object. The first VR holds the variable data type. The subsequent
values hold the data bytes from the CAN packet.

Parameters:	 transbuf	 the message buffer used to transmit.

recbuf:	 the message buffer used to receive.

object:	 the CANoCANopenpen object to read.

subindex:	 the sub index of the CANopen object to read.

subindex:	 the start position in the VR memory for the message to be written.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-172

Syntax:	 CAN(channel, 9, transbuf, recbuf, format, object, subindex,
value, {valuems})

Description:	 Write a CANopen object. This function automatically requests the send so you do
not need to use function 4.

Parameters:	 transbuf:	 the message buffer used to transmit.

recbuf:	 the message buffer used to receive.

format:	 data size in bits 8, 16 or 32.

object:	 the CANopen object to write to.

subindex:	 the sub index of the CANopen object to write to.

value:		 the least significant 16 bits of the value to write.

valuems:	 the most significant 16 bit of the value to write.

Syntax:	 CAN(channel#, 11, message, identifierms, identifier, length, rw)

Description:	 Initialise a message by configuring its buffers size and if it is transmit or receive
using 29 bit identifiers.

Parameters:	 message:		 message buffer to initialise.

identifierms:	 the most significant 13 bits of the identifier.

identifier:		 the least significant 16 bits if the identifier.

length:		 the size of the message buffer.

rw:			 0 = read buffer

			 1 = write buffer

Syntax:	 CAN(channel, 20,mode)

Description:	 Sets the CAN mode, normally this is done using CANIO _ ADDRESS

Parameters:	 mode:	 0	 Disable all CAN operations.

	 1	 CANIO command mode.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-173

	 2	 CANIO mode (default).

	 3	 CANopenIO mode (CANOPEN _ OP _ RATE controls the cycle period, 	
		 default = 5ms.

UNLIKE CANIO _ ADDRESS, THIS IS NOT STORED IN FLASH EPROM

Syntax:	 CAN(channel, 21,enable)

Description:	 Provides the ability to reset the CAN driver. Do NOT use unless instructed by Trio
or a Distributor.

Parameters:	 Enable:	 0	 Disable.

		 1	 Enable (default).

Syntax:	 CAN(channel, 22, message)

Description:	 Reset a message buffer

Parameters:	 message:	 the message buffer to reset.

Syntax:	 CAN(channel, 23, [message, map, offset, length, order, variable,
direction])

Description:	 Specify CAN VR map for use with CANOPENIO mode. If no parameters provided
then current mappings are displayed

Parameters:	 Message:	 message buffer (0..15).

map:		 MAP number (0..7).

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-174

offset:	 CAN buffer byte offset (0..7).

length:	 CAN buffer byte length (1..8).

order:		 Endian Byte order (0=Little, 1=Big).

variable:	 Index of VR to use (0..65535).

direction:	 Direction (0=Receive, 1=Transmit).

See Also:	 CANIO _ ADDRESS

CANIO_ADDRESS

Type:	 System Parameter (Stored in FLASH Eprom)

Description:	 CANIO _ ADDRESS is used to set the operating mode of the CANBus. You can
select between Trio CAN, DeviceNet, CANopen and a user configuration when
implementing your own can protocol.

The value is held in flash EPROM in the controller and for most systems does not
need to be set from the default value of 32.

Parameters:	 Value:		 Function

32:		 Trio CAN I/O Master 64in/64out.

33:		 DeviceNet.

34...39:	 User range.

40:		 CANopen I/O Master 64in/64out.

41:		 CANopen I/O Master 128in/128ou

42:		 CANopen I/O Master custom mapping.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-175

CANIO_ENABLE

Type:	 System Parameter

Description:	 CANIO _ ENABLE enables the Trio CAN I/O or CANopen protocol.

When using the Trio I/O protocol it is set automatically by firmware. You have to
set CANIO _ ENABLE=ON manually after configuring CANopen IO.

Parameters:	 Value:	ON = Enable the CAN protocol (default when CANIO _ ADDRESS=32).

	 OFF = Disable the CAN protocol (default when CANIO _ ADDRESS<>32).

CANIO_STATUS

Type:	 System Parameter

Description:	 Returns the status of the Trio CAN I/O network. You can set bit 4 to reset the
network

Parameters:	 Bit 1		 set indicates an error from the I/O module 0,3,6 or 9

Bit 2		 set indicates an error from the I/O module 1,4,7 or 10

Bit 4		 set indicates an error from the I/O module 2,5,8 or 11

Bit 8		 set indicates an error from the I/O module 12,13,14 or 15

Bit 16		 should be set to re-initialise the CANIO network

Bit 32		 is set when initialisation is complete

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-176

CANOPEN_OP_RATE

Type:	 System Parameter

Description:	 Used to adjust the transmission rate of CANopen I/O PDO telegrams.

Parameters:	 Value:		 Default is 5msec. Adjustable in 1msec steps.

CHECKSUM

Type:	 System Parameter (Read Only)

Description:	 The CHECKSUM parameter holds the checksum for the programs in battery backed
RAM. On power up the checksum is recalculated and compared with the previously
held value. If the checksum is incorrect the programs will not run.

CLEAR

Type:	 System Command

Description	 Sets all global (numbered) variables to 0 and sets local variables on the process on
which command is run to 0.

TrioBASIC does not clear the global variables automatically following a RUN command.
This allows the global variables, which are all battery-backed to be used to hold
information between program runs. Named local variables are always cleared prior to
program running. If used in a program CLEAR sets local variables in this program only
to zero as well as setting the global variables to zero.
CLEAR does not alter the program in memory.

Example:	 Setting and clearing VR values.

VR(0)=44
VR(10)=12.3456
VR(100)=2

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-177

PRINT VR(0),VR(10),VR(100)
CLEAR
PRINT VR(0),VR(10),VR(100)

On execution this would give an output such as:

44.0000	 12.345 	 62.0000	

0.0000		 0.0000		 0.0000

CLEAR_PARAMS

Type:	 Reserved Keyword.

COMMSERROR

Type:	 System Parameter

Description:	 This parameter returns all the communications errors that have occurred since the
last time that it was initialised. It is a bitwise value defined as follows:

Bit Value

0 RX Buffer overrun on Network channel

1 Re-transmit buffer overrun on Network channel

2 RX structure error on Network channel

3 TX structure error on Network channel

4 Port 0 Rx data ready

5 Port 0 Rx Overrun

6 Port 0 Parity Error

7 Port 0 Rx Frame Error

8 Port 1 Rx data ready

9 Port 1 Rx Overrun

10 Port 1 Parity Error

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-178

11 Port 1 Rx Frame Error

12 Port 2 Rx data ready

13 Port 2 Rx Overrun

14 Port 2 Parity Error

15 Port 2 Rx Frame Error

16 Error FO Network port

17 Error FO Network port

18 Error FO Network port

19 Error FO Network port

COMMSPOSITION

Type:	 Slot Parameter

Description:	 Returns if the expansion module is on the top or the bottom bus.

Parameters:	 value:		 -1 = built in controller

		 1 = module is on the top bus

		 0 = module is on the bottom bus or no module fitted

COMMSTYPE

Type:	 Slot Parameter (read only)

Description:	 This parameter returns the type of communications daughter board in a controller
slot.

Value Communication type

0 Empty slot

32 SERCOS

372 Panasonic module

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-179

39 Sync encoder port

40 FlexAxis 4

41 FlexAxis 8

42 Ethercat module

43 FlexAxis 8 SSI

62 Anybus module empty/ unrecognised

63 Anybus RS232

64 Anybus RS422

65 Anybus USB

66 Anybus Ethernet

67 Anybus Bluetooth

68 Anybus Zigbee

69 Anybus wireless LAN

70 Anybus RS485

71 Anybus Profibus

72 Anybus CC-Link

73 Anybus DeviceNet

Example:	 Check that the correct Anybus module is fitted before starting initialisation.

IF COMMSTYPE SLOT(3) = 71
 GOSUB initialise _ profibus
ELSE
 PRINT#5, “No Profibus compact com module detected”
ENDIF

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-180

COMPILE

Type:	 System Command

Description:	 Forces compilation of the currently selected program. Program compilation is
performed automatically by the system software prior to program RUN or when
another program is SELECTed. This command is not therefore normally required.

See Also:	 SELECT, COMPILE _ ALL

COMPILE_ALL

Type:	 System Command

Description:	 Forces compilation of all programs. Program compilation is performed
automatically by the system software prior to program RUN or when another
program is SELECTed. This command is not therefore normally required.

See Also:	 SELECT, COMPILE

CONTROL

Type:	 System Parameter (Read Only)

Description:	 The Control parameter returns the type of Motion Coordinator in the system:

Controller	 CONTROL

MC464		 464

When the Motion Coordinator is LOCKED, 1000 is added to the above numbers. e.g. a
locked MC464 will return 1464.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-181

Example 1:	 Checking the control value of a locked controller on the command line.

>>PRINT CONTROL
1464
>>

Example 2:	 Checking the controller type in a program, if it fails then stop the programs.

IF CONTROL <> 464 THEN
	 PRINT#terminal, “This program was designed to run a MC464”
	 HALT
ENDIF

COPY

Type:	 System Command (Command line only)

Description:	 Makes a copy of an existing program in memory under a new name.

Syntax:	 COPY “program” “newprogram

Motion Perfect users should use the “Copy program...” function under the “Program”
menu.

Parameters:	 program:	 the name of the program to be copied.

newprogram:	the name of the copy.

Example:	 Make a backup of a program named motion.

>>COPY “MOTION” “MOTION _ BACK”
Compiling MOTION
Linking MOTION
Pass=4
OK
>>

CPU_EXCEPTIONS

Type:	 Reserved Keyword.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-182

DATE

Type:	 System Function

Description:	 Returns/ Sets the current date held by the real time clock.

Syntax:	 DATE=dd:mm:yy

Description:	 Sets the date using the two digit year format

Parameters:	 dd		 day.

mm:	 month.

yy:	 last two digits of the year using the range 2000-2099.

Syntax:	 DATE=DD:MM:YYYY

Description:	 Set the date using the four digit year format

dd	 day.

mm:	 month.

yy:	 full four digits of the year using the range 2000-2099.

Syntax:	 Value = DATE({mode})

Description:	 Read the date value from the real time clock

Parameters:	 mode:	 value.

none:	 The number of days since 01/01/2000 (with 01/01/2000 = 0).

1:	 The day of the current month.

2:	 The month of the current year.

3:	 The current year.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-183

Example 1:	 Set the date to the 20th October 2012

>>DATE=20:10:12
or
>>DATE=20:10:2012

Example 2:	 Print the number of days since 1st January 2000 (with the 1st being day 0)

>>PRINT DATE
4676
>>

Example 3:	 Set a date then print it out using the US format

>>DATE=05:08:2008
>>PRINT DATE(1);”/”;DATE(0);”/”;DATE(2) ‘Prints the date in US
format.
08/05/2008
>>

DATE$

Type:	 System Function

Syntax:	 DATE$

Description:	 DATE$ is used as part of a PRINT statement to write the current date from the
real time clock.

The DATE$ is set through the DATE command.

Parameters:	 The date is printed in the format DD/MM/YYYY.

The month is displayed in short text form.	

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-184

Example:	 This will print the date in format for example: 20/10/15.

PRINT #5,DATE$

See Also:	 DATE, PRINT

DAY

Type:	 System Function

Description:	 Returns the current day as a number.

The DAY is set through the DATE command.

Parameters:	 value:		 0..6, Sunday is 0.

Example:	 Print some text depending on the day.

IF DAY=2 THEN

 PRINT#5, “Change filter”

ENDIF

See Also:	 DATE, DAY$

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-185

DAY$

Type:	 System Function

Syntax:	 DAY$

Description:	 Used as part of a PRINT statement to write the current day as a string.

The DAY$ is set through the DATE command.

Example:	 Print the day as part of a welcome message.

PRINT#5, “Welcome to Trio on “; DAY$

See Also:	 DATE, DATE$, DAY

DEL

Type:	 System Command (command line only)

Alternate Format:	RM

Syntax:	 DEL “program”

Description:	 Used by Motion Perfect to delete a program form the controller memory.

Motion Perfect users should use the “Delete” function under the “Program” menu.

Parameters:	 program:	 the name of the program to be deleted.

Example:	 Delete a old program.

>>DEL “oldprog”

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-186

OK
>>

DEVICENET

Type:	 System Command

Syntax:	 DEVICENET(slot, function[,parameters…])

Description:	 The command DEVICENET is used to start and stop the DeviceNet slave function
which is built into the Motion Coordinator.

Polled I/O data is transferred periodically:

From PLC to [TABLE(poll _ base) -> TABLE(poll _ base + poll _ in)]

To PLC from [TABLE(poll _ base + poll _ in + 1) -> TABLE(poll _ base
+ poll _ in + poll _ out)]

Parameters:	 slot:	 Set -1 for built-in CAN port .

func:	 0 = Start the DeviceNet slave protocol on the given slot.

	 1 = Stop the DeviceNet protocol.

	 2 = Put startup baudrate into Flash EPROM.

Syntax:	 DEVICENET(slot, 0, baud, mac _ id, poll _ base, poll _ in, poll _
out)

Description:	 Start the DeviceNet protocol using the specified parameters

Parameters:	 baud:		 Set to 125, 250 or 500 to specify the baud rate in kHz.

mac _ id:	 The ID which the Motion Coordinator will use to identify itself on 	
		 the DeviceNet network. Range 0..63.

poll _ base:	The first TABLE location to be transferred as poll data.

poll _ in:	 Number of words to be received during poll. Range 0..4.

poll _ out:	 Number of words to be sent during poll. Range 0..4.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-187

Syntax:	 DEVICENET(slot, 1)

Description:	 Stop the DeviceNet protocol from running

Syntax:	 DEVICENET(slot, 2, baud)

Description:	 Store the baud rate in flash EPROM for power up.

Parameters:	 baud:		 Set to 125, 250 or 500 to specify the baud rate in kHz.

Example 1:	 Start the DeviceNet protocol on the built-in CAN port;

DEVICENET(-1,0,500,30,0,4,2)

Example 2:	 Stop the DeviceNet protocol on the CAN board in slot 2;

DEVICENET(2,1)

Example 3:	 Set the CAN board in slot 0 to have a baud rate of 125k bps on power-up;

DEVICENET(0,2,125)

DIR

Type:	 System Command (command line only)

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-188

Alternate Format:	LS

Syntax:	 DIR [option]

Description:	 Prints a list of all programs including their size and RUNTYPE.

Parameters:	 option:	 none	 Controller memory.

		 d	 SD card memory.

		 s	 Reserved function.

		 x	 Extended controller memory for Motion Perfect use only.

DISPLAY

Type:	 System Parameter

Description:	 Determines which group of the I/O channels are to be displayed on the LCD.

Parameters:	 0:		 Inputs 0-15 (default value).

1:	 Inputs 16-31.

2:	 Outputs 0-15 (0-7 unused on existing controllers).

3:	 Outputs 16-31.

888:	 Reserved value.

Example:	 Show outputs 16-31

>>DISPLAY=3
>>

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-189

DLINK

Type:	 System Command

Syntax:	 DLINK(function,…)

Description:	 This is a specialised command, to allow access to the SLM™ digital drive interface.
The axis parameters have to be initialised by the DLINK function 2 command
before the interface can be used for controlling an external drive.

THE CURRENT SLM™ SOFTWARE DICTATES THAT THE DRIVE MUST BE POWERED UP
AFTER POWER IS APPLIED TO THE MOTION COORDINATOR/ SLM™.

Parameters:	 Function:	 Specifies the required function.

0 		 = Reserved function

1 		 = Reserved function

2 		 = Check for presence SLM module

3 		 = Check for presence of SLM servo drive

4 		 = Assign a Motion Coordinator axis to a SLM channel

5 		 = Read an SLM parameter

6 		 = Write an SLM parameter

7 		 = Write an SLM command

8 		 = Read a drive parameter

9 		 = Returns slot and asic number associated with an axis

10		 = Read an EEPROM parameter

Syntax:	 value = DLINK(2, slot, com)

Description:	 Check for presence SLM module on rear of motor.

Parameters:	 value:		 Returns 1 if the SLM is answering, otherwise it returns 0.

slot:		 The communications slot where the module is connected.

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-190

com:		 The communication channel where the axis is connected in the 	
		 module.

Example:	 Check for a SLM module on slot 0, communication channel 0.

>>? DLINK(2,0,0)
1.0000
>>
.0000
>>

Syntax:	 value = DLINK(3, slot, com)

Description:	 Check for presence of SLM servo drive, such as MultiAx.

Parameters:	 value:		 Returns 1 if the drive is answering, otherwise it returns 0..

slot:		 The communications slot where the module is connected

com:		 The communication channel where the axis is connected in the 	
		 module.

Example:	 Check for a SLM drive on slot 0, communication channel 0.

>>? DLINK(3,0,0)
0.0000
>>

Syntax:	 value = DLINK(4, slot, co, axis)

Description:	 Assign a Motion Coordinator axis to a SLM channel.

Parameters:	 value:		 Returns TRUE if successful otherwise returns FALSE.

slot:		 The communications slot where the module is connected

com:		 The communication channel where the axis is connected in the 	
		 module.

axis:		 The axis to be associated with this drive. If this axis is already 		
		 assigned then it will fail. The ATYPE of this axis will be set to 11.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-191

Example:	 Assign axis 0 to the drive connected to slot 0 and communication channel 0.

>>DLINK(4,0,0,0)

Syntax:	 value = DLINK(5, axis, parameter)

Description:	 Read an SLM parameter

Parameters:	 value:		 The value returned from SLM, returns -1 if the command fails.

axis:		 The axis number associated with the drive.

parameter:	 The number of the SLM parameter to be read. This is normally in 	
		 the range 0…127. See the drive documentation for further 			
		 information.

Example:	 Print the value of the SLM parameter 5 from axis 0.

>>PRINT DLINK(5,0,1)
463.0000
>>

Syntax:	 value = DLINK(6, axis, parameter, value)

Description:	 Write an SLM parameter

Parameters:	 value:		 Returns TRUE if successful otherwise returns FALSE.

axis:		 The axis number associated with the drive.

parameter:	 The number of the SLM parameter to be read. This is normally in 	
		 the range 0…127. See the drive documentation for further 			
		 information.

value:		 The value to write to the parameter.

Example:	 Set SLM parameter 0 to the value 0 on axis 0.

>>DLINK(6,0,0,0)
>>

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-192

Syntax:	 value = DLINK(7, axis, command)

Description:	 Write an SLM command.

Parameters:	 value:		 Returns TRUE if successful otherwise returns FALSE.

axis:		 The axis number associated with the drive.

command:	 The command number. (See drive documentation).

Example:	 Write SLM command 250 to axis 0

>>PRINT DLINK(7,0,250)
1.0000
>>

Syntax:	 value = DLINK(8, axis, parameter)

Description:	 Read a drive parameter

Parameters:	 value:		 The value returned from the drive, returns -1 if the command fails.

axis:		 The axis number associated with the drive.

Parameter:	 The number of the drive parameter to be read. This is normally in 	
		 the range 0…127. See the drive documentation for further 			
		 information.

Example:	 Read drive parameter 53248 for axis 0

>>PRINT DLINK(8,0,53248)
20504.0000
>>

Syntax:	 value = DLINK(9, axis)

Description:	 Return slot and communication channel associated with an axis.

Parameters:	 value:		 10 x slot number + communication channel, returns -1 if the 		
			 command fails.

axis:		 The axis number associated with the drive.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-193

Example:	 Read axis 2 SLM information

>>PRINT DLINK(9,2)
>>11.0000
This example is for slot 1, communication channel 1.

Syntax:	 value = DLINK(10, axis, parameter)

Description:	 Read an EEPROM parameter

Parameters:	 value:		 The value from the EEPROM value, returns -1 if the command fails.

axix:		 The axis number associated with the drive.

parameter:	 EEPROM parameter number. (See drive documentation).

Example:	 Return the EEPROM parameter 29, the Flux Angle from axis 0

>>PRINT DLINK(10,0,29)
>>62128.0000

DUMP

Type:	 Reserved Keyword.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-194

EDPROG

Type:	 System Command

Alternate Format:	&

Syntax:	 EDPROG mode

Description:	 This is a special command that may be used to manipulate the SELECTed programs
on the controller.

It is not normally used except by Motion Perfect.

Parameters:	 mode:	 C	 Prints the name of the currently selected program.

	 D	 Delete line.

	 I	 insert string.

	 K	 Print checksum.

	 L	 Print lines.

	 N	 Print number of lines.

	 R	 Replace line.

	 Z	 Print checksum of specified program.

Syntax:	 EDPROG C

Description	 Prints the name of the currently selected program.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-195

Syntax:	 EDPROG line _ no D

Description:	 Deletes the specified line

Parameters:	 line _ no:	 Any valid line number form the SELECT ed program.

Syntax:	 EDPROG line _ no I,string

Description:	 Insert the text string in the currently selected program at the specified line.

you should NOT enclose the string in quotes unless they need to be inserted into the
program.

Parameters:	 line _ no:	 The line to insert the string.

string:	 The text string to insert into the SELCT ed program.

Syntax:	 EDPROG K

Description:	 Print the checksum of the system software

Syntax:	 EDPROG start, end L

Description:	 Print the lines of the currently selected program between start and end

Parameters:	 start:		 The first line to print from the SELECT ed program.

end:		 The last line to print from the SELECT ed program.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-196

Syntax:	 EDPROG N

Description:	 Print the number of lines in the currently selected program

Syntax:	 EDPROG line R, string

Description:	 Replace the line <line> in the currently selected program with the text <string>.

you should NOT enclose the string in quotes unless they need to be inserted into the
program.

Parameters:	 line _ no:	 The line to replace.

string:	 The text string to replace the line in the SELEDT ed program.

Syntax:	 EDPROG Z, progname

Description:	 Print the CRC checksum of the specified program.

Parameters:	 Returns the checksum using standard CCITT 16 bit generator polynomial.	

See Also:	 SELECT

EDPROG1

Type:	 Reserved Keyword

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-197

EPROM

Type:	 Reserved Keyword

EPROM_STATUS

Type:	 Reserved Keyword.

ERROR_AXIS

Type:	 Returns the number of the axis that caused the MOTION _ ERROR.

ERROR _ AXIS should only be read when MOTION _ ERROR<>0.

Parameters:	 value:		 Number of the axis that caused the MOTION _ ERROR.

This default value is 0 and is reset to 0 after DATUM(0).

Example:	 If there is a motion error print error information to the user.

IF MOTION _ ERROR THEN

 PRINT#5, “Axis to cause error = “; ERROR _ AXIS

 PRINT#5, “AXISSTATUS of ERROR _ AXIS = “AXISSTATUS AXIS(ERROR _
AXIS)

ENDIF

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-198

See Also: 	 AXISSTATUS, MOTION _ ERROR, FE _ LATCH

ERROR_LINE

Type:	 Process Parameter (Read Only)

Description:	 Stores the number of the line which caused the last TrioBASIC error. This value is
only valid when the BASICERROR is TRUE.

This parameter is held independently for each process.

Parameters:	 value:		 The line number on the specified process that caused the error.

Example:	 Display the ERROR _ LINE as part of a sub routine called by ‘ON BASICERROR
GOTO’

error _ routine:
	 VR(100) = RUN _ ERROR
	 PRINT “The error “;RUN _ ERROR[0];
	 PRINT “ occurred in line “;ERROR _ LINE[0]
STOP	

See Also:	 BASICERROR, RUN _ ERROR

ETHERNET

Type:	 System Command

Syntax:	 ETHERNET(rw, slot, function [,parameters…])

Description:	 The command ETHERNET is used to configure the operation of the Ethernet port.

Many of the ETHERNET functions are command line only; these are stored in flash
EPROM and are then used on power up.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-199

Parameters:	 rw:		 specifies the required action.

		 0 = Read

		 1 = Write

slot:		 Set to -1 for the built in Ethernet port

function:	 Function number must be one of the following values.

		 0 = IP Address

		 1 = Reserved function

		 2 = Subnet Mask

		 3 = MAC address

		 4 = Default Port Number

		 5 = Token Port Number

		 6 = PRP firmware version (read only)

		 7 = Modbus TCP mode

		 8 = Default Gateway

		 9 = Data configuration

		 10 = Modbus TCP port number

		 11 = ARP cache

		 12 = Reserved function

		 13 = reserved function

		 14 = Configure endpoints for Modbus TCP or Ethernet IP

Syntax:	 ETHERNET(rw, slot, 0 [,byte1, byte2, byte3])

Description:	 Prints or writes the Ethernet IP address. This is command line only.

You must power cycle the controller or perform EX(1) to apply the new IP address.

Parameters:	 byte1:	The first byte of the IP address.

byte2:	The second byte of the IP address.

byte3:	The third byte of the IP address.

The default address is 192.168.0.250

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-200

Example:	 Read the current IP address and then set a new IP address into the controller and
perform an EX(1) to activate the address

PERFORMING AN EX(1) AS IN THIS EXAMPLE WILL CLOSE THE COMMUNICATIONS AND
YOU WILL ONLY BE ABLE TO COMMUNICATE AGAIN USING THE NEW IP ADDRESS.

>>ETHERNET(0, -1, 0)
192.168.0.250
>>ETHERNET(1, -1, 0, 192, 168, 0, 201)
>>EX(1)
>>

Syntax:	 ETHERNET(rw, slot, 2 [,byte1, byte2, byte3])

Description:	 Prints or writes the Subnet Mask. This is command line only.

You must power cycle the controller or perform EX(1) to apply the new IP address.

Parameters:	 byte1:	The first byte of the Subnet Mask.

byte2:	The second byte of the Subnet Mask.

byte3:	The third byte of the Subnet Mask.

The default Subnet Mask is 255.255.255.0

Example:	 Read the subnet mask and write a new value

>>ETHERNET(0, -1, 0)
255.255.255.0
>>ETHERNET(1, -1, 2, 255, 255, 128, 0)
>>

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-201

Syntax:	 ETHERNET(0, slot, 3)

Description:	 Prints the MAC address. This is command line only.

This function is read only.

Parameters:	 The MAC address is unique to your controller.	

Example:	 Read the MAC address of a controller

>>ETHERNET(0, -1, 3)
00:06:70:00:00:FA
>>

Syntax:	 ETHERNET(rw, slot, 4 [, port])

Description:	 Prints or writes the default port number. This is command line only.

THE DEFAULT VALUE IS USED BY MOTION PERFECT AND TRIO PCMOTION AND SHOULD
NOT BE CHANGED UNLESS ABSOLUTELY NECESSARY.

Parameters:	 port:	 The port used for the main command line in the controller (default 23).

Syntax:	 ETHERNET(rw, slot, 5 [, port])

Description:	 Prints or writes the default port number for token channel which is used by
TrioPCMotion. This is command line only.

THE DEFAULT VALUE IS USED BY TRIO PCMOTION AND SHOULD NOT BE CHANGED
UNLESS ABSOLUTELY NECESSARY.

Parameters:	 port:	 The port used for the token channel in the controller. (default 3240).

!

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-202

Syntax:	 Ethernet(0,slot,6)

Description:	 Reads the communications processor s firmware version. This is command line only.

This function is read only.

Parameters:	 port:		 Returns the flash application version and the bootloader version.

Example:	 Read the communications processor firmware with application version 61 and boot
loader version 22.

>>ETHERNET(0, -1, 6)
61;22
>>

Syntax:	 Ethernet(rw, slot, 7 [,mode])

Description:	 Sets the Modbus TCP data type. This value is stored in RAM and so must be
initialised every time the controller powers up. This can be done in a TrioBASIC
program for example STARTUP.

This must be configured before the Modbus master opens the port.

Parameters:	 mode:		 0 = 16bit integer (default value).

		 1 = 32bit single precision floating point.

Example 4:	 Initialise the Modbus TCP port for floating point data.

ETHERNET(1,1,7,1)

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-203

Syntax:	 ETHERNET(rw, slot, 8 [,byte1, byte2, byte3])

Description:	 Prints or writes the Default Gateway. This is command line only.

You must power cycle the controller or perform EX(1) to apply the new Default
Gateway.

Parameters:	 byte1:			 The first byte of the Default Gateway.

byte2:			 The second byte of the Default Gateway.

byte3:			 The third byte of the Default Gateway.

Example:	 Print then change the value of the default gateway.

>>ETHERNET(0, -1, 8)
192.168.0.225
>> ETHERNET(0,-1,8, 192, 168, 0, 150)
>>

Syntax:	 Ethernet(rw, slot, 9 [,mode])

Description:	 Sets the Modbus TCP data source. This value is stored in RAM and so must be
initialised every time the controller powers up. This can be done in a TrioBASIC
program for example STARTUP.

This must be configured before the Modbus master opens the port.

Parameters:	 mode:		 0 = VR (default value).

		 1 = Table.

Example 4:	 Initialise the Modbus TCP port for table data.

ETHERNET(2,1,9,1)

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-204

Syntax:	 ETHERNET(rw, slot, 10 [, port])

Description:	 Prints or writes the default port number for token channel which is used by
Modbus TCP. This is command line only.

THE DEFAULT VALUE IS USED BY MODBUS AND SHOULD NOT BE CHANGED UNLESS
ABSOLUTELY NECESSARY.

Parameters:	 port:		 The port used for the token channel in the controller. (default 502).

Syntax:	 Ethernet(0, slot, 11)

Description:	 Reads the ARP cache. This is command line only.

This function is read only.

Syntax:	 ETHERNET(1, slot, 14, endpoint _ id, parameter _ index,parameter _
value)

Description:	 This function allows the user to configure Ethernet IP and Modbus at a low
level. The default values allow a master to connect without any configuration on
the Controller side. These settings are stored in RAM and so must be initialised
every time the controller powers up. This can be done in a TrioBASIC program for
example STARTUP.

Parameters:	 endpoint _ id:		 This allows you to specify which end point you are 	
					 reading or writing

				 0 = Modbus TCP

				 1 = Ethernet IP Assembly Object, Instance 100 (input)

				 2 = Ethernet IP Assembly Object, Instance 100 		
				 (output)

parameter _ index:	 This parameter selects which of the endpoint 			
				 variables you are reading or writing

				 0 = Address

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-205

				 1 = Data location

				 2 = Data format

				 3 = Length

				 4 = Class

parameter _ value:	 If the parameter_index is address (0), this is the start 	
				 position of the data location.

				 If parameter_index is data location (1), this is the 	
				 location of the data on the controller.

				 0 = Register (reserved use)

				 1 = IO input

				 2 = IO output	

				 3 = VR (default value)

				 4 = Table

				 5 = Digital IO Input

				 6 = Digital IO Output

				 7 = Analogue IO Input

				 8 = Analogue IO Input

				 If the parameter_index is data format (2), this 		
				 specifies the precision of the data.

				 0 = Integer 16 bit (default value)

				 1 = Integer 32 bit

				 2 = Floating point 32 bit

				 3 = Floating point 64 bit

				 If the parameter_index is length (3), this is the 		
				 number of the data locations returned.

				 If the parameter_index is class (4), this returns the 	
				 class. This function is read only.

				 4 = Ethernet IP

				 68 = Modbus

				 If the parameter_index is Instance (5), this returns the 	
				 instance of the endpoint. This function is read only.

				 0 = Modbus

				 100 = Ethernet IP input

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-206

				 101 = Ethernet IP output

Example 1:	 Configure Modbus using Function 14 to use Table and floating point 64bit.

ETHERNET(1, -1, 14, 0, 1, 4)
ETHERNET(1, -1, 14, 0, 2, 3)

Example 2:	 Configure Ethernet IP for 50 TABLE inputs starting at 200 and 50 table outputs
starting at 300 all at 32bit float.

‘Inputs
ETHERNET(1, -1, 14, 1,0,200)
ETHERNET(1, -1, 14, 1, 1, 4)
ETHERNET(1, -1, 14, 1, 2, 2)
ETHERNET(1, -1, 14, 1, 3, 50)
‘Outputs
ETHERNET(1, -1, 14, 2,0,300)
ETHERNET(1, -1, 14, 2, 1, 4)

EX

Type:	 System Command

Syntax:	 EX(processor)

Description:	 Software reset. Resets the controller as if it were being powered up again.

When performing an EX on the command line you will see the controller start up
information that provides details of your controller configuration.

On EX the following actions occur:

•	The global numbered (VR) variables remain in memory.

•	The base axis array is reset to 0,1,2... on all processes

•	Axis following errors are cleared

•	Watchdog is set OFF

•	Programs may be run depending on POWER _ UP and RUNTYPE settings

•	ALL axis parameters are reset.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-207

EX may be included in a program. This can be useful following a run time error.
Care must be taken to ensure it is safe to restart the program.

When running Motion Perfect executing an EX command is not allowed. The same
effect as an EX can be obtained by using “Reset the controller...” under the
“Controller” menu in Motion Perfect. To simply re-start the programs, use the
AUTORUN command.

Parameters:	 0 or None:	 Software resets the controller and maintains communications.

1:		 Software resets the controller and communications.

EXECUTE

Type:	 System Command

Description:	 Used to implement the remote command execution via the Trio PCMotion ActiveX.
For more details see the section on using the PCMotion

FEATURE_ENABLE

Type:	 System Function

Syntax:	 FEATURE _ ENABLE(feature number)

Description:	 Motion Coordinators have the ability to unlock additional features by entering a
“Feature Enable Code”. This function is used to enable protected features, such as
additional axes on digital dive networks or other programming languages. This can
only be run on the command line.

It is recommended to use Motion Perfect2 to enter and store the feature enable codes.

You can purchase additional feature codes from the Trio Website or through your
distributor, you will need the SERIAL _ NUMBER of the controller.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-208

IF YOU ENTER THE WRONG PASSWORD 3 TIMES THE CONTROLLER WILL ENTER AN
ATTACK STATE WHERE IT STOPS COMMUNICATING. YOU CAN RESUME NORMAL
OPERATION BY POWER CYCLING THE CONTROLLER.

Parameters:	 feature number:	 None = Prints the security code and currently enabled 		
				 features.

			 0 = 1 additional axis

			 1 = 2 additional axes

			 2 = 4 additional axes

			 3 = 8 additional axes

			 4 = 16 additional axes

			 5 = 32 additional axes

			 6-11 = Reserved use

			 12 = 1 additional axis

			 13 = 2 additional axes

			 14 = 4 additional axes

			 15 = 8 additional axes

			 16 = 16 additional axes

			 17 = 32 additional axes

			 18-20 = Reserved use

			 21 = IEC runtime

			 22-31 = Reserved use

password:		 If entering a feature a password is requested.

When entering the passwords always enter the characters in upper case. Take care to
check that 0 (zero) is not confused with O and 1 (one) is not confused with I.

Example 1:	 Check the enabled features on a controller

>>FEATURE _ ENABLE
Security code=17980000000028
Enabled features: 0 1

Features 0 and 1 are enabled so an additional 3 axes on top of the built in axes
included with the module.

Example 2:	 Enable an additional 4 axes (feature 2). For this controller and this feature, the
password is 5P0APT.

>>FEATURE _ ENABLE(2)
Feature 2 Password=5P0APT
>>

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-209

>>FEATURE _ ENABLE
Security code=17980000000028
Enabled features: 0 1 2

See Also:	 SERIAL _ NUMBER

FLASH_DUMP

Type:	 Reserved Keyword.

FLASHTABLE

Type:	 System Function

Syntax:	 FLASHTABLE(function)

Description:	 Copies user data in RAM to and from the permanent FLASH memory.

Parameters:	 function:	 Specifies the required action.

1:		 Write a page of TABLE data into flash EPROM.

2:		 Read a page of flash memory into TABLE data.

	

flashpage:	 The index number (0 ... 31) of a 16k page of Flash EPROM where the 	
		 table data is to be stored to or retrieved from.

tablepage:	 The index number (0 ... INT(TSIZE/16000)) of the page in table 	
		 memory where the data is to be copied from or restored to.

Example:	 Save the TABLE page 2 data in locations TABLE(32000)

-TABLE(47999) to FLASH memory page 5.

FLASHTABLE(1,5,2)

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-210

See Also:	 FLASHVR

FLASHVR

Type:	 System Function

Syntax:	 FLASHVR(function)

Description:	 Copies user data in RAM to and from the permanent flash memory.

Parameters:	 function:		 Specifies the required action.

			 -1 = Stores the entire TABLE to the Flash EPROM and use it to 	
			 replace the RAM table data on power-up.

			 -2 = Stop using the EPROM copy of table during power-up.

AFTER USING FUNCTION -1, ANY CHANGED TABLE DATA WILL BE OVERWRITTEN ON
THE NEXT POWER UP OR RESET.

In Motion Coordinator with non-volatile VR storage, positive <function> values will be
ignored and the FLASHVR does not store VR values to FLASH memory.

Example:	 Save the entire TABLE data to FLASH memory.

FLASHVR(-1)

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-211

See Also:	 FLASHTABLE

FPGA_VERSION

Type:	 Slot Parameter

Description:	 Returns the FPGA version.

Parameters:	 value:	The FPGA version of the specified slot

FPU_EXCEPTIONS

Type:	 Reserved Keyword.

FRAME

Type:	 System Parameter

Description:	 Used to specify which “frame” to operate within when employing frame
transformations. Frame transformations are used to allow movements to be
specified in a multi-axis coordinate frame of reference which do not correspond
one-to-one with the axes.

A number of pre-defined FRAMEs are available. Please contact your Trio distributor
for details.

Parameters:	 value:		 0 - Default

		 1 - 2 axis SCARA robot

		 2 - XY single belt

		 3 - Double XY single belt

		 4 - 2 axis pick and place

		 5 - 2x2 Matrix transform

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-212

		 6 - Polar to Cartiesian transformation

		 10 - Cartesian to polar transformation

		 13 - Dual arm robot transformation

See www.triomotion.com or your distributor for more details.

Example:	 An example is a SCARA robot arm with jointed axes. For the end tip of the robot
arm to perform straight line movements in X-Y the motors need to move in a
pattern determined by the robot’s geometry.

Once you set FRAME = 1 you can specify x,y positions of the end tip through the
axes 0 and 1.

FRAME_TRANS

Type:	 Mathematical Function

Description:	 Reserved Keyword

FREE

Type:	 System Parameter (Read Only)

Description:	 Returns the amount of program memory available for user programs.

Each line takes a minimum of 4 characters (bytes) in memory. This is for the length of
this line, the length of the previous line, number of spaces at the beginning of the line
and a single command token. Additional commands need one byte per token, most
other data is held as ASCII.

The Motion Coordinator compiles programs before they are run, this means that a
little under twice the memory is required to be able to run a program.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-213

Parameters:	 value:	The amount of available user memory in byte.

Example 1:	 Check the available memory on the command line

>>PRINT FREE

47104.0000

>>

See Also:	 DIR

HALT

Type:	 System Command.

Description:	 Halts execution of all running programs. You can use HALT in a program.

HALT DOES NOT STOP ANY MOTION. CURRENTLY EXECUTING, OR BUFFERED MOVES
WILL CONTINUE UNLESS THEY ARE TERMINATED WITH A CANCEL OR RAPIDSTOP
COMMAND.

Example:	 Use the command line to stop two running programs:

>>HALT%[Process 20:Line 2] (31) - Program is stopped
%[Process 21:Line 1] (31) - Program is stopped
>>

See Also:	 CANCEL, RAPIDSTOP, STOP

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-214

HLM_COMMAND

Type:	 Remote Command

Syntax:	 HLM _ COMMAND(command, port[, node[, mc _ area/mode[, mc _ offset
]]])

Description:	 The HLM _ COMMAND command performs a specific Host Link command operation
to one or to all Host Link Slaves on the selected port. Program execution will
be paused until the response string has been received or the timeout time has
elapsed. The timeout time is specified by using the HLM _ TIMEOUT parameter.
The status of the transfer can be monitored with the HLM _ STATUS parameter.

Parameters:	 command

The selection of the Host Link operation to perform:

HLM _ MREAD (or value 0):	 This performs the Host Link PC MODEL READ 	
					 (MM) command to read the CPU Unit model 	
					 code. The result is written to the MC Unit 	
					 variable specified by mc_area and mc_offset.

HLM _ TEST (or value 1):	 This performs the Host Link TEST (TS) 			
					 command to check correct communication by 	
					 sending string “MCxxx TEST STRING” and 	
					 checking the echoed string. Check the HLM _	
					 STATUS parameter for the result.

HLM _ ABORT (or value 2):	 This performs the Host Link ABORT (XZ) 		
					 command to abort the Host Link command that 	
					 is currently being processed. The ABORT 		
					 command does not receive a response.

HLM _ INIT (or value 3:)	 This performs the Host Link INITIALIZE (**) 	
					 command to initialize the transmission control 	
					 procedure of all Slave Units.

HLM _ STWR (or value 4):	 This performs the Host Link STATUS WRITE 	
					 (SC) command to change the operating mode 	
					 of the CPU Unit.

port:					 The specified serial port. (See specific 			
					 controller specification for numbers)

node:(for HLM _ MREAD, HLM _ TEST, HLM _ ABORT and HLM _ STWR):

					 The Slave node number to send the Host Link 	
					 command to. Range: [0, 31].

mode: (for HLM _ STWR)		 The specified CPU Unit operating mode.

					 0 PROGRAM mode

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-215

					 2 MONITOR mode

					 3 RUN mode

mc _ area:(for HLM _ MREAD)	 The MC Unit’s memory selection to write the 	
					 received data to.

mc _ offset:(for HLM _ MREAD)	 The address of the specified MC Unit memory 	
					 area to read from.	

	

mc_area Data area

MC_TABLE (or value 8) Table variable array

MC_VR (or value 9) Global (VR) variable array

When using HLM _ COMMAND, be sure to set-up the Host Link Master protocol by
using the SETCOM command.

The Host Link Master commands are required to be executed from one program task
only to avoid any multi-task timing problems.

Example 1:	 The following command will read the CPU Unit model code of the Host Link Slave
with node address 12 connected to the RS232C port. The result is written to
VR(233).

HLM _ COMMAND(HLM _ MREAD,1,12,MC _ VR,233)

If the connected Slave is a C200HX PC, then VR(233) will contain value 12 (hex)
after successful execution.

Example 2:	 The following command will check the Host Link communication with the Host Link
Slave (node 23) connected to the RS422A port.

HLM _ COMMAND(HLM _ TEST,2,23)

PRINT HLM _ STATUS PORT(2)

If the HLM _ STATUS parameter contains value zero, the communication is
functional.

Example 3:	 The following two commands will perform the Host Link INITIALIZE and ABORT
operations on the RS422A port 2. The Slave has node number 4.

HLM _ COMMAND(HLM _ INIT,2)

HLM _ COMMAND(HLM _ ABORT,2,4)

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-216

Example 4:	 When data has to be written to a PC using Host Link, the CPU Unit can not be in
RUN mode. The HLM _ COMMAND command can be used to set it to MONITOR mode.
The Slave has node address 0 and is connected to the RS232C port.

HLM _ COMMAND(HLM _ STWR,2,0,2)

HLM_READ

Type:	 Remote Command

Syntax:	 HLM _ READ(port,node,pc _ area,pc _ offset,length,mc _ area,mc _
offset)

Description:	 The HLM _ READ command reads data from a Host Link Slave by sending a Host
Link command string containing the specified node of the Slave to the serial port.
The received response data will be written to either VR or Table variables. Each
word of data will be transferred to one variable. The maximum data length is 30
words (single frame transfer). Program execution will be paused until the response
string has been received or the timeout time has elapsed. The timeout time is
specified by using the HLM _ TIMEOUT parameter. The status of the transfer can be
monitored with the HLM _ STATUS parameter.

Parameters:	 port:		 The specified serial port. (See specific controller specification for 	
			 numbers)

node:		 The Slave node number to send the Host Link command to. Range: 	
		 [0, 31].

pc _ area:	 The PC memory selection for the Host Link command.

pc_area Data area Hostlink command

PLC_DM

(or value 0) DM RD

PLC_IR

(or value 1) CIO/IR RR

PLC_LR

(or value 2) LR RL

PLC_HR

(or value 3) HR RH

PLC_AR

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-217

(or value 4) AR RJ

PLC_EM

(or value 6) EM RE

pc _ offset:		 The address of the specified PC memory area to read from. 	
			 Range: [0, 9999].

length:		 The number of words of data to be transfered. Range: [1,30].

mc _ area:		 The MC Unit’s memory selection to write the received data 	
			 to.

mc _ offset:		 The address of the specified MC Unit memory area to write 	
			 to.

mc_area Data area

MC_TABLE (or value 8) Table variable array

MC_VR (or value 9) Global (VR) variable array

When using the HLM _ READ, be sure to set-up the Host Link Master protocol by using
the SETCOM command.

The Host Link Master commands are required to be executed from one program task
only to avoid any multi-task timing problems.

HLM_STATUS

Type:	 Port Parameter.

Description:	 Returns the status of the Host Link serial communications.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-218

HLM_TIMEOUT

Type:	 System Parameter

Description:	 Sets the timeout value for Hostlink communications.

Parameters:	 value:		 timeout in msec. Default 500msec.

Example:	 Set the Hostlink timeout to 600msec.

HLM _ TIMEOUT = 600

HLM_WRITE

Type:	 Remote Command

Syntax:	 HLM _ WRITE(port,node,pc _ area,pc _ offset,length,mc _ area,mc _
offset)

Description:	 The HLM _ WRITE command writes data from the MC Unit to a Host Link Slave by
sending a Host Link command string containing the specified node of the Slave to
the serial port. The received response data will be written from either VR or Table
variables. Each variable will define on word of data which will be transferred. The
maximum data length is 29 words (single frame transfer).

Program execution will be paused until the response string has been received or
the timeout time has elapsed. The timeout time is specified by using the HLM _
TIMEOUT parameter. The status of the transfer can be monitored with the HLM _
STATUS parameter.

Parameters:	 port:		 The specified serial port. (See specific controller specification for 	
			 numbers)

node:		 The Slave node number to send the Host Link command to. Range: 	
		 [0, 31].

pc _ area:	 The PC memory selection for the Host Link command.

pc_area Data area Hostlink command

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-219

PLC_DM

(or value 0) DM RD

PLC_IR

(or value 1) CIO/IR RR

PLC_LR

(or value 2) LR RL

PLC_HR (or value 3) HR RH

PLC_AR (or value 4) AR RJ

PLC_EM (or value 6) EM RE

PLC_REFRESH (or value 7)

pc _ offset:	The address of the specified PC memory area to write to. Range: 	
		 [0,9999].

length:	 The number of words of data to be transferred. Range: [1, 30].

mc _ area:	 The MC Unit’s memory selection to read the data from.

mc _ offset:	The address of the specified MC Unit memory area to read from.

mc_area Data area

MC_TABLE (or value 8) Table variable array

MC_VR (or value 9) Global (VR) variable array

When using the HLM _ WRITE, be sure to set-up the Host Link Master protocol by
using the SETCOM command.

The Host Link Master commands are required to be executed from one program task
only to avoid any multi-task timing problems.

Example:	 The following example shows how to write 25 words from MC Unit’s VR addresses
200-224 to the PC EM area addresses 50-74. The PC has Slave node address 28 and
is connected to the RS232C port.

HLM _ WRITE(1, 28, PLC _ EM, 50, 25, MC _ VR, 200)

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-220

HLS_MODEL

Type:	 System Parameter

Description:	 Defines the model number returned to a Hostlink Master.

Parameters:	 value:		 The model number returned. Default 250.

HLS_NODE

Type: 	 System Parameter

Description:	 Sets the Hostlink node number for the slave node. Used in multidrop RS485
Hostlink networks or set to 0 for RS232 single master/slave link.

HTTP

Type:	 Reserved Keyword.

INCLUDE

Type:	 System Command.

Syntax:	 INCLUDE “filename”

(filename - The program to be included).

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-221

Description:	 The INCLUDE command resolves all local variable definitions in the included file at
compile time and allows all the local variables to be declared “globally”.

Whenever an included program is modified, all program that depend on it are
re-compiled as well, avoiding inconsistency.

(1) Nested INCLUDEs are not allowed.
(2) The INCLUDE command must be the first BASIC statement in the program.
(3) Only variable definitions are allowed in the include file. It cannot be used as a 	
	 general subroutine with any other BASIC commands in it.

Parameters:	 filename:	 The name of the program to be included.

Example:	 Initialise all local variables with an include program.

PROGRAM “T1”:					 ‘include global definitions
INCLUDE “GLOBAL _ DEFS”			 ‘Motion commands using defined vars
FORWARD AXIS(drive _ axis)
CONNECT(1, drive _ axis) AXIS(link _ axis)

PROGRAM “GLOBAL _ DEFS”:
drive _ axis=4
linked _ axis=1

INDEVICE
Type:	 Process Parameter

Description:	 This parameter specifies the default active input device. Specifying an INDEVICE
for a process allows the channel number for a program to set for all subsequent
GET, KEY, INPUT and LINPUT statements.

This command is process specific so other processes will use the default channel.

This command is available for backward compatibility, it is currently recommended to
use #channel, instead.

Parameters:	 value:		 The channel number to use for any inputs.

For a full list of communication channels see #(HASH).

Example:	 Set up a program to use channel 5 by default for any GET commands

 INDEVICE=5
 ‘ Get character on channel 5:
IF KEY THEN

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-222

 GET k
ENDIF

See Also:	 #, GET, INPUT, KEY, LINPUT

INITIALISE

Type:	 System Command.

Description:	 Sets all axis, system and process parameters to their default values.

The parameters are also reset each time the controller is powered up, or when an EX
(software reset) command is performed.

INITIALISE MAY RESET A PARAMETER RELATING TO A DIGITAL DRIVE
COMMUNICATION OR ENCODER CAUSING YOU TO LOOSE THE CONNECTION.

Example:	 When developing you wish to clear all parameters back to default using the
command line.

>>INITIALISE
>>

LAST_AXIS

Type:	 System Parameter

Description:	 The Motion Coordinator keeps a list of axes that are currently in use. LAST _ AXIS
is used to read the number of the highest axis in the list.

LAST _ AXIS is set automatically by the system software when an axis is written
to; this can include setting BASE for the axis.

Axes higher than LAST _ AXIS are not processed. Not all axis lower than LAST _
AXIS are processed.

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-223

Parameters:	 value:		 The highest axis in the axis list that is processed.

Example:	 Check LAST _ AXIS to ensure that the digital network has configured enough
drives.

IF LAST _ AXIS <> 26 THEN
 PRINT#user, “Digital Drives not initialised”
ENDIF

LIST

Type:	 System Command (command line only)

Syntax:	 LIST [“program”]

Description:	 Prints the current SELECTed program or a specified program to the current output
channel

Usually you will view a program by using Motion Perfect.

Parameters:	 value:		 Prints the selected program.

program:	 The name of the program to print.

LIST_GLOBAL

Type:	 System Command (command line only)

Syntax:	 LIST _ GLOBAL

Description:	 Prints all the GLOBAL and CONSTANTS to the current output channel.

Example:	 In an application where the following GLOBAL and CONSTANT have been set;

CONSTANT “cutter”, 23
GLOBAL “conveyor”,5

>>LIST _ GLOBAL
Global VR

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-224

---------------- ----
conveyor 5
Constant Value
---------------- -------
cutter 23.0000
>>

LOAD_PROJECT

Type:	 System Command

Description:	 Used by Motion Perfect to load projects to the controller.

If you wish to load projects outside of Motion Perfect use the Autoloader ActiveX.

LOADSYSTEM

Type:	 System Command

Description:	 Used by Motion Perfect to load Firmware to the controller

If you wish to load firmware without Motion Perfect you can use the SD card (FILE
command).

See Also:	 FILE

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-225

LOCK

Type:	 System Command

Syntax:	 LOCK(code)

Description:	 LOCK is designed to prevent programs from being viewed or modified by personnel
unaware of the security code. The lock code number is stored in the flash EPROM.

When a Motion Coordinator is locked, it is not possible to view, edit or save any
programs and command line instructions are limited to those required to execute
the program. The CONTROL value has 1000 added to it when the controller is
LOCKed.

You should use Motion Perfect to LOCK and UNLOCK your controller.

To unlock the Motion Coordinator, the UNLOCK command should be entered using
the same lock code number which was used originally to LOCK it.

The lock code number may be any integer and is held in encoded form. Once
LOCKed, the only way to gain full access to the Motion Coordinator is to UNLOCK it
with the correct code. For best security, the lock number should be 7 digits.

IT IS POSSIBLE TO COMPROMISE THE SECURITY OF THE LOCK SYSTEM. USERS MUST
CONSIDER IF THE LEVEL OF SECURITY IS SUFFICIENT TO PROTECT THEIR PROGRAMS.
IF YOU WANT BETTER SECURITY CONSIDER ENCRYPTING YOUR PROJECT.

If you forget the security code number, the Motion Coordinator may have to be
returned to your supplier to be unlocked.

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-226

Parameters:	 code:	 	 Any 7 digit integer number.

See Also:	 UNLOCK

LOOKUP

Type:	 Process Command

Syntax:	 LOOKUP(format,entry) <PROC(process#)>

Description:	 The LOOKUP command allows Motion Perfect to access the local variables on an
executing process.

You should use the variable watch window in Motion Perfect to access the variables on
an executing process.

Parameters:	 format:	 0: Prints (in binary) floating point value from an expression

		 1: Prints (in binary) integer value from an expression

		 2: Prints (in binary) local variable from a process

		 3: Returns to BASIC local variable from a process

		 4: Write

entry:		 Either an expression string (format=0 or 1) or the offset number of 	
		 the local variable into the processes local variable list.

MOTION_ERROR

Type:	 System Parameter

Description:	 The MOTION _ ERROR provides a simple single indicator that at least one axis is in
error and can indicate multiple axes that have an error.

Parameters:	 value:	binary sun of the axis number that are in error.

		 Bit 0 = axis 0

		 Bit 1 = axis 1

		 Bit 2 = axis 2

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-227

		 ...

Example: 	 MOTION _ ERROR=11 and ERROR _ AXIS=3

indicates axes 0,1 and 3 have an error and the axis 3 occurred first.

MPE

Type:	 System Command

Syntax:	 MPE(mode)

Description:	 Sets the type of channel handshaking to be performed on the command line.

Parameters:	 channel type: 	 Any valid TrioBASIC expression	

			 0	 No channel handshaking, XON/XOFF controlled by the 	
				 port. When the current output channel is changed 	
				 then nothing is sent to the serial port. When there is 	
				 not enough space to store any more characters in the 	
				 current input channel then XOFF is sent even 			
				 though there may be enough space in a 				
				 different channel buffer to receive more characters

			 1	 Channel handshaking on, XON/XOFF controlled by the 	
				 port. When the current output channel is changed, 	
				 the channel change sequence is sent (<ESC><channel 	
				 number>). When there is not enough space to store 	
				 any more characters in the current input channel then 	
				 XOFF is sent even though there may be enough space 	
				 in a different channel buffer to receive more 			
				 characters

			 2	 Channel handshaking on, XON/XOFF controller by 		
				 the channel. When the current output channel 		
				 is changed, the channel change sequence is sent 		
				 (<ESC><channel number>). When there is not enough 	
				 space to store any more characters in the 			
				 current input buffer, then XOFF is sent for this 		
				 channel (<XOFF><channel number>) and characters 	
				 can still be received into a different channel.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-228

				 Whatever the MPE state, if a channel change sequence 	
				 is received on serial port A then the current input 	
				 channel will be changed.

			 3	 Channel handshaking on, XON/XOFF controller by 		
				 the channel. In MPE(3) mode the system transmits and 	
				 receives using a protected packet protocol using a 16 	
				 bit CRC.

Whatever the MPE state, if a channel change sequence is received on the command
line then the current input channel will be changed.

Example:	 Use the command line to demonstrate mode 0 and 1.

>> PRINT #5,”Hello”
Hello
Example2:	
MPE(1)
>> PRINT #5,”Hello”
<ESC>5Hello
<ESC>0
>>

N_ANA_IN

Type:	 System Parameter (read only)

Alternate Format:	NAIO

Description:	 This parameter returns the number of analogue input channels available to the
Motion Coordinator. This includes all built in and external inputs.

Parameters:	 value:		 The number of analogue inputs.

Example:	 Check the system configuration in the command line for the correct number of
analogue inputs.

>>PRINT N _ ANA _ IN
10
>>

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-229

N_ANA_OUT

Type:	 System Parameter (Read Only)

Description:	 This parameter returns the number of analogue output channels available to the
controller

Parameters:	 value:		 The number of analogue outputs.

Example:	 Use the command line to check that the system has detected the correct number
of analogue outputs:

>>PRINT N _ ANA _ OUT
12
>>

NAIO

Type:	 System Parameter

Description:	 This parameter returns the number of analogue input channels available to the
Motion Coordinator. For example an MC464 will return 10 if there is 1 x P325 CAN
module connected as it has 2 internal analogue inputs and the 8 inputs from the
P325.

If no external I/O is fitted, NAIO returns the number of Analogue inputs within the
Motion Coordinator.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-230

NEW

Type:	 System Command (command line only)

Syntax:	 NEW [item]

Description	 Deletes a program or table from the controller memory.

When deleting the table all the values are set to 0.

DO NOT DELETE PROGRAMS WHEN CONNECTED TO MOTION PERFECT AS IT WILL
CAUSE A CONTROLLER MISMATCH AND YOU WILL BE DISCONNECTED.

Parameters:	 none:		 deletes the currently selected program.

item:		 “TABLE” = sets all table values to 0

		 “name” = deletes a names program

		 ALL = deletes all programs

Quotes (“) are required when deleting the table or a named program.

Example 1:	 Delete a named program on the command line.

>>NEW “NAMEDPROGRAM”
OK
>>
Example 2:
Clear all table values to 0.
>>NEW “TABLE”
OK
>>

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-231

NIO

Type:	 System Parameter

Description:	 This parameter returns the number of inputs/outputs fitted to the system. The
value is normally set by the firmware but you can set the value to enable inputs or
outputs as part of CANopen I/O startup.

Inputs / Outputs outside of NIO can be used as virtual.

Parameters:	 value:		 The highest value of input or output that exists.

OUTDEVICE

Type:	 Process Parameter

Description:	 The value in this parameter determines the default active output device.
Specifying an OUTDEVICE for a process allows the channel number to set for all
subsequent GET, KEY, INPUT and LINPUT statements.

This command is process specific so other processes will use the default channel.

This command is available for backward compatibility, it is currently recommended
to use #channel instead.

Parameters:	 value:		 The channel number to use for any inputs.

For a full list of communication channels see #.

Example:	 Set up a program to print all data to channel 5.

OUTDEVICE = 5

IF error THEN
 PRINT “Error Detected”
ENDIF
See Also:
#, GET, INPUT, KEY, LINPUT

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-232

PEEK

Type:	 System Function

Syntax:	 value = PEEK(address [,mask])

Description:	 The PEEK command returns value of a memory location of the controller ANDed
with an optional mask value.

PEEK IS ONLY NORMALLY USED FOR DE-BUGGING PURPOSES AND SHOULD ONLY BE
USED UNDER THE INSTRUCTION OF TRIO MOTION TECHNOLOGY.

Parameters:	 value:		 The value returned from the memory location.

address:	 The memory address to read.

mask:		 A value so you can filter particular bits of the address.

PLC_ERROR

Type:	 System Parameter. (Read Only)

Description:	 Fetches the current PLC error status word from the IEC 61131 runtime software.

Parameters:	 A value is returned which has the following meanings.	

0	 Plc No Error

1	 Plc Load Error

2	 Plc Start Error

3	 Plc DC Realtime Error

4	 Plc DC Prolog Error

5	 Plc DC Force List Error

6	 Plc DC Out Of Memory Error

7	 Plc DC Internal Error

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-233

Example:	 A TrioBASIC program is checking the PLC error state and sets an output to indicate
the error.

IF PLC _ ERROR <> 0 THEN
 OP(error _ op, ON)
ENDIF
In the terminal, print the current PLC error status value.
>>?PLC _ ERROR
2.0000
>>

PLC_READ

Type:	 System Command.

Syntax:	 value = PLC _ READ(“IEC _ path”)

Description:	 This command allows the TrioBASIC to access IEC project variables. The supported
IEC datatypes must be elementary and can be summarised as follows:

BOOL, SINT, INT, DINT, USINT, UINT, UDINT, REAL, LREAL, TIME, BYTE, WORD,
DWORD, LINT.

The PLC _ READ command can be used within a SCOPE command request allowing
IEC program data to be captured together with other SCOPE data sources.

Parameters:	 value:		 The value returned from the IEC variable.

IEC _ path:	 This is the variable path as a string in quotes.

The IEC_path is made up of three parts, each separated by points (periods).
For global variables use:
“@GV.variable_name”

For program instance variables use the following where the functionblock_instance_
name is optional:
“Program_instance_name.[functionblock_instance_name].variable_name”

You do not specify the task name only the program instance name, MultiProg will not
allow you to create the same program instance name in 2 different tasks hence each
program instance name is guaranteed to be unique.

Variable name checking is case sensitive so names must match exactly. If the variable
cannot be retrieved because the name is invalid or it is not of an elementary datatype
then a runtime error will be generated.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-234

Example 1:	 Read a variable from task1 in the PLC.

local _ variable = PLC _ READ(“task1.var1”)

Example 2:	 In the terminal, print the current value of a function block output. This example
uses the optional parameter.

>>?PLC _ READ(“task2.user _ function1.output”)
1500.0000
>>

Example 3:	 Read a Global PLC variable.

plc _ global1 = PLC _ READ(“@GV.globvar1”)

Example 4:	 Fetch a VR value from the PLC. This example shows that individual array elements
can be accessed if they themselves are elementary.

my _ vr200 _ copy = PLC _ READ(“@GV.TC _ VR[200]”)

PLC_STATUS

Type:	 System Parameter. (Read Only)

Description:	 Fetches the current PLC status word from the IEC 61131 runtime software.

Parameters:	 A value is returned which has the following meanings.	

0	 Plc On

1	 Plc Loading

2	 Plc Starting

3	 Plc Running

4	 Plc Halt Requested

5	 Plc Halt

6	 Plc Stopping

7	 Plc Stop

8	 Plc Resetting

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-235

Example:	 A TrioBASIC program is monitoring the PLC state and only continues after the PLC
starts running.

WAIT UNTIL PLC _ STATUS = 3

In the terminal, print the current PLC status value.

>>?PLC _ STATUS
5.0000
>>

PMOVE

Type:	 Process Parameter (Read Only)

Description:	 Returns the state of the process move buffer.

When one of the processes encounters a movement command the process loads
the movement requirements into its “process move buffer”. This can hold one
movement instruction for any group of axes. When the load into the process move
buffer is complete the PMOVE parameter is set to 1. When the next servo period
occurs the motion generation program will load the movement into the “next move
buffer” of the required axes if these are available. When this second transfer is
complete the PMOVE parameter is cleared to 0.

Each process has its own PMOVE parameter.

Parameters:	 value:		 1 if the process move buffer is occupied

		 0 if the process move buffer is empty

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-236

PROC

Type:	 Process Modifier

Description:	 Allows a process parameter from a particular process to be read or set.

Example:	 WAIT UNTIL PMOVE PROC(14)=0

PROC_LINE

Type:	 Process Parameter (Read Only)

Description:	 Allows the current line number of another executing program to be obtained.

Example:	 Find out which line is being executed on the program running in process 2.

>>PRINT PROC _ LINE PROC(2)
12
>>

PROC_STATUS

Type:	 Process Parameter (Read Only)

Description:	 Returns the status of another process, referenced with the PROC(x) modifier.

Returns:	 0		 Process Stopped

1	 Process Running

2	 Process Stepping

3	 Process Paused

4	 Process Pausing

5	 Process Stopping

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-237

Example:	 Run a program in process 12, check for it to start and then for it to complete.

RUN “progname”,12
WAIT UNTIL PROC _ STATUS PROC(12)<>0 ‘ wait for program to start
WAIT UNTIL PROC _ STATUS PROC(12)=0
‘ Program “progname” has now finished.

PROCNUMBER

Type:	 System Parameter

Description:	 Returns the process on which a TrioBASIC program is running. This is
normally required when multiple copies of a program are running on different
processes.	

Parameters:	 value:		 The process number the current program is running on.

Example:	 Running the same program on processes 0 to 3 to use axes 0-3, PROCNUMBER is
used to specify which axis the program is using.

MOVE(length) AXIS(PROCNUMBER)

RESET

Type:	 Process Command

Description:	 Sets the value of all the local named variables of a TrioBASIC process to 0.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-238

RUN_ERROR

Type:	 Process Parameter

Description:	 Contains the number of the last run time error that stopped the program on the
specified process.

RUN _ ERROR = 31 is a normal completion of a program.

Parameters:	 Please see Error Codes in the appendix for full value listings.

Example:	 Use the command line to check why a program that was running on process 5 has
stopped. The result of 9 indicates a divide by zero error.

>>? RUN _ ERROR PROC(5)
9.0000
>>

POKE

Type:	 System Command

Syntax:	 POKE(address,value)

Description:	 The POKE command allows a value to be entered into a memory location of the
controller.

THE POKE COMMAND CAN PREVENT NORMAL OPERATION OF THE CONTROLLER AND
SHOULD ONLY BE USED IF INSTRUCTED BY TRIO MOTION TECHNOLOGY.

Parameters:	 address:	 The memory address to read.

mask:		 A value so you can filter particular bits of the address.

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-239

PORT

Type:	 Modifier

Syntax:	 PORT(expression)

Description:	 Assigns ONE command, function or port parameter operation to a particular
communication PORT.

Parameters:	 Expression:		 Any valid TrioBASIC expression. The result of the expression 	
				 should be a valid integer PORT number.

			 0 = Command line

			 1 = RS232 Serial port

			 2 = RS485 Serial port

			 5 = User terminal

			 6 = User terminal

			 7 = User terminal

			 8 = User terminal

			 9 = Motion Perfect channel

			 10-49 = Reserved

			 50 = 1st Anybus module

			 51 = 2nd Anybus module

			 52 = 3rd Anybus module

			 53 = 4th Anybus module

			 54 = 5th Anybus module

			 55 = 6th Anybus module

			 56 = 7th Anybus module

POWER_UP

Type:	 Reserved keyword.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-240

PRMBLK

Type:	 Reserved Keyword.

PROCESS

Type:	 System Command (Command line only)

Description:	 Displays information about the running processes.

There are some housekeeping process that you cannot stop.

Parameters:	 value:	The process number.

Type:		 The Type of process executing.

Status:	 The execution state of the process.

Program:	 The name of the program running in the process.

Line:		 The line number of a program that is executing.

Time:		 The length of time that the process has been running.

CPU:		 The percentage of CPU time used by the process.

Example:	 Check the state of the processes in the command line.

>>process
Process	 Type	 Status		 Program		 Line	 hhhh:mm:ss.ms	 [CPU%]
--
21	 Fast	 Sleep[0]		 TEST		 1	 0000:00:02.634	 [0.23%]
22	 SYS	 Run		 Command Line		 0001:14:05.570	 [0.16%]
23	 SYS	 Run		 IO Server		 0001:14:01.183	 [90.46%]
24	 SYS	 Sleep[8]		 MPE			 0001:14:05.571	 [0.00%]
25	 SYS	 Sleep[6] 	 CAN Server		 0001:14:05.571	 [0.00%]
KERNEL	 SYS	 Run		 Motion/Housekeeping	 0001:14:05.571	 [9.16%]

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-241

PROJECT_KEY
TYPE:	 Reserved Keyword

PROTOCOL

Type:	 Port Parameter

Description:	 This parameter allows the user to check which protocol is running on the specified
PORT.

You can write to this parameter however it is advisable to initialise the
communication protocol through SETCOM, ANTBUS etc.

DO NOT WRITE A VALUE TO PORT(0) AS YOU WILL DISABLE COMMUNICATIONS WITH
MOTION PERFECT.

Parameters:	 value:		 0 = None

		 1 = Download

		 2 = MPE

		 3 = MODBUS

		 4 = Transparent

		 5 = HostLink

Example:	 Check that Modbus is running on the RS485 channel (PORT(2)).

IF PROTOCOL PORT(2) <>3 THEN
 PRINT#user, “MODBUS has stopped”
ENDIF

See Also:	 ANYBUS, SETCOM

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-242

READPACKET

Type:	 Command

Syntax:	 READPACKET(port, variable, count [,format])

Description:	 READPACKET is used to read in data to the VR variables over a serial
communications port. The data is transmitted from the PC in binary format with
a CRC 16bit checksum. There are four different data formats, all use the same
packet structure:

Data CRC

Byte 0 Byte 1 Byte 2 ... Byte n Byte 0 Byte 1

The 16bit checksum uses the generator polynomial
x16+x15+x2+x0 or $8005

Parameters:	 port:		 This value should be 0 to 2.

variable:	 This value tells the Motion Coordinator where to start setting the 	
		 variables in the VR() global memory array.

VR count:	 The number of variables to download, maximum 250.

format:	 The number format for the numbers being downloaded

		 0 = Standard character

		 1 = Standard integer

		 2 = Standard long

		 4 = 7bit long

Depending on the format used the data may be split over multiple bytes. It is up to
the user to recombine these to get the final value

Format = 0 (standard character)

Each value is in each Byte:

Value0 = Byte 0

Value1 = Byte 1

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-243

…

Format = 1 (standard integer)

Each value is split over 2Bytes

Value0 = Byte1 * 256 + Byte0

Value1 = Byte3 * 256 + Byte2

…

Format = 2 (standard long)

Each value is split over 4Bytes

Value0 = ((Byte3 * 256 + Byte2) * 256 + Byte1) * 256 +Byte0

Value1 = ((Byte7 * 256 + Byte6) * 256 + Byte5) * 256 +Byte4

…

Format = 4 (7bit long)

Each value is split over 4Bytes, but only uses 7 bits of each byte. Only Byte 0
(including the CRC) has bit 7 set. The values sent are therefore 24bits in length.

Bits 15 and Bits 7 of the CRC are not sent and so ignored by the check.

Value0 = ((Byte3 * 128 + Byte2) * 128 + Byte1) * 128 + Byte0

Value1 = ((Byte7 * 128 + Byte6) * 128 + Byte5) * 128 + Byte4

…

Example:	 Using Standard Long (format = 2) read in the values to a sequence of VR’s starting
at 0 from port 1. The bytes from the READPACKET command are stored in VR(100)
and onwards.

READPACKET(1, 100, 10, 2)
FOR val = 0 to 9
 ‘Off set the bytes
 VR(val*4+103) = VR(val*4+103) * (2^32)
 VR(val*4+102) = VR(val*4+103) * (2^16)
 VR(val*4+101) = VR(val*4+103) * (2^8)
VR(val)=(val*4+103)+VR(val*4+102))+VR(val*4+101))+VR(val*4+100)
NEXT val

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-244

REMOTE

Type:	 System Command

Syntax:	 REMOTE(slot)

Description:	 Starts up the REMOTE communication protocol as a program which communicates
with PCMotion ActiveX. The REMOTE program will take up a user process if it is run
automatically or manually. It is recommended that REMOTE should run on a high
priority process.

The REMOTE program is normally started automatically when you open a PCMotion
connection. You can call it manually if you wish to specify which process it should run
on.

IF YOU EXECUTE REMOTE MANUALLY THE PROGRAM IT RUNS IN WILL SUSPEND AT
THE REMOTE LINE. THE REMOTE THEREFORE SHOULD BE THE LAST LINE OF THE
PROGRAM TO EXECUTE.

Example:	 A program that will start the REMOTE program on process 20 if the project wants
to run in debug mode.

 WHILE(1)
 IF VR(debug)=TRUE THEN
 REMOTE(0)
 ELSE
 WA(100)
 ENDIF
 WEND

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-245

REMOTE_PROC

Type:	 System Parameter

Description:	 When the TrioPC ActiveX opens a synchronous connection to the Motion
Coordinator, the REMOTE _ PROGRAM is started on the highest available process.
Normally this can be process 21. REMOTE _ PROC can be set so as to specify a
different process for the REMOTE _ PROGRAM. For example if REMOTE _ PROC=p,
the REMOTE _ PROGRAM will try run on process p if it is available. If process p is in
use then the next lower available process will be used.

Example1:	 Set remote_program to start on process 19 or lower (using the command line
terminal).

>>REMOTE _ PROC=19
>>

Example2:	 Remove the remote_proc setting so that remote_program starts on default process
(using the command line terminal).

>>REMOTE _ PROC=-1
>>

Example3:	 In the initialisation program of the project.

IF REMOTE _ PROC <> 19 THEN
 REMOTE _ PROC=19
PRINT “Setting remote program startup, please cycle power to
continue ”

 STOP
ENDIF

REMOTE _ PROC is stored in Flash EPROM to be used on all subsequent power-ups or
software resets.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-246

RENAME

Type:	 System Command

Syntax:	 RENAME oldname newname

Description:	 Renames a program in the Motion Coordinator directory.

It is not normally used except by Motion Perfect.

Parameters:	 oldname:	 The name of the program to rename.

newname:	 The new name of the program.

Example:	 >>RENAME car voiture

OK
>>

RUN

Type:	 System Command

Syntax:	 RUN [“program” [, process]]

Description:	 Runs a named program on the controller. Programs can be RUN from another
program.

A program can be run multiple times in different processes. You can use
PROCNUMBER to help assign values in the program.

Programs will continue to execute until there are no more lines to execute, a HALT is
typed in the command line, a STOP is issued or there is a run time error.

Parameters:	 none:		 Runs the currently SELECTed programs.

program:	 Name of program to be run.

process:	 Optional process number. (default highest available).

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-247

Example 1:	 SELECT the program STARTUP and run it on he command line.

>>SELECT “STARTUP”
STARTUP selected
>>RUN%[Process 21:Program STARTUP] - Running
>>%[Process 21:Line 238] (31) - Program is stopped
>>

Example 2:	 From the MAIN program run the STARTUP program on process 2 and wait for its
completion.

RUN “STARTUP”, 2
WAIT UNTIL PROC _ STATUS PROC(2) <> 0	 ‘wait for program to start
WAIT UNTIL PROC _ STATUS PROC(2) = 0	‘wait for program to complete
WDOG=ON

Example 3:	 After STARTUP has completed the MAIN program will start other programs running
in the highest available processes.

RUN “IO _ CONTROL”
RUN “HMI”
RUN “SAUSAGE _ CHOPPER”

See Also: 	 HALT, PROCNUMBER, RUN _ ERROR, SELECT, STOP

RUNTYPE

Type:	 System Command

Syntax:	 RUNTYPE “program”, mode [,process]

Description:	 Sets if program is run automatically at power up, and which process it is to run on.

Usually a programs RUNTYPE is set through Motion Perfect. It can be useful to set the
RUNTYPE when loading programs from a SD card.

FOR ANY PROGRAM TO RUN AUTOMATICALLY ON POWER-UP ALL THE PROGRAMS ON
THE CONTROLLER MUST COMPILE WITHOUT ERRORS. EVEN IF THEY ARE NOT USED. !

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-248

The current status of each program’s RUNTYPE is displayed when a DIR command is
performed.

Parameters:	 program:	 The program to set the power up mode.

mode:		 1 = Run automatically on power up.
		 0 = Manual running.

process:	 The process number to run the program on.

Example:	 When loading a sequence of programs from a SD card, MAIN must be set to run
from power up and HMI must be run on process 4 on power up. The following is
from the TRIOINIT.bas file.

FILE “LOAD _ PROGRAM” “MOTION”
FILE “LOAD _ PROGRAM” “HMI”
FILE “LOAD _ PROGRAM” “MAIN”
RUNTYPE “HMI”, 1, 4
RUNTYPE “MAIN”, 1
AUTORUN

SCHEDULE_TYPE

Type:	 System Parameter

Description:	 This parameter disables the scheduling algorithm that allows another program to
run while the scheduled program is in a sleep state. A sleep stat can be started
through a pause in the program for example: WAIT or WA. After the next power up,
the new process scheduling will take effect. The value is saved in Flash memory.

This parameter should only be used when upgrading projects from older controllers
and the scheduling system causes problems with the program timings.

Parameters:	 value:		 0 = Use new scheduling algorithm to make best use of CPU time eg 	
			 any program executing a WA command will not be available 			
			 for execution again until the WA period is complete (default).

		 1 = Revert to old style scheduling such that any active process will 	
		 execute even when executing a WA command for example.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-249

SCOPE

Type:	 System Command

Syntax:	 SCOPE(enable, [period, table _ start, table _ stop, p0 [,p1[,p2
[,p3]]]])

Description:	 The SCOPE command enables capture of up to 4 parameters every sample period.
Samples are taken until the table range is filled. TRIGGER is used to start the
capture.

The SCOPE facility is a “one-shot” and needs to be re-started by the TRIGGER
command each time an update of the samples is required.

MAKE SURE TO ASSIGN THE TABLE RANGE OUTSIDE OF ANY TABLE DATA USED BY
YOUR PROGRAMS.

It is normal to use Motion Perfect to assign the SCOPE command, but it is sometimes
useful to do it manually. The table data can be read back to a PC and displayed on
the Motion Perfect Oscilloscope, saved using Motion Perfect or STICK _ WRITE.

Parameters:	 enable:			 1 or ON = Enable software SCOPE (requires at least 5 	
					 parameters).
					 0 or OFF = Disable SCOPE.

Period:			 The number of servo periods between data samples.

table _ start:		 Position to start to store the data in the table array.

table _ stop:		 End of table range to use.

P2				 third parameter to store.

P3				 fourth parameter to store.

Example 1:	 This example arms the SCOPE to store the MPOS and DPOS on axis 5 axis 5 every
10 milliseconds (SERVO _ PERIOD = 1000). The MPOS will be stored in table values
0..499, the DPOS in table values 500 to 999. The sampling does not start until the
TRIGGER command is executed.

SCOPE(ON,10,0,1000,MPOS AXIS(5), DPOS AXIS(5))

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-250

Example 2:	 Disable the SCOPE to prevent TRIGGER from starting a capture.

SCOPE(OFF)

See Also:	 TRIGGER

SCOPE_POS

Type:	 System Parameter (Read Only)

Description:	 Returns the current TABLE index position where the SCOPE function is currently
storing its parameters.

Parameters:	 value:	The table position that is currently being used.

SELECT

Type:	 System Command

Syntax:	 SELECT “program”

Description:	 Makes the named program the currently selected program, if the named program
does not exist then it makes a program of that name.

It is not normally used except by Motion Perfect.
The SELECTed program cannot be changed when programs are running.

When a program is selected any previously selected program is compiled.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-251

SERCOS

Type:	 System Function

Syntax:	 SERCOS(function#,slot,{parameters})

Description:	 This function allows the SERCOS ring to be controlled from the TrioBASIC
programming system. A SERCOS ring consists of a single master and 1 or more
slaves daisy-chained together using fibre-optic cable. During initialisation the ring
passes through several ‘communication phases’ before entering the final cyclic
deterministic phase in which motion control is possible. In the final phase, the
master transmits control information and the slaves transmit status feedback
information every cycle time.

Once the SERCOS ring is running in CP4, the standard TrioBASIC motion commands
can be used.

The Motion Coordinator SERCOS hardware uses the Sercon 816 SERCOS interface
chip which allows connection speeds up to 16Mhz. This chip can be programmed at
a register level using the SERCOS command if necessary. To program in this way it
is necessary to obtain a copy of the chip data sheet.

The SERCOS command provides access to 10 separate functions:

Function:	 0	 Read SERCOS Asic:	

		 1	 Write SERCOS Asic:	

		 2	 Initialise command:	

		 3	 Link SERCOS drive to Axis	

		 4	 Read parameter.	

		 5	 Write parameters	

		 6	 Run SERCOS procedure command.	

		 7	 Check for dirve present	

		 8	 Print network parameter	

		 9	 Reserved	

		 10	 SERCOS ring status	

Slot:		 The slot number is in the range 0 to 6 and specifies the master 		
		 module location.

		

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-252

Parameters:	 Function 0			 SERCOS(0, slot, ram/reg, address)

Slot				 The module slot in which the SERCOS is fitted.

ram/reg			 0 = read value from RAM

				 1 = read value from register.

address			 The index address in RAM or register.

Example:	 >>?SERCOS(0, 0, 1, $0c)

Parameters:	 Function 1			 SERCOS(1, slot, ram/reg, address, value)

Slot				 The module slot in which the SERCOS is fitted.

ram/reg			 0 = write value to RAM

				 1 = write value to register.

address			 The index address in RAM or register.

value				 Date to be written

Example:	 Do not use this function without referencing the Sercon 816 data sheet.

Parameters:	 Function 2			 SERCOS(2, slot [,intensity [,baudrate [, 	
					 period]]])

Slot				 The module slot in which the SERCOS is fitted.

intensity			 Light transmission intensity (1 to 6). Default value is 	
				 3.

baudrate			 Communication data rate. Set to 2, 4, 6, 8 or 16.

period			 Sercos cycle time in microseconds. Accepted values 	
				 are 2000, 1000, 500 and 250usec.

Example:	 >>SERCOS(2, 3, 4, 16, 500)

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-253

Parameters:	 Function 3			 SERCOS(3, slot, slave addr, axis [, slave 	
					 drive type])

Slot				 The module slot in which the SERCOS is fitted.

slave addr			 Slave address of drive to be linked to an axis.

axis				 Axis number which will be used to control this drive.

slave drive type		 Optional parameter to set the slave drive type. All 	
				 standard SERCOS drives require the GENERIC setting. 	
				 The other options below are only required when the 	
				 drive is using non-standard SERCOS functions.

				 0 Generic Drive

				 1 Sanyo-Denki

				 3 Yaskawa + Trio P730

				 4 PacSci

				 5 Kollmorgen

Example:	 >>SERCOS(3, 1, 3, 5, 0) ‘links drive at address 3 to axis 5

Parameters:	 Function 4			 SERCOS(4, slot, slave address, parameter 	
					 ID [, parameter size[, element type [, 	
					 list length offset, [VR start index]]])

Slot				 The module slot in which the SERCOS is fitted.

slave addr			 SERCOS address of drive to be read.

parameter ID		 SERCOS parameter IDN

parameter size		 Size of parameter data expected:

				 2 = 2 byte parameter (default).

				 4 = 4 byte parameter

				 6 = list of parameter IDs

				 7 = ASCII string

element type		 SERCOS element type in the data block:

				 1 ID number

				 2 Name

				 3 Attribute

				 4 Units

				 5 Minimum Input value

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-254

				 6 Maximum Input value

				 7 Operational data (default)

List length offset	 Optional parameter to offset the list length. For 	
				 drives that return 2 extra bytes, use -2.

VR start index		 Beginning of VR array where list will be stored.

This function returns the value of 2 and 4 byte parameters but prints lists to the
terminal in Motion Perfect unless VR start index is defined.

Example:	 >>SERCOS(4, 0, 5, 140, 7)	 ‘request “controller type”

>>SERCOS(4, 0, 5, 129)		 ‘request manufacturer class 1
diagnostic

Parameters:	 Function 5			 SERCOS(5, slot , slave address, parameter 	
					 ID, parameter size, parameter value [, 	
					 parameter value …])

Slot				 The module slot in which the SERCOS is fitted.

slave addr			 SERCOS address of drive to be written.

parameter ID		 SERCOS parameter IDN

parameter size		 Size of parameter data to be written. 2, 4, or 6.

parameter value		 Enter one parameter for size 2 and size 4. Enter 2 to 	
				 7 parameters for size 6 (list).

Example:	 >>SERCOS(5, 1, 7, 2, 2, 1000) ‘set SERCOS cycle time

>>SERCOS(5, 0, 2, 16, 6, 51, 130) ‘set IDN 16 position feedback

Parameters:	 Function 6			 SERCOS(6, slot , slave address, parameter 	
					 ID [,time-out,[command type]])

Slot				 The communication slot in which the SERCOS is fitted.

slave addr			 SERCOS address of drive.

parameter ID		 SERCOS procedure command IDN.

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-255

time out			 Optional time out setting (msec).

command type		 Optional parameter to define the operation:

				 -1 Run & cancel operation (default value)

				 0 Cancel command

				 1 Run command

Example:	 >>SERCOS(6, 0, 2, 99) ‘clear drive errors

Parameters:	 Function 7			 SERCOS(7 , slot , slave address)

Slot				 The module slot in which the SERCOS is fitted.

slave addr			 SERCOS address of drive. Returns 1 if drive detected, 	
				 -1 if not detected.

Example:	 IF SERCOS(7, 2, 3) <0 THEN

		 PRINT#5, “Drive 3 on slot 2 not detected”
END IF

Parameters:	 Function 8			 SERCOS(8 , slot , required parameter)

Slot				 The module slot in which the SERCOS is fitted.

required parameter	 This function will print the required network 			
				 parameter, where the possible ‘required parameter’ 	
				 values are:

				 0: to print a semi-colon delimited list of ‘slave Id, axis 	
				 number’ pairs for the registered network 			
				 configuration (as defined using function 3). Used in 	
				 Phase 1: Returns 1 if drive is detected, 0 if no drive 	
				 detected.

				 1: to print the baud rate (either 2, 4, 6, or 8), and

				 2: to print the intensity (a number between 0 and 6).

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-256

Example:	 >>?SERCOS(8,0, 1)

Parameters:	 Function 10			 SERCOS(10,<slot>)

Slot				 The module slot in which the SERCOS is fitted.

This function checks whether the fibre optic loop is closed in phase 0. Return
value is 1 if network is closed, -1 if it is open, and –2 if there is excessive distortion
on the network.

Example:	 >>?SERCOS(10, 1)

IF SERCOS (10, 0) <> 1 THEN
	 PRINT “SERCOS ring is open or distorted”
END IF

Motion Perfect contains support for commissioning SERCOS rings. This tool simplifies
the creation of a TrioBASIC startup program which consists of SERCOS statements to
initialise the ring following power-on, and configure the ring in the deterministic cyclic
phase.

SERCOS_PHASE

Type:	 Slot Parameter

Description:	 Sets the phase for the SERCOS ring in the specified slot.

Parameters:	 value:		 The SERCOS phase, range 0-4

Example 1:	 Set the sercos ring attached to daughter board in slot 0 to phase 3

SERCOS _ PHASE SLOT(0) = 3

Example 2:	 If the SERCOS phase is 4 in slot 2 then turn on the output.

IF SERCOS _ PHASE SLOT(2)<>4 THEN

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-257

OP(8,ON)
ELSE
	 OP(8,OFF)
ENDIF

SERIAL_NUMBER

Type:	 System Parameter (Read only)

Syntax:	 SERIAL _ NUMBER

Description:	 Returns the unique Serial Number of the controller.

Example:	 For a controller with serial number 00325:

>>PRINT SERIAL _ NUMBER
325.0000
>>

SERVO_PERIOD

Type:	 System Parameter

Description:	 This parameter allows the controller servo period to be specified.

SERVO _ PERIOD is specified in microseconds. Only the values 2000, 1000, 500,
250 or 125 usec may be used and the Motion Coordinator must be reset before the
new servo period will be applied. The value is saved in Flash memory.

Example:	 ‘ check controller servo _ period on startup

IF SERVO _ PERIOD<>250 THEN
 SERVO _ PERIOD=250
 EX
ENDIF

Axis count will be limited as the SERVO _ PERIOD is reduced. Normally the headline
number of axes can be used when SERVO _ PERIOD is set to 1msec.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-258

SLOT

Type:	 Slot Modifier

Syntax:	 SLOT(position)

Description:	 Assigns ONE command, function or slot parameter operation to a particular slot

Parameters:	 position:	 1 = Built in feature
			 0 to max slot= Expansion module

Example 1:	 Check for an Anybus CC module in the holder in slot 1.

IF COMMSTYPE SLOT(1) = 62 THEN
	 PRINT “No Anybus card present”
ENDIF

STEP

Type:	 Program Structure

Description:	 This optional parameter specifies a step size in a FOR..NEXT sequence. See FOR.

Example:	 FOR x=10 TO 100 STEP 10

	 MOVEABS(x) AXIS(9)
NEXT x

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-259

STEPLINE

Type:	 System Command

Syntax:	 STEPLINE {Program name}{,Process number}

Description:	 Steps one line in a program. This command is used by Motion Perfect to control
program stepping. It can also be entered directly from the command line or as a
line in a program with the following parameters.

All copies of this named program will step unless the process number is also specified.

If the program is not running it will step to the first executable line on either the
specified process or the next available process if the next parameter is omitted.

If the program name is not supplied, either the SELECTed program will step (if
command line entry) or the program with the STEPLINE in it will stop running and
begin stepping.

Parameters:	 Program:	 This specifies the program to be stepped.

Process:	 This specifies the process number.

Example:	 Start the program conveyor running in the highest available process by stepping
into the first executable line.

>>STEPLINE “conveyor“
OK
%[Process 21:Line 19] - Paused
>>

STICK_READ

Type:	 System Function

Syntax:	 value = STICK _ READ(flash _ file, table _ start [, format])

Description:	 Read table data from the SD card to the controller.

ANY EXISTING TABLE DATA WILL BE OVERWRITTEN!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-260

Parameters:	 value:			 TRUE = the function was successful.

			 FALSE = the function was not successful.

flash File:		 A number which when appended to the characters “SD” will 	
			 form the data filename.

table _ start:	 The start point in the TABLE where the data values will be 	
			 transferred to.

format:		 0 = Binary 64bit floating point format (default).

			 1 = ASCII comma separated values

The binary file is stored in IEEE floating point binary format little-endian, i.e. the
least significant byte first.

Example:	 Read the ASCII file SD1984.csv from the SD card and copies the ‘data to the table
starting at TABLE(16500).

STICK _ READ (1984, 16500, 1)

See Also:	 STICK _ READVR

STICK_READVR

Type:	 System Function

Syntax:	 value = STICK _ READVR(flash _ file, vr _ start [, format])

Description:	 Read VR data from the SD card to the controller.

ANY EXISTING VR DATA WILL BE OVERWRITTEN.

Perameters:	 value:			 TRUE = the function was successful.

			 FALSE = the function was not successful

flash _ file:	 A number which when appended to the characters “SD” will 	
			 form the data filename.

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-261

vr _ start:		 The start point in the VRs where the data values will be 	
			 transferred to.

format:		 0 = Binary 64bit floating point format (default).

			 1 = ASCII comma separated values

The binary file is stored in IEEE floating point binary format little-endian, i.e. the
least significant byte first.

Example:	 ‘Read the ASCII file SD1984.csv from the SD card and copies the ‘data to the VRs
starting at VR(16500)

STICK _ READVR (1984, 16500, 1)

See Also:	 STICK _ READ

STICK_WRITE

Type:	 System Function

Syntax:	 value = STICK _ WRITE(flash _ file, table _ start [,length
[,format]])

Description:	 Used to store table data to the SD card in one of two formats

IF THIS FILE ALREADY EXISTS, IT IS OVERWRITTEN.

If you want to store the data without losing any precision use the Binary format.

Parameters:	 value:			 TRUE = the function was successful.

			 FALSE = the function was not successful.

flash _ file:	 A number which when appended to the characters “SD” will 	
			 form the data filename.

table _ start:	 The start point in the TABLE where the data values will be 	
			 transferred from.

length:		 The number of the table values to be transferred (default 128 	
			 values.)

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-262

format:		 0 = Binary 64bit floating point format, BIN file (default).
			 1 = ASCII comma separated values, CSV file

When storing in format=0 the data is stored in IEEE floating point binary format
little-endian, i.e. the least significant byte first.

Example:	 Transfer 2000 values starting at TABLE(1000) to the SD Card file ‘called SD1501.BIN

success = STICK _ WRITE (1501, 1000, 2000, 0)

See Also:	 STICK _ WRITEVR

STICK_WRITEVR

Type:	 System Function

Syntax:	 value = STICK _ WRITEVR(flash _ file, vr _ start [,length [,format]])

Description:	 Used to store VR data to the SD card in one of two formats.

IF THIS FILE ALREADY EXISTS, IT IS OVERWRITTEN.

If you want to store the data without losing any precision use the Binary format.

Parameters:	 value:			 TRUE = the function was successful.

			 FALSE = the function was not successful.

flash _ file:	 A number which when appended to the characters “SD” will 	
			 form the data filename.

vr _ start:		 The start point in the TABLE where the data values will be 	
			 transferred from.

length:		 The number of the table values to be transferred (default 128 	
			 values.)

format:		 0 = Binary 64bit floating point format, BIN file (default).

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-263

			 1 = ASCII comma separated values, CSV file.

When storing in format=0 the data is stored in IEEE floating point binary format
little-endian, i.e. the least significant byte first.

Example:	 Transfer 2000 values starting at VR(1000) to the SD Card file ‘called SD1501.BIN

success = STICK _ WRITEVR (1501, 1000, 2000, 0)

See Also:	 STICK _ WRITE

STOP

Type:	 Command

Syntax:	 STOP “progname”,[process _ number]

Description:	 Stops one program at its current line. A particular program name may be specified
and an optional process number. The process number is required if there is
more than one instance of the program running. If no name or process number is
included then the selected program will be assumed.

Parameters:	 progname:		 name of program to be stopped.

process _ number:	optional process number to be used when multiple instances 	
			 of the program are running and only one is to be stopped.

Example 1:	 Stop a program called “axis_init” from the command line. Note that quotes are
optional unless the program name is also a BASIC keyword.

>>STOP axis _ init

Example 2:	 Stop the named programs when a digital input goes off.

IF IN(12)=OFF THEN
 STOP “hmi _ handler”
 STOP “motion1”
ENDIF

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-264

Example 3:	 Stop one instance of a named program and leave the other instances running.

proc _ a = VR(45)
‘ process to be stopped is put in the VR by an HMI
STOP “test _ program”,proc _ a
‘ stop the required instance of test _ program

See also:	 SELECT, RUN

STORE

Type:	 System Command

Description:	 Used by Motion Perfect to load Firmware to the controller.

REMOVING THE CONTROLLER POWER DURING A STORE SEQUENCE CAN LEAD TO THE
CONTROLLER HAVING TO BE RETURNED TO TRIO FOR RE-INITIALIZATION.

SYSTEM_VARIABLE

Type:	 Reserved Keyword

SYSTEM_ERROR

Type:	 System Parameter

Description:	 The system errors are in blocks based on the following byte masks:

System errors			 0x0000ff

Configuration errors		 0x00ff00

!

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-265

Unit errors			 0xff0000

The following are system errors:

Ram error			 0x000001

Battery error			 Battery error

Invalid module error		 0x000004

The following are configuration errors:

Unit error			 0x000100

Station error			 0x000200

The following are Unit errors:

Unit Lost			 0x010000

Unit Terminator Lost		 0x020000

Unit Station Lost		 0x040000

Invalid Unit error		 0x080000

Unit Station Error		 0x100000

TABLE

Type:	 System Command

Syntax:	 TABLE(address [, data0..data35])

Description:	 The TABLE command can be used to load and read back the internal TABLE values.
As the table can be written to and read from, it may be used to hold information
as an alternative to variables.

The table values are floating point and can therefore be fractional.

You can clear the TABLE using NEW “TABLE”.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-266

Parameters:	 value:	returns the value stored at the address or -1 if used as part of a 			
	 write.

address:	 The address of the first point of a write, or the address to read.

data0:		 The data written to the address.

data1:		 The data written to the address +1.

data2:		 The data written to the address +2.

data32:	 The data written to the address +35.

Example 1:	 This loads the TABLE with the following values, starting at address 100:

Table Entry: Value:

100 0

101 120

102 250

103 370

104 470

105 530

TABLE(100,0,120,250,370,470,530)

Example 2:	 Use the command line to read the value stored in address 1000.

>>PRINT TABLE(1000)
1234.0000
>>

See also:	 FLASHVR, NEW, TSIZE

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-267

TABLE_POINTER

Type:	 Axis Parameter (Read Only)

Description:	 Using the TABLE _ POINTER command it is possible to determine which TABLE
memory location is currently being used by the CAM or CAMBOX.

TABLE _ POINTER returns the current table location that the CAM function is using.
The returned number contains the table location and divides up the interpolated
distance between the current and next TABLE location to indicate exact location.

The user can load new CAM data into previously processed TABLE location ready for
the next CAM cycle. This is ideal for allowing a technician to finely tune a complex
process, or changing recipes on the fly whilst running.

Parameters:	 value:		 The value is returned of type X.Y where X is the current TABLE 	
			 location and Y represents the interpolated distance between the 	
			 start and end location of the current TABLE location.

Example:	 In this example a CAM profile is loaded into TABLE location 1000 and is setup on
axis 0 and is linked to a master axis 1. A copy of the CAM table is added at location
100. The Analogue input is then read and the CAM TABLE value is updated when
the table pointer is on the next value.

‘ CAM Pointer demo
‘ store the live table points
TABLE(1000,0,0.8808,6.5485,19.5501,39.001,60.999,80.4499,93.4515)
TABLE(1008,99.1192,100)
‘ Store another copy of original points
TABLE(100,0,0.8808,6.5485,19.5501,39.001,60.999,80.4499,93.4515)
TABLE(108,99.1192,100)
‘ Initialise axes
BASE(0)
WDOG=ON
SERVO=ON

‘ Set up CAM
CAMBOX(1000,1009,10,100,1, 4, 0)

‘ Start Master axis
BASE(1)
SERVO=ON
SPEED=10
FORWARD

‘ Read Analog input and scale CAM based on input
pointer=0
WHILE 1
‘ Read Analog Input (Answer 0-10)

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-268

scale=AIN(32)*0.01
‘ Detects change in table pointer
IF INT(TABLE _ POINTER)<>pointer THEN
 pointer=INT(TABLE _ POINTER)
 ‘ First value so update last value
 IF pointer=1000 THEN
 TABLE(1008,(TABLE(108)*scale))
 ‘ Second Value, so must update First & Last but 1 value
 ELSEIF pointer=1001 THEN
 TABLE(1000,(TABLE(100)*scale))
 TABLE(1009,(TABLE(109)*scale))
 ‘ Update previous value
 ELSE
 TABLE(pointer-1, (TABLE(pointer-901)*scale))
 ENDIF
ENDIF
WEND
STOP

See Also:	 CAM, CAMBOX, TABLE

TABLEVALUES
Type:	 System Command

Syntax:	 TABLEVALUES(first, last [,format])

Description:	 Returns a list of table values starting at the table address specified. The output is
a comma delimited list of values..

TABLEVALUES is provided mainly for Motion Perfect to allow for fast access to banks
of TABLE values.

arameters:	 first:			 First TABLE address to be returned.

last:			 Last TABLE address to be returned

format:		 Format for the list.

			 0 = Uncompressed comma delimited text (default)
			 1 = Compressed comma delimited text, repeated values 	
			 are compressed using a repeat count before the value 		
			 (k7,0.0000 representing 7 successive values of 0.0000). 	
			 Single values do not have the repeat count;

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-269

Example:	 For a controller containing the values 0.0, 0.1, 0.1, 0.1, 0.2, 0.2, 0.0 in addresses 1
to 7:-

>>TABLEVALUES(1,7,0)
0.0000,0.1000,0.1000,0.1000,0.2000,0.2000,0.0000
>>

>>TABLEVALUES(1,7,1)
0.0000,k3,0.1000,k2 0.2000,0.0000
>>

TICKS

Type:	 Process Parameter

Description:	 The current count of the process clock ticks is stored in this parameter. The
process parameter is a 64 bit counter which is DECREMENTED on each servo cycle.
It can therefore be used to measure cycle times, add time delays, etc. The TICKS
parameter can be written to and read.

As TICKS is a process parameter each process will have its own counter.

Parameters:	 value:		 The value of the 64bit counter.

Example:	 With SERVO _ PERIOD set to 1000 use TICKS for a 3 second delay

delay:
	 TICKS=3000
	 OP(9,ON)
test:	
	 IF TICKS<=0 THEN OP(9,OFF) ELSE GOTO test

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-270

TIME

Type:	 System Parameter

Description:	 Allows the user to set and read the time from the real time clock.

Parameters:	 value:		 Read = the number of seconds since midnight (24:00 hours)

		 Write = the time in 24hour format hh:mm:ss

Example 1:	 Sets the real time clock in 24 hour format; hh:mm:ss

	 ‘Set the real time clock
>>TIME = 13:20:00

Example 2:
Calculate elapsed time in seconds.
time1 = TIME
‘wait for event
time2 = TIME
timeelapsed = time1-time2

See also:	 TIME$

TOKENTABLE

Type:	 Reserved Keyword

TRIGGER

Type:	 System Command

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-271

Description:	 Starts a previously set up SCOPE command. This allows you to start the scope
capture at a specific part of your program.

Example:	 The Motion Perfect oscilloscope is set to record MPOS and DPOS of axis 0. The
settings allow for program trigger and a repeat trigger. This loop can then be used
as part of a PID tuning routine.

WHILE IN(tuning)=ON
DEFPOS(0)	
TRIGGER
	 WA(5)	 ‘Allow the scope to start
	 MOVE(100)
	 WAIT IDLE
	 WA(100)
	 MOVE(-100)
	 WA(100)
WEND

TROFF

Type:	 System Command

Syntax:	 TROFF [“program”]

Description:	 The trace off command resumes execution of the SELECTed or specified program.
The command can be included in a program to resume the execution of that
program.

For de-bugging the Motion Perfect breakpoint tool should be used.

Parameters:	 program:	 The name of the program which you wish to resume.

Example:	 Resume execution of a program names TEST.

>>TROFF “TEST”
OK
>>%[Process 21:Program TEST] - Released

See Also:	 HALT, STOP, STEPLINE, TRON

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-272

TRON

Type:	 System Command

Syntax:	 TRON [“program”]

Description:	 The trace on command pauses the SELECT ed or specified program. The command
can be included in a program to pause the execution of that program. The program
can then be stepped through a single line, run or halted.

Parameters:	 program:	 The name of the program which you wish to step.

Motion Perfect highlights lines containing TRON in its editor and debugger. For
de-bugging the Motion Perfect breakpoint tool should be used.

Example 1:	 Use suspend a program by including TRON. Another program will then use
STEPLINE to step through until the TRON.

TRON
MOVE(0,10)
MOVE(10,0)
TROFF
MOVE(0,-10)
MOVE(-10,0)

Example 2:	 Start a program by stepping into the first line, then stepping through. The line that
is stepped to is displayed.

>>SELECT “STARTUP”
STARTUP selected
>>TRON
OK
>>%[Process 20:Line 3] - Paused
TABLE(0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

STEPLINE
OK
>>%[Process 20:Line 4] - Paused
TABLE(10,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

STEPLINE
OK
>>%[Process 20:Line 5] - Paused
TABLE(20,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-273

Example 3:	 Pause a program called test that is currently running.

TRON “TEST”
OK
>>%[Process 21:Line 6] - Paused
WA(4)

See Also:	 HALT, STOP, STEPLINE, TROFF

TSIZE

Type:	 System Parameter (Read Only)

Description:	 Returns the size of the TABLE.

NOT ALL TABLE POSITIONS ARE BATTERY BACKED, SEE YOUR CONTROLLER
INFORMATION FOR EXACT VALUES.

Parameters:	 value:		 The size of the TABLE.

Example:	 Check the size of the table and write to the last position in the table (remember
the table starts at position 0).

>>?tsize
500000.0000
>>table(499999,123)
>>

UNIT_SW_VERSION

Type:	 Reserved Keyword

!

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-274

UNLOCK

Type:	 System Command (command line only)

Syntax:	 UNLOCK(code)

Description:	 Unlocks a controller than has previously been locked using the LOCK command.

To unlock the Motion Coordinator, the UNLOCK command should be entered using
the same security code number which was used originally to LOCK it.

You should use Motion Perfect to LOCK and UNLOCK your controller.

Parameters:	 code:		 Any 7 digit integer number.

See Also:	 LOCK

VERSION

Type:	 System Parameter (read only)

Description:	 Returns the version number of the firmware installed on the Motion Coordinator.

You can use Motion Perfect to check the firmware version when looking at the
controller configuration.

Parameters:	 value:			 Controllers firmware version number.

Example:	 Check the version of the firmware using the command line.

>>? VERSION
2.0100
>>

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-275

VIEW

Type:	 System Command

Syntax:	 VIEW “program”

Description:	 Lists the currently selected or specified program in tokenised and internal
compiled format.

Parameters:	 program:	 The program name to VIEW.

Example:	 For the following program:	

VR(10)=IN AND 255

the view command will give the output:

Source code: from xxx to xxx
10725: 00 15 00 29 92 95 31 30 00 93 88 64 A2 95 32 35 35 00 9B
10746: 15 00 00 00
Object code: from yyy to yyy
10750: 01 00 29 92 95 00 20 03 91 93 9A 64 95 00 00 7F 07 8E 91 9B
10771:

VR

Type:	 Variable

Syntax:	 value = VR(expression)

Description:	 Recall or assign to a global numbered variable. The variables hold real numbers
and can be easily used as an array or as a number of arrays.

The numbered variables are globally shared between programs and can be used for
communication between programs. To avoid problems where two processes write
unexpectedly to a global variable, the programs should be written so that only one
program writes to the global variables.

Parameters:	 value:	The value written to or read from the VR.

expression:	Any valid TrioBASIC expression that produces an integer.

Trio Motion Technology

Triobasic Commands
System Parameters and Commands

8-276

Example 1:	 Put value 1.2555 into VR() variable 15. Note local variable ‘val’ used to give name
to global variable:

	 val=15
	 VR(val)=1.2555

Example 2:	 A transfer gantry has 10 put down positions in a row. Each position may at any time
be FULL or EMPTY. VR(101) to VR(110) are used to hold an array of ten1’s or 0’s to
signal that the positions are full (1) or EMPTY (0). The gantry puts the load down in
the first free position. Part of the program to achieve this would be:

movep:
	 MOVEABS(115) ‘MOVE TO FIRST PUT DOWN POSITION:
	 FOR VR(0)=101 TO 110
		 IF VR(VR(0))=0) THEN
GOSUB load
		 ENDIF
		 MOVE(200)		 ‘ 200 IS SPACING BETWEEN POSITIONS
	 NEXT VR(0)
	 PRINT “All Positions Are Full”
	 WAIT UNTIL IN(3)=ON
GOTO movep

load:	
	 ‘PUT LOAD IN POSITION AND MARK ARRAY
	 OP(15,OFF)
	 VR(VR(0))=1

Example 3:	 Assign VR(65) with the value VR(0) multiplied by Axis 1 measured position.

VR(65)=VR(0)*MPOS AXIS(1)
PRINT VR(65)

Technical Reference Manual

Triobasic Commands
System Parameters and Commands

8-277

VRSTRING

Type:	 Print Formatter

Syntax:	 VRSTRING(variable)

Description:	 Combines the contents of an array of VR() variables so that they can be printed as
a text string. All printable characters will be output and the string will terminate
at the first null character found (i.e. VR(n) contains 0).

Parameters:	 variable:	 Number of first VR() in the character array.

Example:	 Print a sequence of characters stored in the VR’s starting at position 100.

PRINT #5,VRSTRING(100)

WDOG

Type:	 System Parameter

Description:	 Controls the WDOG relay contact used for enabling external drives. The WDOG=ON
command MUST be issued in a program prior to executing moves. It may then be
switched ON and OFF under program control. If however a following error condition
exists on any axis the system software will override the WDOG setting and turn
watchdog contact OFF. When WDOG=OFF, the relay is opened, the analogue outputs
are set to 0V, the step/direction outputs and any digital axis enable functions are
disabled.

Example:	 WDOG=ON

WDOG=ON / WDOG=OFF is issued automatically by Motion Perfect when the “Drives
Enable” button is clicked on the control panel

When the DISABLE _ GROUP function is in use, the watchdog relay and WDOG
remain on if there is an axis error. In this case, the digital enable signal is removed
from the drives in that group only.

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-278

Mathematical Operations and Commands

+ (Add)

Type:	 Mathematical operation

Syntax:	 <expression1> + <expression2>

Description:	 Adds two expressions.

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 Add 10 onto the expression in the parentheses and store in a local variable.
Therefore ‘result’ holds the value 28.9

result=10+(2.1*9)

- (Subtract)

Type:	 Arithmetic operation

Syntax:	 <expression1> - <expression2>

Description:	 Subtracts expression2 from expression1.

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 Evaluate 2.1 multiply by 9 and subtract the result from 10, this will then be stored

in VR 0. Therefore VR 0 holds the value -8.9.
VR(0)=10-(2.1*9)

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-279

* (Multiply)

Type:	 Mathematical operation.

Syntax:	 <expression1> * <expression2>

Description:	 Multiplies expression1 by expression2.

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 Calculate the value of ‘factor’ by multiplying 10 by the sum of 2.1 and 9. the value
stored in ‘factor’ will be 111.

factor=10*(2.1+9)

/ (Divide)

Type:	 Mathematical operation

Syntax:	 <expression1> / <expression2>

Description:	 Divides expression1 by expression2.

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 Raises the first number (2) to the power of the second number (6).and store it in
local variable ‘x’. Then print the value of ‘x’ which is 64.

x=2^6
PRINT x

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-280

^ (Power)

Type:	 Mathematical operation

Syntax:	 <expression1> ^ <expression2>

Description:	 Raises expression1 to the power of expression2.

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 x=2^6

PRINT x

TrioBASIC raises the first number (2) to the power of the second number (6).

Therefore x has the value of 64

= (Equals)

Type:	 Comparison Operation

Syntax:	 <expression1> = <expression2>

Description:	 Returns TRUE if expression1 is equal to expression2, otherwise returns false.

TRUE is defined as -1, and FALSE as 0

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 IF IN(7)=ON THEN GOTO label

If input 7 is ON then program execution will continue at line starting “label:”

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-281

Type:	 Mathematical Operator

Syntax:	 Value = expression

Description:	 Assigns a value from the result of the expression.

Parameters:	 Value:			 the variable in which to store the value.

Expression:		 Any valid TrioBASIC expression.

Example:	 Set the sum of 10 and 9 into local variable named ‘result’.

result = 10 + 9

<> (Not Equal)

Type:	 Comparison Operation

Syntax:	 <expression1> <> <expression2>

Description:	 Returns TRUE if expression1 is not equal to expression2, otherwise returns
FALSE.

TRUE is defined as -1, and FALSE as 0

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 Run the Scoop subroutine if axis is not idle (MTYPE=0 indicates axis idle).

IF MTYPE<>0 THEN GOTO scoop

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-282

> (Greater Than)

Type:	 Comparison Operation

Syntax:	 <expression1> > <expression2>

Description:	 Returns TRUE if expression1 is greater than expression2, otherwise returns
FALSE.

TRUE is defined as -1, and FALSE as 0

Parameters:	 Expression1:	 Any valid TrioBASIC expression

Expression2:	 Any valid TrioBASIC expression

Example 1:	 The program will wait until the measured position is greater than 200.

WAIT UNTIL MPOS>200

Example 2:	 Set the value of TRUE (-1) into VR 0 as 1 is greater than 0.

VR(0)=1>0

>= (Greater Than or Equal)

Type:	 Comparison Operation

Syntax:	 <expression1> >= <expression2>

Description:	 Returns TRUE if expression1 is greater than or equal to expression2, otherwise
returns FALSE.

TRUE is defined as -1, and FALSE as 0

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-283

Example:	 If variable target holds a value greater than or equal to 120 then move to the
absolute position of 0.

IF target>=120 THEN MOVEABS(0)

< (Less Than)

Type:	 Comparison Operation

Syntax:	 <expression1> < <expression2>

Description:	 Returns TRUE if expression1 is less than expression2, otherwise returns FALSE.

TRUE is defined as -1, and FALSE as 0

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 Check that the value from analogue input 1 is less than 10, if it is then execute the
sub routine ‘rollup’.

IF AIN(1)<10 THEN GOSUB rollup

<= (Less Than or Equal)

Type:	 Comparison Operation

Syntax:	 <expression1> = <expression2>

Description:	 Returns TRUE if expression1 is less than or equal to expression2, otherwise returns
FALSE.

TRUE is defined as -1, and FALSE as 0

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-284

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example:	 1 is not less than or equal to 0 and therefore variable maybe holds the value 0
(FALSE).

maybe=1<=0

ABS

Type:	 Function

Syntax:	 ABS(expression)

Description:	 The ABS function converts a negative number into its positive equal. Positive
numbers are unaltered.

Parameters:	 Expression:	Any valid TrioBASIC expression.

Example:	 Check to see if the value from analogue input is outside of the range -100 to 100.

IF ABS(AIN(0))>100 THEN
 	 PRINT “Analogue Input Outside +/-100”
ENDIF

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-285

ACOS

Type:	 Mathematical Function

Syntax:	 ACOS(expression)

Description:	 The ACOS function returns the arc-cosine of a number which should be in the range
1 to -1. The result in radians is in the range 0..PI

Parameters:	 Expression:	Any valid TrioBASIC expression returning a value between -1 and 1.

Example:	 Print the arc-cosine of -1 on the command line.

>>PRINT ACOS(-1)
3.1416
>>

AND

Type:	 Logical and bitwise operator

Syntax:	 <expression1> AND <expression2>

Description:	 This performs an AND function between corresponding bits of the integer part of
two valid TrioBASIC expressions.

The AND function between two bits is defined as follows:

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example 1:	 Using AND to compare two logical expressions, if they are both true then set a
local variable.

IF (IN(6)=ON) AND (DPOS>100) THEN
 tap=ON
ENDIF

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-286

Example 2:	 Use AND as a bitwise operator.

VR(0)=10 AND (2.1*9)

TrioBASIC evaluates the parentheses first giving the value 18.9, but as was specified
earlier, only the integer part of the number is used for the operation, therefore
this expression is equivalent to:

VR(0)=10 AND 18

AND is a bitwise operator and so the binary action taking place is:

0 1

0 0 0

1 0 1

		 01010

AND		 10010

		 00010

Therefore VR(0) holds the value 2

Example 3:	 If both MPOS are set to 0 then run a sub routine ‘cycle’

IF MPOS AXIS(0)>0 AND MPOS AXIS(1)>0 THEN
 GOSUB cycle
ENDIF

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-287

ASIN

Type:	 Mathematical Function

Syntax:	 ASIN(expression)

Alternate Format:	ASN(expression)

Description:	 The ASIN function returns the arc-sine of a number which should be in the range
+/-1. The result in radians is in the range -PI/2.. +PI/2.

Parameters:	 Expression:	Any valid TrioBASIC expression returning a value between -1 and 1.

Example:	 Print the arc-sine of -1 on the command line.

>>PRINT ASIN(-1)
-1.5708

ATAN

Type:	 Mathematical Function

Syntax:	 ATAN(expression)

Alternate Format:	ATN(expression)

Description:	 The ATAN function returns the arc-tangent of a number. The result in radians is in
the range -PI/2.. +PI/2.

Parameters:	 Expressions:	 Any valid TrioBASIC expression.

Example:	 Print the arc-tangent of -1 on the command line.

>>PRINT ATAN(1)
0.7854

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-288

ATAN2

Type:	 Mathematical Function

Syntax:	 ATAN2(expression1,expression 2)

Description:	 The ATAN2 function returns the arc-tangent of the ratio expression1/
expression 2. The result in radians is in the range -PI.. +PI

Parameters:	 Expressions:	 Any valid TrioBASIC expression.

Example:	 Print the arc-tangent of 0 divided by 1 on the command line

>>PRINT ATAN2(0,1)
0.0000

B_SPLINE

Type:	 Command

Syntax:	 B _ SPLINE(mode, {parameters})

Description:	 This function expands data to generate higher resolution motion profiles. It
operates in two modes using either B Spline or Non Uniform Rational B Spline
(NURBS) mathematical methods.

Syntax:	 B _ SPLINE(1, data _ in, points, data _ out, expansion _ ratio)

Description:	 Expands an existing profile stored in the TABLE area using the B Spline
mathematical function. The expansion factor is configurable and the B _ SPLINE
stores the expanded profile to another area in the TABLE.

This is ideally used where the source CAM profile is too coarse and needs to be
extrapolated into a greater number of points.

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-289

Parameters:	 mode: 			 1 Standard B-Spline.

data _ in:			 Location in the TABLE where the source profile is 	
				 stored.

points:			 Number of points in the source profile.

data _ out:			 Location in the TABLE where the expanded profile 	
				 will be stored.

expansion _ ratio:	 The expansion ratio of the B _ SPLINE function.

				 Total output points = (Number of points+1) * 			
				 expansion

				 (i.e. if the source profile is 100 points and the 		
				 expansion ratio is set to 10 the resulting profile will 	
				 be 1010 point ((100+1) * 10).

Example:	 Expands a 10 point profile in TABLE locations 0 to 9 to a larger 110 point profile
starting at TABLE address 200.

B _ SPLINE(1,0,10,200,10)

Syntax: 	 B _ SPLINE(2, dimensions, curve _ type, weight _ op, points, knots,
expansion, in _ data, out _ data)

Description: 	 Non Uniform Rational B-Splines, commonly referred to as NURBS, have become the
industry standard way of representing geometric surface information designed by a
CAD system.

NURBS provide a unified mathematical basis for representing analytic shapes such
as conic sections and quadratic surfaces, as well as free form entities, such as car
bodies and ship hulls.

NURBS are small for data portability and can be scaled to increase the number of
target points along a curve, increasing accuracy. A series of NURBS are used to
describe a complex shape or surface.

NURBS are represented as a series of XYZ points with knots + weightings of the
knots.

Parameters: 	 mode: 		 2 Non Uniform Rational B-Spline.

dimensions: 	 Defines the number of axes.

			 Reserved for future use must be 3.

Curve _ type:	 Classification of the type of NURBS curve.

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-290

			 Reserved for future use must be 3.

Weight _ op:	Sets the weighting of the knots

			 0=All weighting set to 1.

points:		 Number of data points.

knots:		 Number of knots defined.

expansion:		 Defines the number of points the expanded curve will have in 	
			 the table.

			 Total output points = Number of points * expansion. 			
			 Minimum value = 3.

in _ data:		 Location of input data.

			 Data is stored with X0,Y0,Z0,X1,Y1,Z1...,followed by knots 	
			 data N0, N1, N2 ...

Out _ data:	 Table start location for output points stored X0, Y0, Z0 etc.

Example:	 Starting with 9 sets of X Y Z data point and expanding by 5, resulting with 45 sets
of X Y Z data points (135 table points). The profile is then split from the XYZ groups
into separate axis so that the profiles can be executed using CAMBOX.

weight _ op=0 		 ‘0 sets all weights to 1.0
points=9	 	 ‘number of data points
knots=13 		 ‘number of knots
expansion=5 		 ‘expansion factor
in _ data=100 		 ‘data points
out _ data=1000 	‘table location to construct output

‘ Data Points:
TABLE(100,150.709,353.8857,0)
TABLE(103,104.5196,337.7142,0)
TABLE(106,320.1131,499.4647,0)
TABLE(109,449.4824,396.4945,0)
TABLE(112,595.3350,136.4910,0)
TABLE(115,156.816,96.3351,0)
TABLE(118,429.4556,313.7982,0)
TABLE(121,213.3019,375.8004,0)
TABLE(124,150.709,353.8857,0)

‘ Knots:
TABLE(127,0,0,0,0,146.8154,325.6644,536.0555,763.4151,910.1338,1109.0886)
TABLE(137,1109.0886,1109.0886,1109.0886)

‘Expand the curve, generate 5*9=45 XYZ points
 ‘or 135 table locations

B _ SPLINE(2, 3, 3, weight _ op, points, knots, expansion, in _
data, out _ data)

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-291

‘Split the profile into X Y Z
FOR p= 0 TO 44
 TABLE(8000+p,TABLE(1000+(p*3)+0))
 TABLE(10000+p,TABLE(1000+(p*3)+1))
 TABLE(12000+p,TABLE(1000+(p*3)+2))
NEXT p

‘Execute the profile using CAMBOX, synchronised using axis 4
BASE(0)
DEFPOS(0,0,0,0)
CAMBOX(8000,8044,1,100,4)
BASE(1)
CAMBOX(10000,10044,1,100,4)
BASE(2)
CAMBOX(12000,12044,1,100,4)
BASE(4)
MOVE(100)

CLEAR_BIT

Type:	 Command

Syntax:	 CLEAR _ BIT(bit,variable)

Description:	 CLEAR _ BIT can be used to clear the value of a single bit within a VR() variable.

Parameters:	 bit:		 The bit number to clear, valid range is 0 to 52.

variable:	 The VR which to operate on.

Example:	 Set bit 6 in VR 23 to zero.

CLEAR _ BIT(6,23)

See also	 READ _ BIT, SET _ BIT

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-292

CONSTANT

Type:	 System Command

Syntax:	 CONSTANT [“name”[, value]]

Description:	 Up to 1024 CONSTANTS can be declared in the controller, these are then available
to all programs. They should be declared on startup and for fast startup the
program declaring CONSTANTs should also be the ONLY process running at power-
up.

Once a CONSTANT has been assigned it cannot be changed, even if you change the
program that assigns it.

While developing you may wish to clear or change a CONSTANT. You can clear a single
CONSTANT by using the first parameter alone. All CONSTANTs can be cleared by
issuing CONSTANT. You can view all CONSTANTs using LIST _ GLOBAL.

Parameters:	 name:		 Any user-defined name containing lower case alpha, numerical or 	
			 underscore (_) characters.

value		 The value assigned to name.

Example 1:	 Declare 2 CONSTANT’s and use them within the program.

CONSTANT “nak”,$15
CONSTANT “start _ button”,5

IF IN(start _ button)=ON THEN OP(led1,ON)
IF key _ char=nak THEN GOSUB no _ ack _ received

Example 2:	 Use the command line to clear a defined constant.

>>CONSTANT “NAK”

>>

Example 3:	 Use the command line to clear all defined constants.

>>CONSTANT
>>

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-293

See Also:	 GLOBAL, LIST _ GLOBAL

COS

Type:	 Mathematical Function

Syntax:	 COS(expression)

Description:	 Returns the COSINE of an expression. Input values are in radians.

Parameters:	 value:			 The COSINE of the expression.

expression:		 Any valid TrioBASIC expression.

Example:	 Print the cosine of zero to the command line with 3 decimal places

>>PRINT COS(0)[3]
1.000

CRC16

Type:	 Mathematical Command

Syntax:	 result = CRC16(mode,{parameters})

Description:	 Calculates a 16 bit Cyclic Redundancy Check (CRC) of data stored in contiguous
Table Memory or VR Memory locations.

Parameters:	 MODE:		 0 = Initialise the polynomial

		 1 = Calculate the CRC

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-294

Syntax:	 result = CRC16(0, poly)

Description:	 Initialises the command with the Polynomial

Parameters:	 result:	 Always returns -1

poly:		 Polynomial used as seed for CRC check range 0-65535 (or 0-$FFFF)

Syntax:	 result = CRC16(1, source, start, end, initial)

Description:	 Calculates the CRC

Parameters:	 result:	 Returns the result of the CRC calculation. Will be 0 if the calculation 	
			 fails.

source:	 Defines where the data is loaded.

 		 0 = Table Memory

 		 1 = VR Memory

start:		 start location of first byte.

end:		 end Location of last byte.

initial:	 initial CRC value. Normally $0 - $FFFF.

Example 1:	 Calculate the CRC using Table Memory:

poly = $90d9
reginit = $ffff
CRC16(0, poly) ‘Initialise internal CRC table memory
TABLE(0,1,2,3,4,5,6,7,8) ‘Load data into table memory location 0-7
calc _ crc = CRC16(1,0,0,7,reginit) ‘Source Data=TABLE(0..7)

Example 2:	 Calculate the CRC using VR Memory:

poly = $90d9
reginit = $ffff
CRC16(0, poly) ‘Initialise internal CRC table memory
‘Load 6 bytes into VR memory location 0-5
for i=0 to 5
 VR(i)=i+1
Next i
calc _ crc = CRC16(1,1,0,5,reginit) ‘Source Data=VR(0)..VR(5)

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-295

EXP

Type:	 Mathematical Function

Syntax:	 EXP(expression)

Description:	 Returns the exponential value of the expression.

Parameters:	 expression:		 Any valid TrioBASIC expression.

Example:	 Print the exponential value of 1.

>>PRINT EXP(1)

2.7183
>>

FRAC

Type:	 Mathematical Function

Syntax:	 value = FRAC(expression)

Description:	 Returns the fractional part of the expression.

Parameters:	 value:			 The fractional part of the expression.

expression:		 Any valid TrioBASIC expression.

Example:	 Print the fractional part of 1.234 on the command line.

>>PRINT FRAC(1.234)
0.2340
>>

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-296

GLOBAL

Type:	 System Command

Syntax:	 GLOBAL “name”, vr _ number

Description:	 Up to 1024 GLOBAL s can be declared in the controller, these are available to
all programs. GLOBAL declares the name as a reference to one of the global VR
variables. The name can then be used both within the program containing the
GLOBAL definition and all other programs in the Motion Coordinator project.

They should be declared on startup and for fast startup the program declaring
GLOBAL s should also be the ONLY process running at power-up.

Once a GLOBAL has been assigned it cannot be changed, even if you change the
program that assigns it.

While developing you may wish to clear or change a GLOBAL. You can clear a single
GLOBAL by using the first parameter alone. All GLOBAL’s can be cleared by issuing
GLOBAL. You can view all GLOBAL’s using LIST _ GLOBAL.

Parameters:	 name:			 Any user-defined name containing lower case alpha, 			
				 numerical or underscore (_) characters.

vr _ number		 The number of the VR to be associated with name.

Example:	 Initialise 2 GLOBAL s and use then to adjust machine parameters.

GLOBAL “screw _ pitch”,12
GLOBAL “ratio1”,534

ratio1 = 3.56
screw _ pitch = 23.0
PRINT screw _ pitch, ratio1

See Also:	 CONSTANT, LIST _ GLOBAL

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-297

IEEE_IN

Type:	 Mathematical Function

Syntax:	 IEEE _ IN(byte0,byte1,byte2,byte3)

Description:	 The IEEE _ IN function returns the floating point number represented by 4 bytes
which typically have been received over a communications link such as Modbus.

Byte 0 is the high byte of the 32 bit floating point format.

Parameters:	 byte0 - 3:		 Any combination of 8 bit values that represents a valid IEEE 	
				 floating point number.

Example:	 Take 4 bytes that have been sent over Modbus to VR’s and recombine them into a
floating point number.

VR(200) = IEEE _ IN(VR(0),VR(1),VR(2),VR(3))

IEEE_OUT

Type:	 Mathematical Function

Syntax:	 byte _ n = IEEE _ OUT(value, n)

Description:	 The IEEE _ OUT function returns a single byte in IEEE format extracted from the
floating point value for transmission over a bus system. The function will typically
be called 4 times to extract each byte in turn.

Parameters:	 value:		 Any TrioBASIC floating point variable or parameter.

n:		 The byte number (0 - 3) to be extracted.

Byte 0 is the high byte of the 32 bit IEEE floating point format.

Example:	 Extract the 4 bytes from MPOS and store then in local variables ready for
transmission over a communications bus.

a = MPOS AXIS(2)

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-298

byte0 = IEEE _ OUT(a, 0)
byte1 = IEEE _ OUT(a, 1)
byte2 = IEEE _ OUT(a, 2)
byte3 = IEEE _ OUT(a, 3)

INT

Type:	 Mathematical Function

Syntax:	 value = INT(expression)

Description:	 The INT function returns the integer part of a number.

To round a positive number to the nearest integer value take the INT function of
the (number + 0.5).

Parameters:	 expression:		 Any valid TrioBASIC expression.

value:			 The integer part of the expression.

Example 1:	 >>PRINT INT(1.79)

1.0000

Example 2:	 Round a value to the nearest integer.

IF value>0 THEN
rounded = INT(value + 0.5)
ELSE
rounded = INT(value - 0.5)
ENDIF

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-299

INTEGER_READ

Type: 	 Mathematical Command

Syntax:	 INTEGER _ READ(source, least _ significant, most _ significant)

Description:	 INTEGER _ READ performs a low level access to the 64 bit register splitting it into
two 32 bit segments.

This can be used to read the position from high resolution encoders.

Parameters:	 source:			 2 bit value that will be read, can be VR, TABLE, or 	
					 system variable.

least _ significant:	 The variable to store the least significant (rightmost) 	
				 32 bits, this may be local variable, VR or TABLE.

most _ significant:	 The variable to store the most significant (leftmost) 32 	
				 bits, this may be local variable, VR or TABLE.

INTEGER_WRITE

Type:	 Mathematical Command

Syntax:	 INTEGER _ WRITE(destination, least _ significant, most _
significant)

Description:	 INTEGER _ WRITE performs a low level write to a 64 bit register by combining two
32 bit segments.

Parameters:	 destination:		 64 bit value that will be written, can be VR, TABLE, 	
					 or system variable..

least _ significant:	 Least significant (rightmost) 16 bits, can be any valid 	
				 TrioBASIC expression.

most _ significant:	 Most significant (leftmost) 16 bits, can be any valid 	
				 TrioBASIC expression.

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-300

LN

Type:	 Mathematical Function

Syntax:	 value = LN(expression)

Description:	 Returns the natural logarithm of the expression.

Parameter:	 value:			 The natural logarithm f the expression.

expression:		 Any valid TrioBASIC expression .

Example:	 Storing the natural logarithm of a value in VR(0)

VR(0) = LN(a*b)

MOD

Type:	 Mathematical Operator

Syntax:	 value = expression1 MOD(expression2)

Description:	 Returns the integer modulus of an expression, this is the value after the integer
has wrapped around the modulus

Parameter:	 expression 1:	 Any valid TrioBASIC expression used as the value to apply the 	
				 modulus to.

expression 2:	 Any valid TrioBASIC expression used as the modulus.

Example:	 Use the MOD(12) to turn a 24 hour value into 12 hour.

>>PRINT 18 MOD(12)
6.0000
>>

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-301

NOT

Type:	 Logical and Bitwise Function

Syntax:	 NOT expression

Description:	 The NOT function truncates the number and inverts all the bits of the integer
remaining.

Parameter:	 expression:		 Any valid TrioBASIC expression.

Example 1:	 Bitwise AND 7 with NOT 1.5. This truncates 1.5 to 1 then ANDs it with 7.

PRINT 7 AND NOT(1.5)
	 6.0000

Example 2:	 If a function fails then print an error message and stop the program.

IF NOT CAN(0,9,13,1,8,$6060,0,$02) THEN
 PRINT#user, “Failed to set velocity mode”
 STOP
ENDIF

OR

Type:	 Logical and bitwise operator

Syntax:	 <expression1> OR <expression2>

Description:	 This performs an OR function between corresponding bits of the integer part of
two valid TrioBASIC expressions. The OR function between two bits is defined as
follows:

OR 0 1

0 0 1

1 1 1

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-302

Parameters:	 Expression1:	 Any valid TrioBASIC expression.

Expression2:	 Any valid TrioBASIC expression.

Example 1:	 Use OR to allow the program to progress if there is a MOTION _ ERROR or an input
is pressed.

WAIT UNTIL IN(2)=ON OR MOTION _ ERROR

Example 2:	 Calculate the bitwise OR between values

result=10 OR (2.1*9)

TrioBASIC evaluates the parentheses first giving the value 18.9, but as was specified
earlier, only the integer part of the number is used for the operation, therefore
this expression is equivalent to:

result=10 OR 18

The OR is a bitwise operator and so the binary action taking place is:

	 01010

OR	 10010

	 11010

Therefore result holds the value 26.

READ_BIT

Type:	 Command

Syntax:	 READ _ BIT(bit, variable)

Description:	 READ _ BIT can be used to test the value of a single bit within a VR() variable.

Parameters:	 bit:		 The bit number to clear, valid range is 0 to 52.

variable:	 The VR which to operate on.

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-303

Example:	 Read bit 4 of VR(13).

Result = READ _ BIT(4,13)

See also	 SET _ BIT, CLEAR _ BIT

SET_BIT

Type:	 Logical and Bitwise Command

Syntax:	 SET _ BIT(bit, variable)

Description:	 SET _ BIT can be used to set the value of a single bit within a VR() variable. All
other bits are unchanged.

Parameters:	 bit:		 The bit number to clear, valid range is 0 to 52.

variable:	 The VR which to operate on.

Example:	 Set bit 3 of VR(7)

SET _ BIT(3,7)

See Also	 READ _ BIT, CLEAR _ BIT

SGN

Type:	 Mathematical Function

Syntax:	 value = SGN(expression)

Description:	 The SGN function returns the SIGN of a number.

	 1	 Positive non-zero

	 0	 Zero

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-304

	 -1	 Negative

Parameters:	 expression:		 Any valid TrioBASIC expression.

Example:	 Detect the sign of the number -1.2 using the command line.

>>PRINT SGN(-1.2)

-1.0000

SIN

Type:	 Mathematical Function

Syntax:	 value=SIN(expression)

Description:	 Returns the SINE of an expression. This is valid for any value in expressed in
radians.

Parameters:	 value:			 the SINE of the expression in radians.

expression:		 Any valid TrioBASIC expression.

Example:	 Pint the SINE of 0 on the command line.

>>PRINT SIN(0)
	 0.0000
>>

Technical Reference Manual

Triobasic Commands
Mathematical Operations and Commands

8-305

SQR

Type:	 Mathematical Function

Syntax:	 value=SQR(number)

Description:	 Returns the square root of a number.

Parameters:	 value:		 The square root of the number

number:	 Any valid TrioBASIC number or variable.

Example:	 Calculate the square root of 4 using the command line.

>>PRINT SQR(4)
2.0000

TAN

Type:	 Mathematical Function

Syntax:	 value = TAN(expression)

Description:	 Returns the TANGENT of an expression. This is valid for any value expressed in
radians.

Parameters:	 value:	The TANGENT of the expression.

Expression:	Any valid TrioBASIC expression.

Example:	 Print the tangent of 0.5 using the command line.

>>PRINT TAN(0.5)
	 0.5463
>>

Trio Motion Technology

Triobasic Commands
Mathematical Operations and Commands

8-306

XOR

Type:	 Logical and bitwise operator

Description:	 This performs and exclusive or function between corresponding bits of the integer
part of two valid TrioBASIC expressions. It may therefore be used as either a
bitwise or logical condition.

The XOR function between two bits is defined as follows:

result = expression1 XOR expression

Example:	 a = 10 XOR (2.1*9)

TrioBASIC evaluates the parentheses first giving the value 18.9, but as was specified
earlier, only the integer part of the number is used for the operation, therefore
this expression is equivalent to: a=10 XOR 18. The XOR is a bitwise operator and so
the binary action taking place is:

		 01010

XOR		 10010

		 11000

The result is therefore 24.

Technical Reference Manual

Triobasic Commands
Constants

8-307

Constants

FALSE

Type:	 Constant

Description:	 The constant FALSE takes the numerical value of 0.

Example:	 test:

Use FALSE as part of a logical check
 res = IN(0) OR IN(2)
 IF res = FALSE THEN
 PRINT “Inputs are off”
 ENDIF

OFF

Type:	 Constant

Description:	 OFF returns the value 0

Example 1:	 Run the subroutine “tiger” if input 56 is off.

IF IN(56)=OFF THEN GOSUB tiger

Example 2:	 Turn the watchdog relay off.

WDOG = OFF

Trio Motion Technology

Triobasic Commands
Constants

8-308

ON

Type:	 Constant

Description:	 ON returns the value 1.

Example:	 This sets the output named lever to ON.

OP(lever,ON)

PI

Type:	 Constant

Description:	 PI is the circumference/diameter constant of approximately 3.14159.

Example 1:	 To print the radius of a circle of given circumference.

circum=100
PRINT “Radius = “;circum /(2*PI)

Example 2:	 Set the axis calibration to work in user units of Radians.

Motor has 8192 counts per turn

UNITS = 8192 / (2*PI)

TRUE

Type:	 Constant

Description:	 The constant TRUE takes the numerical value of -1.

Example:	 Checks that the logical result of input 0 and 1 is true.

t=IN(0)=ON AND IN(2)=ON
IF t=TRUE THEN
	 PRINT “Inputs are on”

Technical Reference Manual

Triobasic Commands
Constants

8-309

ENDIF

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-310

Axis Parameters

ACCEL

Type:	 Axis Parameter

Description:	 The ACCEL axis parameter may be used to set or read back the acceleration rate
of each axis fitted. The acceleration rate is in units/sec/sec.

Example:	 Set the acceleration rate and print it to the terminal.

ACCEL=130
PRINT “Acceleration rate=”;ACCEL;” mm/sec/sec”

ADDAX_AXIS

Type:	 Axis Parameter (Read Only)

Description:	 Returns the axis currently linked to with the ADDAX command, if none the
parameter returns -1.

Example:	 Check if an ADDAX to axis 2 exists as part of a reset sequence, if it does then
cancel it.

IF ADDAX _ AXIS = 2 then
 ADDAX(-1)
ENDIF

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-311

AFF_GAIN

Type:	 Axis Parameter

Description:	 Sets the acceleration Feed Forward for the axis. This is a multiplying factor which
is applied to the rate of change of demand speed. The result is summed to the
control loop output to give the DAC _ OUT value.

AFF _ GAIN is only effective in systems with very high counts per revolution in the
feedback. I.e. 65536 counts per rev or greater.

ATYPE

Type:	 Axis Parameter

Description:	 The ATYPE axis parameter indicates the type of axis fitted. By default this will
be set to match the hardware, but some modules allow configuration of different
operation.

If you are setting a non default ATYPE, this must be done during initialisation
through a TrioBASIC program for example STARTUP.BAS.

Description

0 No axis daughter board fitted/ virtual axis

43 Step and direction output

44 Incremental encoder Servo

45 Quadrature encoder output

46 Tamagawa absolute Servo

47 Endat absolute Servo

48 SSI absolute Servo

50 RTEX position

51 RTEX speed

52 RTEX torque

53 SERCOS velocity

54 SERCOS position

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-312

Description

55 SERCOS torque

56 SERCOS open

57 SERCOS velocity with drive registration

58 SERCOS position with drive registration

59 SERCOS spare

60 Step and direction feedback Servo

61 SLM

62 PLM

63 Stepper with Z input

64 Encoder out with Z input

65 EtherCAT position

66 EtherCAT speed

See Chapter 4 to find which ATYPE your hardware supports.

Example1:	 Check for a flexible axis on axis 0, then set a stepper on axis 0 and SSI encoder on
axis 1. The default for a flexible axis is servo

BASE(0)
IF ATYPE = 44 THEN
 ATYPE = 43
 BASE(1)
 ATYPE = 48
ENDIF

Example 2:	 Set a the ATYPE so a SERCOS axis uses velocity mode with drive registration.

ATYPE AXIS(12)=57

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-313

AXIS_ADDRESS

Type:	 Axis Parameter

Description:	 The AXIS _ ADDRESS parameter holds the address of the drive or feedback device.
For example can be used to specify the SERCOS drive address or AIN channel that
is used for feedback on the base axis.

Parameters:	 Drive Address:	 node number or analogue input number.

You may require additional Feature Enable Codes before using the remote axis
functionality.

Example:	 Assigning the SERCOS drive with the node address 4 to axis 8 in the controller.
Then starting it in position mode with drive registration.

BASE(8)
AXIS _ ADDRES = 4
ATYPE= 58

AXIS_DEBUG_A

Type:	 Reserved Keyword.

Description:	 Use only when instructed by Trio as part of an operational analysis.

AXIS_DEBUG_B

Type:	 Reserved Keyword.

Description:	 Use only when instructed by Trio as part of an operational analysis.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-314

AXIS_DISPLAY

Type:	 Reserved Keyword.

AXIS_ENABLE

Type:	 Axis Parameter

Description:	 Can be used to independently disable an axis. ON by default, can be set to OFF to
disable the axis. The axis is enabled if AX _ ENABLE = ON and WDOG=ON.

On stepper axis AXIS _ ENABLE will turn on the hardware enable outputs.

If the axis is part of a DISABLE _ GROUP and an error occurs AXIS _ ENABLE is set
to OFF but the WDOG remains ON.

Parameter:	 Accepts the values ON or OFF, default is ON.

Example:	 Re-enabling a group of axes after a motion error.

DEFPOS(0)	‘Clear the error
For axis _ number = 4 to 8
BASE(axis _ number)
AXIS _ ENABLE = ON	 ‘Enable the axis
NEXT axis _ number

See Also:	 DISABLE _ GROUP

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-315

AXIS_ERROR_COUNT

Type:	 Axis Parameter.

Description:	 Each time there is a communications error on a digital axis, the AXIS _ ERROR _
COUNT parameter is incremented. Where supported, this value can be used as an
indication of the error rate on a digital axis. Not all digital axis types have the
ability to count the errors. Further information can be found in the description of
each type of digital communications bus.

Parameter:	 The communications error count since last reset.	

Example:	 Initialise the error counter.

AXIS _ ERROR _ COUNT = 0

In the terminal, check the latest error count value.

>>?AXIS _ ERROR _ COUNT AXIS(3)
10.0000
>>

Keep a record of the overall error rate for an axis.

TICKS = 600000
AXIS _ ERROR _ COUNT = 0
REPEAT
 IF TICKS<0 THEN
 VR(10) = AXIS _ ERROR _ COUNT
 ‘ number of errors counted in ten minutes
 TICKS = 600000
 AXIS _ ERROR _ COUNT = 0
 ENDIF
 …
 …
UNTIL FALSE

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-316

AXIS_MODE

Type:	 Axis Parameter

Description:	 This parameter enables various different features that an axis can use.

Parameters:	 value:

Bit Description Value

1 Prevents CONNECT from canceling when a hardware or
software limit is reached, the ratio is set to 0.

2

2 Enable 3D direction calculations (default 2D) 4

6 Use non sign-extended analogue feedback 64

Example 1:	 Enable bit 2 so that you can use 3D direction calculations, the AND is used so that
only bit 2 is changed.

AXIS _ MODE = AXIS _ MODE AND 4

Example:	 Enable bit 6 so that you can use a 0 to 10V analogue input as axis feedback. The
AND is used so that only bit 6 is changed.

BASE(5)
AXIS _ MODE = AXIS _ MODE AND 64

See Also:	 ERRORMASK, DATUM(0)

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-317

AXISSTATUS

Type:	 Axis Parameter (Read Only)

Description:	 The AXISSTATUS axis parameter may be used to check various status bits held for
each axis fitted:

Parameters:	 value:		 15bit value, each bit represents a different status bit.

Bit Description Value char

0 Override speed set 1

1 Following error warning range 2 w

2 Communications error to remote drive 4 a

3 Remote drive error 8 m

4 In forward hardware limit 16 f

5 In reverse hardware limit 32 r

6 Datuming in progress 64 d

7 Feedhold 128 h

8 Following error exceeds limit 256 e

9 In forward software limit 512 x

10 In reverse software limit 1024 y

11 Cancelling move 2048 c

12 Encoder power supply overload 4096 o

13 MOVETANG decelerating 8192

In the Motion Perfect parameter screen the AXISSTATUS parameter is displayed as
a series of characters, ocyxehdrfmaw, as listed in the table above.

These characters are displayed in green lowercase letters normally, or red
uppercase when set.

Example:	 Check bit 4 to see if the axis is in forward limit.

IF (AXISSTATUS AND 16)>0 THEN
	 PRINT “In forward limit”
ENDIF

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-318

See Also:	 ERRORMASK, DATUM(0)

BACKLASH_DIST

Type:	 Axis Parameter

Description:	 Amount of backlash compensation that is being applied to the axis when
BACKLASH is on.

Example:	 Illuminate a lamp to show that the backlash has been compensated for.

IF BACKLASH _ DIST>100 THEN
 OP (10, ON)
‘show that backlash compensation has reached this value
ELSE
 OP (10, OFF)
END IF

CHANGE_DIR_LAST

Type:	 Axis Parameter (read only)

Description:	 Returns the difference between the direction of the end of the previous
loaded interpolated motion command and the start direction of the last loaded
interpolated motion command. If there is no previous loaded command then
END _ DIR _ LAST can be written to set an initial direction.

This parameter is only available when using SP motion commands such as MOVESP,
MOVEABSSP etc.

Parameters:	 Value:		 Change in direction, in radians between 0 and PI. Value is always 	
			 positive.

Example 1: 	 Perform a 90 degree move and print the change.

>>MOVESP(0,100)
>>MOVESP(100,0)
>>PRINT CHANGE _ DIR _ LAST
1.5708
>>

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-319

See Also:	 END _ DIR _ LAST, START _ DIR _ LAST

CLOSE_WIN

Type:	 Axis Parameter

Alternate Format:	CW

Description:	 By writing to this parameter the end of the window in which a registration mark is
expected can be defined. The value is in user units.

Parameters:	 Value:		 Position of the end of the position window in user units.

Example:	 Set a position window between 10 and 30

OPEN _ WIN = 10
CLOSE _ WIN = 30

See Also:	 OPEN _ WIN, REGIST

CLUTCH_RATE

Type:	 Axis Parameter

Description:	 This affects operation of CONNECT by changing the connection ratio at the
specified rate/second.

Default CLUTCH _ RATE is set very high to ensure compatibility with earlier
versions.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-320

Parameters:	 Value:		 change in connection ratio per second (default 1000000).

Example:	 The connection ratio will be changed from 0 to 6 when an input is set. It is
required to take 2 second to accelerate the linked axis so the ratio must change at
3 per second.

CLUTCH _ RATE = 3
CONNECT(0,0)
WAIT UNTIL IN(1)=ON
CONNECT(6,0)

COORDINATOR_DATA

Type:	 Reserved Keyword.

CORNER_MODE

Type:	 Axis Parameter

Description:	 Allows the program to control the cornering action.

Automatic corner speed control enables system to reduce the speed depending on
DECEL _ ANGLE and STOP _ ANGLE

The CORNER _ STATE machine allows interaction with a TrioBASIC program and the
loading of buffered moves depending RAISE _ ANGLE

Automatic radius speed control enables the system to reduce the speed depending
on FULL _ SP _ RADIUS.

You can enable any combination of the speed control bits.

Parameters:	 Value:		 Bit 0 = Reserved

		 Bit 1 = Automatic corner speed control.

		 Bit 2 = Enable the CORNER _ STATE machine

		 Bit 3 = Automatic radius speed control.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-321

Example:	 Enable the corner state machine and automatic corner speed control.

CORNER _ MODE= 2+4

See Also:	 CORNER _ STATE, DECEL _ ANGLE, FULL _ SP _ RADIUS, RAISE _ ANGLE,
STOP _ ANGLE

CORNER_STATE

Type:	 Axis Parameter

Description:	 Allows a BASIC program to interact with the move loading process.

This can be used to facilitate tool adjustment such as knife rotation at sharp
corners.

This parameter is only active when CORNER _ STATE bit 2 is set. It is also required
to use bit 1 of CORNER _ STATE with STOP _ ANGLE set to less than or equal to
RAISE _ ANGLE to stop the motion.

Parameters:	 Value:		 0 = Load move and ramp up speed

		 1 = Ready to load move, stopped

		 3 = Load move

Example:	 When a transition exceeds RAISE _ ANGLE it is required to lift a cutting knife and
rotate it to a new position. The following process is required:

•	System sets CORNER _ STATE to 1 to indicate move ready to be loaded with
large angle change.

•	BASIC program raises knife.

•	BASIC program sets CORNER _ STATE to 3.

•	System will load following move but with speed overridden to zero. This
allows the direction to be obtained from TANG _ DIRECTION.

•	BASIC program orients knife possibly using MOVE _ TANG.

•	BASIC program clears CORNER _ STATE to 0.

•	System will ramp up speed to perform the next move.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-322

MOVEABSSP(x,y)
IF CHANGE _ DIR _ LAST>RAISE _ ANGLE THEN
 WAIT UNTIL CORNER _ STATE>0
 ‘Raise Knife
 MOVE(100) AXIS(z)
 CORNER _ STATE=3
 WA(10)
 WAIT UNTIL VP _ SPEED AXIS(2)=0
 ‘Rotate Knife
 MOVETANG(0,x) AXIS(r)
 ‘Lower Knife
 MOVE(-100) AXIS(z)
 ‘Resume motion
 CORNER _ STATE=0
ENDIF

See Also:	 CORNER _ MODE, RAISE _ ANGLE, STOP _ ANGLE

CREEP

Type:	 Axis Parameter

Description:	 Sets the CREEP speed on the current base axis. The CREEP speed is used for the
slow part of a DATUM sequence.

Parameters:	 Value:		 Any positive value in user UNITS.

Example:	 Set up the CREEP speeds on 2 axes and then perform a DATUM routine.

BASE(2)
CREEP=10
SPEED=500
DATUM(4)
CREEP AXIS(1)=10
SPEED AXIS(1)=500
DATUM(4) AXIS(1)

See Also:	 DATUM

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-323

D_GAIN

Type:	 Axis Parameter

Description:	 The derivative gain is a constant which is multiplied by the change in following
error.

Adding derivative gain to a system is likely to produce a smoother response and
allow the use of a higher proportional gain than could otherwise be used.

High values may lead to oscillation. For a derivative term Κδ and a change in
following error de the contribution to the output signal is:

Φδ = Κδ x δε

Parameters:	 Value:		 The derivative gain is a constant which is multiplied by the change 	
			 in following error. Default value = 0.

Example:	 Setting the gain values as part of a STARTUP program

P _ GAIN=1
I _ GAIN=0
D _ GAIN=0.25
OV _ GAIN=0

D_ZONE_MAX

Type:	 Axis Parameter

Description:	 This sets works in conjunction with D _ ZONE _ MIN to clamp the DAC output to
zero when the demand movement is complete and the magnitude of the following
error is less than the D _ ZONE _ MIN value. The servo loop will be reactivated
when either the following error rises above the D _ ZONE _ MAX value, or a fresh
movement is started.

This can be used to prevent oscillations at static positions in Piezo systems.

Parameters:	 Value:		 Above this value the servo loop is reactivated when clamped in the 	
			 dead band.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-324

Example:	 The DAC output will be clamped at zero when the movement is complete and the
following error falls below 3. When a movement is restarted or if the following
error rises above a value of 10, the servo loop will be reactivated

D _ ZONE _ MIN = 3
D _ ZONE _ MAX = 10

See Also:	 D _ ZONE _ MIN

D_ZONE_MIN

Type:	 Axis Parameter

Description:	 Working in conjunction with D _ ZONE _ MAX, D _ ZONE _ MIN defines a DAC dead
band. This clamps the DAC output to zero when the demand movement is complete
and the magnitude of the following error is less than the D _ ZONE _ MIN value.
The servo loop will be reactivated when either the following error rises above the
D _ ZONE _ MAX value, or a fresh movement is started.

This can be used to prevent oscillations at static positions in Piezo systems.

Parameters:	 Value:		 When the axis is IDLE and the magnitude of the following error is 	
			 less than this value the DAC is clamped to zero.

Example:	 The DAC output will be clamped at zero when the movement is complete and the
following error falls below 3. When a movement is restarted or if the following
error rises above a value of 10, the servo loop will be reactivated

D _ ZONE _ MIN = 3
D _ ZONE _ MAX = 10

See Also:	 D _ ZONE _ MAX

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-325

DAC

Type:	 Axis Parameter

Description:	 Writing to this parameter when SERVO = OFF allows the user to force a demand
value for that axis. On an analogue axis this will set a voltage on the output. On a
digital axis this will be the demand value.

When using a FlexAxis as a stepper or encoder output the voltage outputs are
available for user control.

Parameters:	 Value:	The demand value for the axis.

For a 12 bit DAC on an analogue axis:

DAC=-2048 corresponds to a voltage of 10V

DAC=2047 corresponds to a voltage of -10v

For a 16 bit DAC on an analogue axis:

DAC=32767 corresponds to a voltage of 10V

DAC=-32768 corresponds to a voltage of -10V

For digital axes check your drive specification for suitable values.

See DAC _ SCALE for a list of DAC types.

Example:	 To force a square wave of amplitude +/-5V and period of approximately 500ms on
axis 0.

WDOG=ON
SERVO AXIS(0)=OFF
square:
	 DAC AXIS(0)=1024
	 WA(250)
	 DAC AXIS(0)=-1024
	 WA(250)
GOTO square

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-326

See Also:	 DAC _ OUT, DAC _ SCALE, SERVO

DAC_OUT

Type:	 Axis Parameter (Read Only)

Description:	 DAC _ OUT reads the demand value for the axis.

In an analogue system this will be the value sent to the voltage output (the DAC). If
SERVO = ON this is the output of the closed loop algorithm. If SERVO = OFF it is the
value set by the user in DAC.

In a digital system it returns the demand value for the axis which could be the
actual position, speed or torque depending on the axis ATYPE.

Parameters:	 demand value for the axis.	

Example:	 To check that the controller has set the correct voltage for axis 8 on an analogue
system read DAC _ OUT in the command line.

>>PRINT DAC _ OUT AXIS(8)
288.0000
>>

See Also:	 DAC, DAC _ SCALE, ATYPE

DAC_SCALE

Type:	 Axis Parameter

Description:	 DAC _ SCALE is an integer that is multiplied to the output of the closed loop
algorithm. You can use it to reverse the polarity of the demand value or to scale it
so to effectively reduce the resolution of the closed loop algorithm.

As it is applied to the output of the closed loop algorithm it is not applied to position
based axis.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-327

Parameters:	 Value:		 Can be a positive or negative integer.

		 EtherCAT default = 1

		 SERCOS default = 1

		 FlexAxis default = 16

		 Panasonic default = 1

		 SLM default = 16

To obtain the highest possible resolution of your system DAC _ SCALE should be set
to 1 or -1.

Example:	 The FlexAxis uses a 16bit DAC, to make it compatible with the gain settings used
on older 12 bit DACS DAC _ SCALE is set to 16.

The max output from closed loop algorithm is 2048 (for a 12bit system)

The max output from a 16bit DAC is 32768 which is 2048 multiplied by 16

See Also:	 DAC, DAC _ OUT

DATUM_IN

Type:	 Axis Parameter

Alternate Format:	DAT _ IN

Description:	 This parameter holds a digital input channel to be used as a datum input.

The input used for DATUM _ IN is active low.

Parameters:	 Value:	-	 1 = disable the input as DATUM _ IN (default)/

		 0-63 = Input to use as datum input/

Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

Example:	 Set input 28 as the DATUM input for axis 0 then perform a homing routine

DATUM _ IN AXIS(0)=28

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-328

DATUM(3)

See Also:	 DATUM

DECEL

Type:	 Axis Parameter

Syntax:	 DECEL=value

Description:	 The DECEL axis parameter may be used to set or read back the deceleration rate
of each axis fitted.

Parameters:	 Value:		 The deceleration rate in UNITS/sec/sec. Must be a positive value.

Example:	 Set the deceleration parameter and print it to the user.

DECEL=100’ Set deceleration rate
PRINT “ Decel is “;DECEL;” mm/sec/sec”

See Also:	 ACCEL

DECEL_ANGLE

Type:	 Axis Parameter

Description:	 This parameter is used with CORNER _ MODE, it defines the maximum change in
direction of a 2 axis interpolated move that will be merged at full speed. When
the change in direction is greater than this angle the speed will be proportionally
reduced so that:

VP _ SPEED=FORCE _ SPEED * (angle - DECEL _ ANGLE) / (STOP _ ANGLE
- DECEL _ ANGLE)

Where angle is the change in direction of the moves.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-329

Parameters:	 Value:		 The angle to start to reduce the speed, in radians.

Example1:	 Decelerate to a slower speed when the transition is between 15 and 45 degrees.

CORNER _ MODE=2
DECEL _ ANGLE = 15 * (PI/180)
STOP _ ANGLE = 45 * (PI/180)

See Also:	 CORNER _ MODE, STOP _ ANGLE

DEMAND_EDGES

Type:	 Axis Parameter (Read Only)

Description:	 Allows the user to read back the current DPOS in encoder edges.

You can use DEMAND _ EDGES to check that your UNITS or ENCODER _ RATIO
values are set correctly.

Parameters:	 Value:		 demand position in encoder edges.

Example:	 Print the DEMAND _ EDGES in the command line

>>PRINT DEMAND _ EDGES AXIS(4)
523
>>

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-330

DEMAND_SPEED

Type:	 Axis Parameter (Read Only)

Description:	 Returns the speed output of the VPU in edges or counts per servo period.
Normally used for low level debug of the motion system.

Parameters:	 Value:		 VPU speed output in user units per servo period.

Example:	 Check the VPU speed output using the command line

>>?DEMAND _ SPEED
5.0000
>>

DPOS

Type:	 Axis Parameter (Read Only)

Description:	 The demand position DPOS is the demanded axis position generated by the motion
commands.

DPOS is set to MPOS when SERVO or WDOG are OFF.

DPOS can be adjusted without any motion by using DEFPOS or OFFPOS.

A step change in DPOS can be written using ENDMOVE.

Parameters:	 Value:		 Demand position in user units. Default 0 on power up.

Example:	 Return the demand position for axis 10 in user units.

>>? DPOS AXIS(10)
5432
>>

See Also:	 DEFPOS, ENDMOVE, OFFPOS, TRANS _ DPOS

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-331

ENCODER

Type:	 Axis Parameter (Read Only)

Description: 	 The ENCODER axis parameter holds a raw copy of the positional feedback device.

The MPOS axis measured position is calculated from the ENCODER value
automatically allowing for overflows and offsets.

Parameters:	 Incremental encoder:	 The value latched in the encoder hardware register.

Absolute Encoder:	 The positional value using the number of bits set in 	
				 ENCODER _ BITS.

Digital Axis:		 Raw position feedback from the drive).

See Also:	 ENCODER _ BITS, MPOS

ENCODER_BITS

Type:	 Axis Parameter

Description:	 This parameter is only used with an absolute encoder axis. It is used to set the
number of data bits to be clocked out of the encoder by the axis hardware. There
are 2 types of absolute encoder supported by this parameter; SSI and EnDat.

If the number of ENCODER _ BITS is to be changed, the parameter must first be set
to zero before entering the new value.

Parameters:	 Off:		 0, No data is clocked out of the encoder (default).

SSI:		 Bit 0-5 are the number of bits to be clocked out of the encoder. 	
		 Range 0-25.

		 Bit 6 set for Binary, clear for Gray code (default).

EnDat:		 Bits 0..7 of the parameter are the total number of encoder bits and 	
		 bits 8..14 are the number of multi-turn bits.

Example 1:	 set up 2 axes of SSI absolute encoder.

ENCODER _ BITS AXIS(3) = 12
ENCODER _ BITS AXIS(7) = 21

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-332

Example 2:	 re-initialise MPOS using absolute value from encoder.

SERVO=OFF
ENCODER _ BITS = 0
ENCODER _ BITS = databits

Example 3:	 A 25 bit EnDat encoder has 12 multi-turn and 13 bits/turn resolution. The total
number of bits is 25.

ENCODER _ BITS = 25 + (256 * 12)

ENCODER_CONTROL

Type:	 Axis Parameter

Description:	 Endat encoders can be set to either cyclically return their position, or they can be
set to a parameter read/write mode.

Using the ENCODER _ READ or ENCODER _ WRITE functions will set the parameter
to 1 automatically.

Parameters:	 Value:		 0 = position return mode (default value).

SSI:		 1 = sets parameter read/write mode.

Example 1:	 Reset ENCODER _ CONTROL after an ENCODER _ READ so that the position is
returned.

value = ENCODER _ READ($A700)
ENCODER _ CONTROL = 0

See Also:	 ENDCODER _ READ, ENCODER _ WRITE

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-333

ENCODER_FILTER

Type:	 Axis Parameter

Description:	 This parameter allows filtering to be applied to an encoder feedback to reduce the
impact of jitter. The smaller the value the larger the time constant and so the less
impact jitter will have on the system.

This parameter can be used to reduce jitter on a master axis which is linked to
another axis.

Parameters:	 Value:		 Filter parameter range 0.001 to 1 (default 1).

Example:	 Apply a filter to a line encoder so that the connected axis are not affected by any
jitter:

BASE(0)

ENCODER _ FILTER= 0.95

BASE(1)

CONNECT(1,0)

ENCODER_ID

Type:	 Axis Parameter

Description: 	 This parameter returns the ENID parameter from the encoder (fixed at 17
decimal). (Tamagawa absolute encoder only)

Parameters:	 Value:		 Only encoders returning 17 are currently supported.

Example:	 Initialise a Tamagawa absolute encoder and check it is working by looking at
ENCODER _ ID.

ATYPE = 46
IF ENCODER _ ID<>17 THEN
 PRINT#term, “Incorrect ENID”
ENDIF

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-334

ENCODER_READ

Type:	 Axis Function

Syntax:	 value = ENCODER _ READ (address)

Description:	 Read an internal register from an EnDat absolute encoder.

Parameters:	 Value:		 Value returned from the specified register. Returns -1 if the encoder 	
			 has not been initialised.

address:	 The address of the EnDat encoder register to be read.

Example:	 Initialise and check an EnDat encoder.

ENCODER _ BITS=25+256*12
ATYPE=47
IF ENCODER _ READ($A700)=-1 then
 PRINT “Failed to initialise EnDat Encoder
ENDIF
ENCODER _ CONTROL=0

See Also:	 ENCODER _ CONTROL, ENCODER _ WRITE

ENCODER_STATUS

Type:	 Axis Parameter

Syntax:	 ENCODER _ STATUS

Description: 	 This axis parameter returns both the status field SF and the ALMC encoder error
field from a Tamagawa absolute encoder.

Parameters:	 Value:	Bits 0..7 are the SF field and 8..15 are the ALMC field. Returns
0 if the encoder has not been initialised.

Example:	 Print the SF field and ALMC field in hex.

PRINT “SF field = 0x”; HEX (ENCODER _ STATUS AND $FF)

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-335

PRINT “ALMC field = 0x”; HEX ((ENCODER _ STATUS AND $FF00)/$FF)

ENCODER_TURNS

Type:	 Axis Parameter

Description: 	 Returns the number of multi-turn counts from Endat or Tamagawa absolute
encoders.

The multi-turn data is not automatically applied to the axis MPOS after initialisation
of a Tamagawa absolute encoder. The application programmer must apply this from
BASIC using OFFPOS or DEFPOS as required.

Parameters:	 Value:		 The number of multi-turn counts from the encoder.

Example:	 Initialise a Tamagawa encoder and apply the number of turns to MPOS. The encoder
returns 17bits for the position and 16bits for the number of turns.

ATYPE=46
OFFPOS= ENCODER _ TURNS*2^17
WAIT UNTIL OFFPOS = 0

END_DIR_LAST

Type:	 Axis Parameter

Description:	 Returns the direction of the end of the last loaded interpolated motion command.
You can use the parameter to set an initial direction before loading a SP command.
END _ DIR _ LAST will be the same as START _ DIR _ LAST except in the case of
circular moves.

Write to END _ DIR _ LAST when initialising a system or after a sequence of moves
which are not SP commands.

This parameter is only available when using SP motion commands such as MOVESP,
MOVEABSSP etc.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-336

Parameters:	 Value:		 End direction, in radians between -PI and PI. Value is always 		
			 positive.

Example 1:	 Return the end direction of a move.

>>MOVESP(10000,-10000)
>>PRINT END _ DIR _ LAST
2.3562
>>

Example 2:	 Write to the end direction to set the direction of the MOVE before calculating the
change.

MOVE(10000,-10000)
END _ DIR _ LAST = 2.3562
MOVESP(10000,1324)
VR(10)=CHANGE _ DIR _ LAST

See Also:	 CHANGE _ DIR _ LAST, START _ DIR _ LAST

ENDMOVE

Type:	 Axis Parameter

Description: 	 This parameter holds the absolute position of the end of the current move in user
units. It is normally only read back although may be written to if required provided
that SERVO=ON and no move is in progress.

WRITING TO DPOS WILL MAKE A STEP CHANGE. THIS CAN EASILY LEAD TO
“FOLLOWING ERROR EXCEEDS LIMIT” ERRORS UNLESS THE STEPS ARE SMALL OR THE
FE _ LIMIT IS HIGH.

As it is an absolute value ENDMOVE is adjusted by OFFPOS/DEFPOS. The individual
moves in the buffer are incremental and are not adjusted by OFFPOS.

Parameters:	 Value:		 The absolute position of the end of the current move in user units.

Example:	 Check the value of ENDMOVE to confirm you calculated move is correct.

MOVE(distance*pitch)

!

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-337

IF ENDMOVE>200 THEN
 CANCEL
 PRINT#5, “Calculated distance to large”
ENDIF

ENDMOVE_BUFFER

Type:	 Axis Parameter (Read only)

Description: 	 This holds the absolute position of end of the buffered sequence of moves.

As it is an absolute value ENDMOVE _ BUFFER is adjusted by OFFPOS/DEFPOS. The
individual moves in the buffer are incremental are not adjusted by OFFPOS.

Parameters:	 Value:		 Returns the length of all remaining moves for an axis.

Example:	 Add some moves to the buffer, then check the value of ENDMOVE _ BUFFER.

>>MOVE(100)	
>>MOVE(150)
>>MOVE(25)
>>PRINT ENDMOVE _ BUFFER
275.000
>>

ENDMOVE_SPEED

Type:	 Axis Parameter

Description:	 This parameter sets the end speed for a motion command that support the
advanced speed control (commands ending in SP). The VP _ SPEED will decelerate
until ENDMOVE _ SPEED is reached at the end of the profile.

The lowest value of ENDMOVE _ SPEED, FORCE _ SPEED or STARTMOVE _ SPEED
will take priority.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-338

Parameters:	 Value:		 The speed at which the SP motion command will end, in user 		
			 UNITS. (default 0).

ENDMOVE _ SPEED is loaded into the buffer at the same time as the move so
you can set different speeds for subsequent moves. If there is no further motion
commands in the buffer the current move will decelerate to a stop.

Example 1:	 In this example the controller will start ramping down the speed (at the specified
rate of DECEL) so at the end of the MOVESP(20) the VPSPEED=10. The next move
continues with a FORCE _ SPEED of 10. The final ENDMOVE _ SPEED is overwritten
to zero as there are no more buffered moves.

FORCE _ SPEED=15
ENDMOVE _ SPEED=10
MOVESP(20)
FORCE _ SPEED=10
ENDMOVE _ SPEED=5
MOVESP(5)

Example 2:	 A machine can merge interpolated moves however it must slow down to 50% of the
speed for the transition.

FORCE _ SPEED=1000

ENDMOVE _ SPEED=500 ‘50% of FORCE _ SPEED
MOVE(100,10)
MOVE(70,-10)
MOVE(120,15)

ERRORMASK

Type:	 Axis Parameter

Description:	 The value held in this parameter is bitwise ANDed with the AXISSTATUS parameter
by every axis on every servo cycle to determine if a runtime error should switch
off the enable (WDOG) relay. If the result of the AND operation is not zero the
enable relay is switched OFF.

After a critical error has tripped the enable relay, the Motion Coordinator must either
be reset, or a DATUM(0) command must be executed to reset the error flags.

Parameters:	 Value:		 The mask to be AND ed with the AXISSTATUS.

For the MC464, the default value is 268 which will trap critical errors with digital
drive communications as well as exceeding the following error limit.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-339

Example:	 Configure the ERRORMASK so that the WDOG is turned off when there are
communication failures (4), remote drive errors (8), the following error exceeds the
limit (256) or the limit switches have been hit(16 + 32).

ERRORMASK= 4+8+16+32+256

See Also:	 AXISSTATUS, DATUM(0)

FAST_JOG

Type:	 Axis Parameter

Description:	 This parameter holds the input number to be used as the fast jog input. If the
FAST _ JOG is active then the jog inputs use the axis SPEED for the jog functions,
otherwise the JOGSPEED will be used.

The input used for FAST _ JOG is active low.

Parameters:	 Value:	-1 = disable the input as FAST _ JOG (default).

0-63 = Input to use as datum input.

Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

Example:	 Configure input 12 and 13 as jog inputs

FWD _ JOG = 12
FAST _ JOG = 13
JOGSPEED = 200

See Also:	 FWD _ JOG, JOGSPEED, REV _ JOG

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-340

FASTDEC

Type:	 Axis Parameter

Description:	 The FASTDEC axis parameter may be used to set or read back the fast deceleration
rate of each axis fitted. Fast deceleration is used when a CANCEL is issued, for
example; from the user, a program, or from a software or hardware limit. If the
motion finishes normally or FASTDEC = 0 then the DECEL value is used.

Parameters:	 Value:	 	 The deceleration rate in UNITS/sec/sec. Must be a positive value.

Example: 	 DECEL=100			 ‘set normal deceleration rate

FASTDEC=1000					 ‘set fast deceleration rate
MOVEABS(10000) 				 ‘start a move
WAIT UNTIL MPOS= 5000 		 ‘wait until the move is half finished
CANCEL 						 ‘stop move at fast deceleration rate

See Also:	 DECEL

FE

Type:	 Axis Parameter (Read Only)

Description:	 This parameter returns the position error, which is equal to the demand position
(DPOS)-measured position (MPOS).

Parameters:	 Value:		 The following error returned in user units.

Example:	 Wait for the position error to be below a value for 5 servo periods then pulse an
output.

MOVEABS(200)
WAIT IDLE
FOR x=0 to 4
 WAIT UNTIL FE<5
NEXT x
OP(5,ON)
WA(2)
OP(5,OFF)

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-341

See Also:	 FE _ LATCH, FE _ LIMIT, FE _ RANGE

FE_LATCH

Type:	 Axis Parameter (Read Only)

Description:	 Contains the FE value which caused the axis to put the controller into MOTION _
ERROR. This value is only set when the FE exceeds the FE _ LIMIT and the SERVO
= OFF.

Parameters:	 Value:		 Returns the FE value that caused a MOTION _ ERROR.

FE _ LATCH is reset to 0 when the axis SERVO = ON.

Example:	 Read the LE _ LATCH when there is a MOTION _ ERROR.

IF MOTION _ ERROR THEN
 VR(10) = FE _ LATCH AXIS (ERROR _ AXIS)
ENDIF

See Also:	 FE, FE _ LIMIT

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-342

FE_LIMIT

Type:	 Axis Parameter

Alternate Format:	FELIMIT

Syntax:	 FE _ LIMIT = value

Description:	 This is the maximum allowable following error. When exceeded the controller will
generate an AXISSTATUS error, by default this will also generate a MOTIONERROR.
The MOTIONERROR will disable the WDOG relay thus stopping further motor
operation.

This limit may be used to guard against fault conditions such as mechanical lock-up,
loss of encoder feedback, etc.

Parameters:	 Value:		 The maximum allowable following error in user units. The default 	
			 value is 2000 encoder edges.

Example:	 Initialise the axis as part of a STARTUP routine

FOR x = 0 to 4
 BASE(x)
 UNITS = 100
 FE _ LIMIT = 10
 SPEED = 100
 ACCEL=1000
 DECEL=ACCEL
NEXT x

See Also:	 FE, FE _ LATCH

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-343

FE_LIMIT_MODE

Type:	 Axis Parameter

Description:	 This parameter determines if an AXISSTATUS error is produced immediately when
the FE exceeds the FE _ LIMIT or if it exceeds for 2 consecutive servo periods.
This means that if FE _ LIMIT is exceeded for one servo period only, it will be
ignored.

THIS WILL INCREASE THE TIME TO DISABLE YOUR DRIVES IN AN ERROR. YOU SHOULD
ONLY CHANGE FROM THE DEFAULT VALUES UNDER ADVICE FROM TRIO OR YOUR
DISTRIBUTOR.

Parameters:	 Value:		 0 = AXISSTATUS error generated immediately (default).

		 1 = AXISSTATUS error generated when FE _ LIMIT is exceeded for 	
		 2 consecutive servo periods.

See Also:	 FE, FE _ LIMIT

FE_RANGE

Type: 	 Axis Parameter

Description:	 Following error report range. When the FE exceeds this value the axis has bit 1 in
the AXISSTATUS axis parameter set.

Parameters:	 Value:	The value in user UNITS above which bit 1 is set in AXISSTATUS.

Example:	 Using FE _ RANGE to slow a machine down when the FE is too large.

‘initialise the axis

FE _ RANGE = 10
FE _ LIMIT = 15
SPEED=100

!

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-344

…
‘loop to check if FE _ RANGE has been exceeded
WHILE NOT IDLE
VR(10) = AXISSTATUS
IF READBIT(1, 10) THEN
 ‘slow down by 1%
 SPEED = SPEED * 0.99
ENDIF
WEND
SPEED = 100

See Also:	 FE, FE _ LIMIT

FHOLD_IN

Type:	 Axis Parameter

Alternate Format:	FH _ IN

Syntax:	 FHOLD _ IN=value

Description:	 This parameter holds the input number to be used as a feedhold input.

When the feedhold input is active motion on the specified axis has its speed
overridden to the feedhold speed (FHSPEED) without canceling the move in
progress. The change in speed uses ACCEL and DECEL. When the input is reset any
move in progress when the input was set will go back to the programmed speed.

Set FHSPEED to zero to pause the motion on that axis.

Moves which are not speed controlled e.g. CONNECT, CAMBOX, MOVELINK are not
affected.

The input used for FHOLD _ IN is active low.

Parameters:	 Value:		 1 	 = disable the input as feedhold (default).

		 0-63 	 = Input to use as feedhold.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-345

Any type of input can be used, built in, Trio CAN I/O, CANopen or virtual.

Example:	 Configure inputs 21 as feedhold inputs for axis 2. The default FHSPEED = 0 so the
motion can be paused using the feedhold input.

BASE(2)
FHOLD _ IN = 21

See Also:	 FHSPEED

FHSPEED

Type:	 Axis Parameter

Description:	 When the feedhold input is active motion is ramped down to FHSPEED.

Parameters:	 Value:		 The speed in user units to use when the FHOLD _ IN is active 		
			 (default 0).

Example:	 Set FHSPEED to a value so that a slower speed is selected wen the FHOLD _ IN is
active.

BASE(3)
SPEED=1000
FHSPEED=SPEED*0.1

See Also:	 FHOLD _ IN

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-346

FORCE_SPEED

Type:	 Axis Parameter

Description:	 This parameter sets the main speed for a motion command that supports the
advanced speed control (commands ending in SP). The VP _ SPEED will accelerate
or decelerate so that the profile is completed at FORCE _ SPEED

The lowest value of SPEED, ENDMOVE _ SPEED, FORCE _ SPEED or
STARTMOVE _ SPEED will take priority.

FORCE _ SPEED is loaded into the buffer at the same time as the move so you can
set different speeds for subsequent moves.

Parameters:	 Value:		 The speed at which the SP motion command will execute, in user 	
			 UNITS. (default 0).

Example 1:	 In this example the controller will ramp the speed down to a speed of 10 at the
end of the MOVE. Then for the duration of the MOVESP(20) the speed will be 10,
after which it will ramp back to a speed of 15.

SPEED = 15
MOVE(100)
FORCE _ SPEED = 10
MOVESP(20)
MOVE(100)

Example 2:	 Use FORCE _ SPEED to slow the profile speed down during a corner move.

FORCE _ SPEED=100
MOVESP(100,0)
FORCE _ SPEED=50
MOVECIRC(100,100,100,0,1)
FORCE _ SPEED=100
MOVESP(0,100)

See Also:	 ENDMOVE _ SPEED, STARTMOVE _ SPEED

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-347

FS_LIMIT

Type:	 Axis Parameter

Alternate Format:	FSLIMIT

Description:	 An end of travel limit may be set up in software thus allowing the program control
of the working envelope of the machine. This parameter holds the absolute
position of the forward travel limit in user units.

Bit 9 of the AXISSTATUS register is set when the axis position is greater than the
FS _ LIMIT.

When DPOS reaches FS _ LIMIT the controller will cancel the move, so the axis will
decelerate at DECEL or FAST _ DEC.

FS _ LIMIT is disabled when it has a value greater than REP _ DIST.

Parameters:	 Value:		 The absolute position of the software forward travel limit in user 	
			 units. (default = 200,000,000,000)).

Example 1:	 Datum axis 1, then define a forward limit from this point.

BASE(1)
DATUM(3)
WAIT IDLE
FS _ LIMIT=200

Example 2:	 Disable the FS _ LIMIT by setting it greater than repdist.

FS _ LIMIT = REPDIST+10

See Also:	 RS _ LIMIT, FWD _ IN, REV _ IN

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-348

FULL_SP_RADIUS

Type:	 Controller Parameter

Description:	 This parameter is used with CORNER _ MODE, it defines the minimum radius that
will be executed at full speed. When a radius is smaller than FULL _ SP _ RADIUS
the speed will be proportionally reduces so that:

VP _ SPEED= FORCE _ SPEED * radius/FULL _ SP _ RADIUS

Where radius is the radius of the corner that is executing.

Parameters:	 Value:		 The full speed radius in user UNITS (default = 0).

Example:	 In the following program, when the first MOVECIRCSP is reached the speed remains
at 10 because the radius (8) is greater than that set in FULL _ SP _ RADIUS. For
the second MOVECIRCSP the speed is reduced by 50% to a value of 5, because the
radius is 50% of that stored in FULL _ SP _ RADIUS.

CORNER _ MODE=8
MERGE=ON
SPEED=10
FULL _ SP _ RADIUS=6
DEFPOS(0,0)

MOVESP(10,10)
MOVESP(10,5)
MOVESP(5,5)
MOVECIRCSP(8,8,0,8,1)
MOVECIRCSP(3,3,0,3,1)
MOVESP(5,5)
MOVESP(10,5)

See Also:	 CORNER _ MODE

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-349

FWD_IN

Type:	 Axis Parameter

Description:	 This parameter holds the input number to be used as a forward limit input. When
the forward limit input is active any motion on that axis is CANCELed.

When FWD _ IN is active AXISSTATUS bit 4 is set.

Parameters:	 Value:		 1 =	 disable the input as FWD _ IN (default).

		 0-63 =	 Input to use as forward input switch.

Any type of input can be used, built in, TrioCAN I/O, CANopen or virtual.

Example:	 Initialise input 19 for the forward limit switch.

FWD _ IN AXIS(9)=19

See Also:	 REV _ IN, FS _ LIMIT, RS _ LIMIT

FWD_JOG

Type:	 Axis Parameter

Description:	 This parameter holds the input number to be used as a jog forward input. When
the FWD _ JOG input is active the axis moves forward at JOG _ SPEED.

Example:	 FWD _ JOG=7

The input used for FWD _ IN is active low.
It is advisable to use INVERT _ IN on the input for FWD _ JOG so that 0V at the
input disables the jog.
FWD _ JOG overrides REV _ JOG if both are active.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-350

Parameters:	 Value:		 1 = 	 disable the input as FWD _ JOG (default).

		 0-63 =	 Input to use as datum input.

Example:	 Initialise the FWD _ JOG so that it is active high on input 7.

INVERT _ IN(7,ON)
FWD _ JOG=7

I_GAIN

Type:	 Axis Parameter

Description:	 Used as part of the closed loop control, adding integral gain to a system reduces
position error when at rest or moving steadily. It will produce or increase overshoot
and may lead to oscillation.

For an integral gain Κί and a sum of position errors ∫ε, the contribution to the
output signal is:

Φί = Κί x ∫ε

Parameters:	 Value:		 The integral gain is a constant which is multiplied by the sum of 	
			 following errors. Default value = 0.

Example:	 Setting the gain values as part of a STARTUP program.

P _ GAIN=1

INVERT_STEP

Type:	 Axis Parameter

Description:	 INVERT _ STEP is used to switch a hardware inverter into the stepper pulse
output circuit. This can be necessary for connecting to some stepper drives. The
electronic logic inside the Motion Coordinator stepper pulse generation assumes
that the FALLING edge of the step output is the active edge which results in motor
movement. This is suitable for the majority of stepper drives.

INVERT _ STEP should be set with WDOG=OFF.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-351

IF THE SETTING IS INCORRECT, A STEPPER MOTOR MAY LOSE POSITION BY ONE STEP
WHEN CHANGING DIRECTION.

Parameters:	 Value:		 ON = RISING edge of the step signal the active edge.

Example:	 Set INVERT step for axis 2 as part of a startup routine.

BASE(2)
INVERT _ STEP = ON

JOGSPEED

Type:	 Axis Parameter

Description:	 Sets the jog speed in user units for an axis to run at when performing a jog.

You can set a faster jog speed using SPEED and the FAST _ JOG input.

Parameters:	 Value:		 The speed in user units/ second which an axis will use when being 	
			 jogged.

Example:	 Configure an input to be the jog input at 20mm/sec on axis 12.

BASE(12)
SPEED=3000
FWD _ JOG = 12
JOGSPEED = 20

See Also:	 FAST _ JOG, FWD _ JOG, REV _ JOG

!

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-352

LIMIT_BUFFERED

Type:	 System Parameter

Description: 	 This sets the maximum number of move buffers available in the controller.

You can increase the machine speed when using MERGE or CORNER _ MODE by
increasing the number of buffers.

Parameters:	 Value:		 1..64 = The number of move buffers (default = 1).

Example:	 Configure axis 3 to have 10 move buffers so a large sequence of small moves can be
merged together.

LIMIT _ BUFFERED AXIS(3) = 10

LINK_AXIS

Type:	 Axis Parameter (Read Only)

Alternate format:	 LINKAX

Description:	 Returns the axis number that the axis is linked to during any linked moves.

Linked moves are where the demand position is a function of another axis. E.G.
CONNECT, CAMBOX, MOVELINK.

Parameters:	 Value:		 -1 = Axis is not linked.

		 number = Axis number the BASE axis is linked to.

Example:	 CONNECT an axis, then check that it is linked.

>>BASE(0)
>>CONNECT(12,4)
>>PRINT LINK _ AXIS
4.0000
>>

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-353

LOADED

Type:	 Axis Parameter

Description:	 Checks to see if a move is being loaded into the MTYPE buffer.

ALTHOUGH IT IS POSSIBLE TO USE LOADED AS PART OF ANY EXPRESSION IT IS
ADVISABLE TO ONLY USE IT WITH A WAIT. THIS IS BECAUSE THE IF LOOP MAY MISS A
TRUE VALUE WHILE A MOVE IS BEING LOADED.

Parameters:	 Value:		 TRUE = when there are no buffered moves or when a move is being 	
			 loaded into the MTYPE.

		 FALSE = when the loading of a move is complete and there are 	
		 buffered moves.

Example:	 Continue to load a sequence of moves when the NTYPE buffer is free.

WHILE machine _ on =TRUE
 WAIT UNTIL LOADED or machine _ off=FALSE
 IF machine _ on=TRUE THEN
 MOVE(TABLE(position)
 position=position+1
 ENDIF
WEND

MARK

Type:	 Axis Parameter (Read Only)

Description:	 This parameter can be polled to determine if the registration event has occurred.
MARK is reset when REGIST is executed.

Parameters:	 Value:	TRUE = The registration event has occurred (default).

FALSE = The registration event has not occurred.

When TRUE the REG _ POS is valid.

!

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-354

Example:	 Apply an offset to the position of the axis depending on the registration position.

loop:
 WAIT UNTIL IN(punch _ clr)=ON
 MOVE(index _ length)
 REGIST(3)						 ‘rising edge of R
 WAIT UNTIL MARK
 MOVEMODIFY(REG _ POS + offset)
 WAIT IDLE
GOTO loop

See Also:	 REGIST, REG _ POS

MARKB

Type:	 Axis Parameter (Read Only)

Description:	 This parameter can be polled to determine if the registration event has occurred
on the second registration channel.

Parameters:	 Value:		 TRUE = The registration event has occurred (default).

		 FALSE = The registration event has not occurred.

When TRUE the REG _ POS is valid.

See Also	 REGIST, REG _ POSB

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-355

MERGE

Type:	 Axis Parameter

Description:	 Velocity profiled moves can be MERGE d together so that the speed will not ramp
down to zero between the current move and the buffered move.

IT IS UP TO THE PROGRAMMER TO ENSURE THAT THE MERGING IS SENSIBLE. FOR
EXAMPLE MERGING A FORWARD MOVE WITH A REVERSE MOVE WILL CAUSE AN
ATTEMPTED INSTANTANEOUS CHANGE OF DIRECTION.

MERGE will only function if:

•	The next move is loaded into the buffer.

•	The axis group does not change on multi-axis moves.

•	Velocity profiled moves (MOVE, MOVEABS, MOVECIRC, MHELICAL,
REVERSE, FORWARD) cannot be merged with linked moves
(CONNECT,MOVELINK,CAMBOX)

When merging multi-axis moves only the base axis MERGE flag needs to be set.

If you are merging short moves you may need to increase the number of buffered
moves by increasing LIMIT _ BUFFERED.

Parameters:	 Value:	ON = motion commands are merged.

OFF = motion commands decelerate to zero speed.

Example:	 Turn on MERGE before a sequence of moves, then disable at the end.

 BASE(0,1) ‘set base array
 MERGE=ON ‘set MERGE state
 MOVEABS(0,50) ‘run a sequence of moves
 MOVE(0,100)
 MOVECIRC(50,50,50,0,1)
 MOVE(100,0)
 MOVECIRC(50,-50,0,-50,1)
 MOVE(0,-100)
 MOVECIRC(-50,-50,-50,0,1)
 MOVE(-100,0)
 MOVECIRC(-50,50,0,50,1)
 WAIT IDLE
 MERGE=OFF

!

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-356

MOVES_BUFFERED

Type:	 Axis Parameter (Read only)

Description: 	 This returns the number of moves being buffered by the axis.

The value does not include the move in the MTYPE buffer.

Parameters:	 Value:		 Number of commands in the move buffers.

Example:	 Check if there is room in the move buffer before adding in another command.

IF MOVES _ BUFFERED < 64 THEN
 xpos = TABLE(count+x)
 ypos = TABLE(count+y)
 MOVEABS(xpos, ypos)
 count=count + 1
ENDIF

MPOS

Type:	 Axis Parameter (Read Only)

Description:	 This parameter is the position of the axis as measured by the encoder or resolver.

Unless using an absolute encoder MPOS is reset to 0 on power up or software reset.

The value is adjusted using the DEFPOS() command or OFFPOS axis parameter to
shift the datum position or when the REP _ DIST is in operation. The position is
reported in user units.

Parameters:	 Value:		 actual axis position in user units.

Example:	 WAIT UNTIL MPOS>=1250

SPEED=2.5

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-357

MSPEED

Type:	 Axis Parameter (Read Only)

Description:	 MSPEED can be used to represent the speed measured as it represents the change
in measured position in user units (per second) in the last servo period.

This value represents a snapshot of the speed and significant fluctuations can occur,
particularly at low speeds. It can be worthwhile to average several readings if a stable
value is required at low speeds.

Parameters:	 Value:		 Change in measured position per second in user units.

Example:	 Average MSPEED using a filter algorithm.

‘ VR(10) filter output

c = 0.005 ‘filter coefficient (0<c<1)
VR(10)=MSPEED ‘initialise filter output to MSPEED

WHILE TRUE
 WA(1)
 VR(10)=(1-c)*VR(10)+c*MSPEED
WEND

MTYPE

Type:	 Axis Parameter (Read Only)

Description:	 This parameter holds the type of move currently being executed.	

This parameter may be interrogated to determine whether a move has finished or
if a transition from one move type to another has taken place.

A non-idle move type does not necessarily mean that the axis is actually moving. It
may be at zero speed part way along a move or interpolating with another axis
without moving itself.

It takes a servo period before a motion command is loaded into the buffer, so
checking MTYPE immediately after a motion command will probably fail. You should
use WAIT LOADED or WAIT IDLE to check that a command is loaded or complete

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-358

Parameters:	 Value:		 Motion command in progress

		 0	 idle (No move)

		 1	 MOVE

		 2	 MOVEABS

		 3	 MHELICAL

		 4	 MOVECIRC

		 5	 MOVEMODIFY

		 6	 MOVESP

		 7	 MOVEABSSP

		 8	 MOVECIRCSP

		 9	 MHELICALSP

		 10	 FORWARD

		 11	 REVERSE

		 12	 DATUM

		 13	 CAM

		 14	 FWD _ JOG

		 15	 REV _ JOG

		 20	 CAMBOX

		 21	 CONNECT

		 22	 MOVELINK

		 23	 CONNPATH

		 24	 FLEXLINK

		 30	 MOVETANG

		 31	 MSPHERICAL

Example:	 Load another move if the existing move has finished.

IF MTYPE AXIS(2) = 0 THEN
 MOVE (TABLE(count)) AXIS(2)
 count = count + 1
ENDIF

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-359

NEG_OFFSET

Type:	 Axis Parameter

Description:	 For Piezo Motor Control. This sets an offset to the DAC output when the position
loop is demanding a negative voltage output. NEG _ OFFSET is applied after
DAC _ SCALE so is always a value appropriate to the D to A converter resolution.
The negative offset must be a negative value.

Example:	 An offset of -0.1V is required on an axis with a 16 bit D to A converter. With a 16
bit DAC, -10V is commanded with the value -32768 so for -0.1V need -32768 / 100.

NEG _ OFFSET = -328

POS _ OFFSET and NEG _ OFFSET are normally used together. It is suggested that
the offset is 65% to 70% of the value required to make the stage move in an open
loop situation.

POS _ OFFSET = 450
NEG _ OFFSET = -395

NTYPE

Type:	 Axis Parameter (Read Only)

Description:	 This parameter holds the type of the first buffered move.

The NTYPE buffer can be cleared using CANCEL(1).

Parameters:	 Value:		 The numerical value of the move type.

See MTYPE for a list of return values.

Example:	 If the first move buffer (NTYPE) is empty apply another move from a table

IF MTYPE = 0 THEN
 MOVE(TABLE(count)
 count = count +1

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-360

ENDIF

See Also:	 MTYPE

OFFPOS

Type:	 Axis Parameter

Description:	 The OFFPOS parameter allows the axis position value to be offset by any amount
without affecting the motion which is in progress. OFFPOS can therefore be used
to effectively datum a system at full speed. Values loaded into the OFFPOS axis
parameter are reset to 0 by the system software after the axis position is changed.

Parameters:	 Value:		 the distance to offset the current position.

Example 1:	 Change the current position by 125, using the command line terminal:

>>PRINT DPOS
300.0000
>>OFFPOS=125
>>PRINT DPOS
425.0000
>>

Example 2:	 Define the current demand position as zero:

OFFPOS=-DPOS ‘This is equivalent to DEFPOS(0

Example 3:	 A conveyor is used to transport boxes onto which labels must be applied.

Using the REGIST() function,
we can capture the position at
which the leading edge of the box
is seen, then by using OFFPOS
we can adjust the measured
position of the axis to be zero at
that point. Therefore, after the
registration event has occurred,
the measured position (seen in
MPOS) will actually reflect the
absolute distance from the start
of the box, the mechanism which

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-361

applies the label can take advantage of the absolute position start mode of the
MOVELINK or CAMBOX commands to apply the label.

BASE(conv)
REGIST(3)
WAIT UNTIL MARK
OFFPOS = -REG _ POS ‘ Leading edge of box is now zero

OPEN_WIN

Type:	 Axis Parameter

Alternate Format:	OW

Description:	 This parameter defines the first position of the window which will be used for
registration marks if windowing is specified by the REGIST() command.

Parameters:	 value:		 Absolute position of the first registration window.

Example:	 Enable registration but only look for registration marks between 170 and 230mm.

OPEN _ WIN=170.00
CLOSE _ WIN=230.0
REGIST(256+3)
WAIT UNTIL MARK

See Also:	 CLOSE _ WIN, REGIST

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-362

OUTLIMIT

Type:	 Axis Parameter

Description:	 The output limit restricts the DAC output to a lower value than the maximum.
This can be used to limit the analogue outputs or demand value to a digital drive.
OUTLIMIT will always limit the DAC output if you are using a servo control or just
manually setting DAC.

As it is applied to the output of the closed loop algorithm it is not applied to position
based axis.

Parameters:	 value:		 The range that the DAC is limited to.

The value required varies depending on whether the axis has a 12 bit or 16 bit DAC. If
the voltage output is generated by a 12 bit DAC values an OUTLIMIT of 2047 will
produce the full +/-10V range. If the voltage output is generated by a 16 bit DAC
values an OUTLIMIT of 32767 will produce the full +/-10V range.

Example:	 Limit a 12bit DAC to ±5V (±1023).

OUTLIMIT AXIS(0)=1023

OV_GAIN

Type:	 Axis Parameter

Description:	 The output velocity gain is a gain constant which is multiplied by the change in
measured position. The result is summed with all the other gain terms and applied
to the servo DAC. Default value is 0. Adding NEGATIVE output velocity gain to
a system is mechanically equivalent to adding damping. It is likely to produce
a smoother response and allow the use of a higher proportional gain than could
otherwise be used, but at the expense of higher following errors. High values may
lead to oscillation and produce high following errors. For an output velocity term
Kov and change in position ΔPm, the contribution to the output signal is:

Φ0V = Κ0V x ΔPm

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-363

Parameters:	 value:		 Output velocity gain constant (default = 0).

Negative values are normally required.

P_GAIN

Type:	 Axis Parameter

Description:	 The proportional gain sets the ‘stiffness’ of the servo response. Values that are too
high will produce oscillation. Values that are too low will produce large following
errors.

For a proportional gain Kp and position error E, its contribution to the output
signal is:

Φp = Κp x E

Parameters:	 value:		 Proportional gain constant (default =1).

Example:	 Set the P _ GAIN on axis 11 to be a value smaller than the default.

P _ GAIN AXIS(11)=0.25

PLM_OFFSET

Type:	 Axis Parameter

Description:	 This axis parameter is used exclusively for the SLM interface module and only in
PLM (position mode). The parameter allows for an offset between the absolute
position within one turn held by the SLM/PLM motor encoder and the zero position
in the controller.

UNITS and ENCODER _ RATIO should be used in preference to PP_STEPs.

Parameters:	 value:		 The offset between the absolute position and 			
			 the controller zero position.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-364

POS_OFFSET

Type:	 Axis parameter

Description:	 For Piezo Motor Control. This sets an offset to the DAC output when the position
loop is demanding a positive voltage output. POS _ OFFSET is applied after DAC _
SCALE so is always a value appropriate to the D to A converter resolution.

Example:	 An offset of 0.1V is required on an axis with a 16 bit D to A converter. With a 16 bit
DAC, +10V is commanded with the value 32767 so for 0.1V need 32767 / 100.

POS _ OFFSET = 328

POS _ OFFSET and NEG _ OFFSET are normally used together. It is suggested that
the offset is 65% to 70% of the value required to make the stage move in an open
loop situation.

POS _ OFFSET = 300
NEG _ OFFSET = -270

PP_STEP

Type:	 Axis parameter

Description:	 PP _ STEP is an integer multiplier on the encoder value.

UNITS and ENCODER _ RATIO should be used in preference to PP_STEPs.

Parameters:	 value:		 Integer multiplier range (default = 1).

IT IS RECOMMENDED TO ONLY USE VALUES BETWEEN -1024 AND 1023.

If used in a Servo axis, increasing PP _ STEP will require a proportionate decrease of
all loop gain parameters.

!

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-365

PS_ENCODER

Type:	 Axis Parameter (Read Only)

Description: 	 The PS _ ENCODER axis parameter holds a raw copy of the positional feedback
device used for the hardware p-switch.

Parameters:	 value:		 The 30bit value used for hardware p-switch encoder.

See Also:	 HW _ PSWITCH

R_MARK

Type:	 Axis Parameter (Read Only)

Description:	 This parameter can be polled to determine if the registration event has occurred.

R _ MARK is reset when REGIST is executed

Parameters:	 value:	TRUE = The registration event has occurred (default).

FALSE = The registration event has not occurred.

When TRUE the R _ REGPOS is valid.

Example:	 Apply an offset to the position of the axis depending on the registration position.

loop:

 WAIT UNTIL IN(punch _ clr)=ON
 MOVE(index _ length)
 REGIST(32+1)				 ‘ rising edge input channel 1
 WAIT UNTIL R _ MARK
 MOVEMODIFY(R _ REGPOS + offset)
 WAIT IDLE
GOTO loop

See Also:	 REGIST, R _ REGPOS

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-366

R_REGISTSPEED

Type:	 Axis Parameter (Read Only)

Description:	 Stores the speed of the axis when a registration mark was seen. Value is in user
units per millisecond. This parameter is used with the time based registration
channel set with the REGIST command.

In most real-world systems there are delays built into the registration circuit; the
external sensor and the input opto-isolator will have some fixed response time. As
machine speed increases, the fixed electrical delays will have an effect on the
captured registration position.

R _ REGISTSPEED returns the value of axis speed captured at the same time as
R _ REGPOS. The captured speed and position values can be used to calculate a
registration position that does not vary with speed because of the fixed delays.

Parameters:	 value:		 The speed of the axis in user units per millisecond at which the 	
			 registration event occurred.

This parameter has the units of user_units/msec at all SERVO _ PERIOD settings.

Example:	 Compensate for fixed delays in the registration circuit using R _ REGISTSPEED.

fixed_delays=0.012 ‘ circuit delays in milliseconds

REGIST(32+3) ‘ registration on time based channel 3
WAIT UNTIL R _ MARK
captured _ position = R _ REGPOS-(R _ REGISTSPEED*fixed _ delays)

See Also:	 REGIST, REGIST _ SPEED, REGIST _ SPEEDB

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-367

R_REGPOS

Type:	 Axis Parameter (Read Only)

Description:	 Stores the position at which a registration mark was seen on the axis in user units.
This parameter is used with the time based registration channel that was set by
the REGIST command.

Parameters:	 value:	The absolute position in user UNITS at which the registration event
occurred.

Example:	 A paper cutting machine uses a CAM profile shape to quickly draw paper through
servo driven rollers then stop it whilst it is cut. The paper is printed with a
registration mark. This mark is detected and the length of the next sheet is
adjusted by scaling the CAM profile with the third parameter of the CAM command:

‘ Example Registration Program using CAM stretching:
‘ Set window open and close:
	 length=200
	 OPEN _ WIN=100
	 CLOSE _ WIN=130
	 GOSUB Initial
Loop:
	 TICKS=0				 ‘Set millisecond counter to 0
	 IF R _ MARK THEN
		 offset=R _ REGPOS
		 ‘ This next line makes offset -ve if at end of sheet:
		 IF ABS(offset-length)<offset THEN offset=offset-length
			 PRINT “Mark seen at:”offset[5.1]
	 ELSE
			 offset=0
		 PRINT “Mark not seen”
		 ENDIF

	 ‘ Reset registration prior to each move:
	 DEFPOS(0)
		 REGIST(32+0+256) ‘ Allow mark to be seen between 100 and
130
		 CAM(0,50,(length+offset*0.5)*cf,1000)
	 WAIT UNTIL TICKS<-500
	 GOTO Loop

(variable “cf” is a constant which would be calculated depending on the machine
draw length per encoder edge).

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-368

See Also:	 REGIST, REG _ POS, REG _ POSB

RAISE_ANGLE

Type:	 Axis Parameter

Description:	 This parameter is used with CORNER _ MODE, it defines the maximum change in
direction of a 2 axis interpolated move before CORNER _ STATE is triggered. When
the change in direction is greater than this angle CORNER _ STATE will change
state so the system can interact with a program.

This can be used to change the angle of a cutting knife.

RAISE _ ANGLE does not control the speed so it should be set equal or greater than
STOP _ ANGLE.

Parameters:	 value:		 The angle to start to interact with a program through CORNER _	
			 STATE.

Example: 	 Decelerate to a slower speed when the transition is between 15 and 45 degrees. If
the transition is greater than 45degrees sop so that a CORNER _ STATE routine can
run.

CORNER _ MODE=2 + 4
DECEL _ ANGLE = 15 * (PI/180)
STOP _ ANGLE = 45 * (PI/180)
RAISE _ ANGLE= STOP _ ANGLE

See Also:	 CORNER _ MODE, CORNER _ STATE, DECEL _ ANGLE, STOP _ ANGLE

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-369

REG_INPUTS

Type:	 Axis Parameter

Syntax:	 Selects which of the time based registration inputs to use for the A and B channel
of registration.

Parameters:	 Bits	 function

3:0 	 Input select for registration channel A

0000 	 Flex Axis Input 0

0001 	 Flex Axis Input 1

0010 	 Flex Axis Input 2

0011 	 Flex Axis Input 3

0100 	 Flex Axis Input 4

0101 	 Flex Axis Input 5

0110 	 Flex Axis Input 6

0111	 Flex Axis Input 7

7:4 	 Input select for registration channel B

0000 	 Flex Axis Input 0

0001 	 Flex Axis Input 1

0010 	 Flex Axis Input 2

0011 	 Flex Axis Input 3

0100 	 Flex Axis Input 4

0101 	 Flex Axis Input 5

0110 	 Flex Axis Input 6

0111 	 Flex Axis Input 7

Example:	 Set registration input 2 as A and 7 as B

REG _ INPUTS=$72

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-370

REG_POS

Type:	 Axis Parameter (Read Only)

Alternate Format:	RPOS

Description:	 Stores the position at which a registration mark was seen on each axis in user
units. This parameter is used with the first (A) hardware registration channel, or Z
mark only.

Parameters:	 value:		 The absolute position in user UNITS at which the registration event 	
			 occurred.

Example:	 A paper cutting machine uses a CAM profile shape to quickly draw paper through
servo driven rollers then stop it whilst it is cut. The paper is printed with a
registration mark. This mark is detected and the length of the next sheet is
adjusted by scaling the CAM profile with the third parameter of the CAM command:

‘ Example Registration Program using CAM stretching:
‘ Set window open and close:
	 length=200
	 OPEN _ WIN=10
	 CLOSE _ WIN=length-10
	 GOSUB Initial
Loop:
	 TICKS=0				 ‘Set millisecond counter to 0
	 IF MARK THEN
		 offset=REG _ POS
		 ‘ This next line makes offset -ve if at end of sheet:
		 IF ABS(offset-length)<offset THEN offset=offset-length
			 PRINT “Mark seen at:”offset[5.1]
	 ELSE
			 offset=0
		 PRINT “Mark not seen”
		 ENDIF

	 ‘ Reset registration prior to each move:
	 DEFPOS(0)
		 REGIST(3+768)’ Allow mark at first 10mm/last 10mm of
sheet
		 CAM(0,50,(length+offset*0.5)*cf,1000)
	 WAIT UNTIL TICKS<-500
	 GOTO Loop

(variable “cf” is a constant which would be calculated depending on the machine
draw length per encoder edge).

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-371

See Also:	 REGIST, REG _ POSB, R _ REGPOS

REG_POSB

Type:	 Axis Parameter (Read Only)

Description:	 Stores the position at which a registration mark was seen on each axis in user
units. This parameter is used with the second (B) hardware registration channel, or
Z mark only.

Parameters:	 value:		 The absolute position in user UNITS at which the registration event 	
			 occurred.

Example:	 Detect the front and rear edges of an object on a conveyor and measure its length.

‘ Registration on rising edge R0 and falling edge R1
REGIST(11)
WAIT UNTIL MARK
position1 = REG _ POS
WAIT UNTIL MARKB
position2 = REG _ POSB

length = position2 - position1

See Also:	 REGIST, REG _ POS, R _ REGPOS

REGIST_CONTROL

Type:	 Reserved Keyword.

Description:	 Read or set the low level bit pattern in the control register.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-372

REGIST_DELAY

Type:	 Reserved Keyword.

Description:	 The value, in milliseconds, of the total system delays between a signal appearing
on the registration input and the position being available to the time-based
registration algorithm. A digital system will usually transfer the actual position
information with a one servo period delay. Therefore the REGIST _ DELAY must
be adjusted when the SERVO _ PERIOD parameter is not at the default value.

In most real-world systems there are delays built into the registration circuit; the
external sensor and the input opto-isolator will have some fixed response time. As
machine speed increases, the fixed electrical delays will have an effect on the
captured registration position. REGIST _ DELAY can be adjusted to take account of
the total delays due to the servo period and input.

Parameters:	 value:		 The total registration delay in milliseconds.

Example:	 Compensate for fixed delay of one servo period plus 10 microseconds sensor input
delay when SERVO _ PERIOD is 1000.

REGIST _ DELAY = -1.01

Compensate for fixed delay of one servo period plus 15 microseconds sensor input
delay when SERVO _ PERIOD is 500.

REGIST _ DELAY = -0.51

Compensate for fixed delay of one servo period plus 10 microseconds sensor input
delay plus one additional SLM cycle of 125 microseconds.

REGIST _ DELAY = -1.135

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-373

REGIST_SPEED

Type:	 Axis Parameter (Read Only)

Description:	 Stores the speed of the axis when a registration mark was seen user units per milli-
second. This parameter is used with the first (A) hardware registration channel, or
Z mark only.

In most real-world systems there are delays built into the registration circuit; the
external sensor and the input opto-isolator will have some fixed response time. As
machine speed increases, the fixed electrical delays will have an effect on the
captured registration position.

Parameters:	 value:		 The speed of the axis in user units per milli-second at which the 	
			 registration event occurred.

This parameter has the units of user_units/msec at all SERVO _ PERIOD settings.

Example:	 Compensate for fixed delays in the registration circuit using REGIST _ SPEED.

fixed _ delays=0.020 ‘ circuit delays in milliseconds
REGIST(3)
WAIT UNTIL MARK
captured _ position = REG _ POS-(REGIST _ SPEED*fixed _ delays)

See Also:	 REGIST, REGIST _ SPEEDB, R _ REGIST _ SPEED

REGIST_SPEEDB

Type:	 Axis Parameter (Read Only)

Description:	 Stores the speed of the axis when a registration mark was seen user units per milli-
second. This parameter is used with the second (B) hardware registration channel,
or Z mark only.

In most real-world systems there are delays built into the registration circuit; the
external sensor and the input opto-isolator will have some fixed response time. As
machine speed increases, the fixed electrical delays will have an effect on the
captured registration position.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-374

REGIST _ SPEEDB returns the value of axis speed captured at the same time as
REG _ POSB. The captured speed and position values can be used to calculate a
registration position that does not vary with speed because of the fixed delays.

Parameters:	 value:		 The speed of the axis in user units per milli-second at which the 	
			 registration event occurred.

This parameter has the units of user_units/msec at all SERVO _ PERIOD settings.

See Also:	 REGIST, REGIST _ SPEED, R _ REGIST _ SPEED

REMAIN

Type:	 Axis Parameter (Read Only)

Description:	 This is the distance remaining to the end of the current move. It may be tested
to see what amount of the move has been completed. The units are user distance
units.

Parameters:	 value:		 The distance remaining in user units of the current move.

Example:	 To change the speed to a slower value 5mm from the end of a move.

start:
	 SPEED=10
	 MOVE(45)
	 WAIT UNTIL REMAIN<5
	 SPEED=1
	 WAIT IDLE

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-375

REP_DIST

Type:	 Axis Parameter

Description:	 The repeat distance contains the allowable range of movement for an axis before
the position count overflows or underflows.

When MPOS and DPOS reach REP _ DIST they will wrap to either 0 or -REP _ DIST
depending on REP _ OPTION. The same applies in reverse so when MPOS and DPOS
reach either 0 or -REP _ DIST they wrap to REP _ DIST.

BY DEFAULT REP _ DIST IS LESS THAN THE SOFTWARE LIMITS. IF YOU INCREASE
REP _ DIST FROM THE DEFAULT VALUE YOU MAY ACCIDENTLY ACTIVATE FS _
LIMIT OR RS _ LIMIT.

Parameters:	 value:		 The position in user units where the axis position wraps.

Example 1:	 Units are set so that an axis units is degrees. The programmer wants to work in the
range 1-360, which requires REP _ OPTION=1.

REP _ OPTION=1
REP _ DIST=360

Example 2:	 MOVETANG requires the axis to be configured so it pi radians of the full revolution.
For a 4000 count per rev encoder this means between -2000 and 2000. This can be
configured as follows

BASE(0)
UNITS=1
REP _ OPTION=0
REP _ DIST=2000
MOVETANG(0,1)

See Also:	 FS _ LIMIT, RS _ LIMIT

!

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-376

REP_OPTION

Type:	 Axis Parameter

Description:	 REP _ OPTION allows different repeat options for the axis. It can be used to affect
the way the position of an axis wraps or the repeating mode of CAMBOX and
MOVELINK.

Parameters:	 value:		 Operation.

bit 0:		 0 = Axis position range is -REP _ DIST to +REP _ DIST.

		 1 = Axis position range is 0 to +REP _ DIST.

bit 1:		 0 = Automatic repeat option is disabled.

		 1 = Disable the automatic repeat option of CAMBOX and MOVELINK.

bit 2:		 0 = REP _ DIST, DEFPOS and OFFPOS will affect MPOS and DPOS.

		 1 = REP _ DIST, DEFPOS and OFFPOS will affect MPOS only.

Bit 2 has been included for backward compatibility, it is not recommended to use this
on new applications.

Example 1:	 An axis has 400 counts per revolution, configure REP _ DIST and REP _ OPTION so
that it wraps from 0 to 4000.

REP _ OPTION = 1

REP _ DIST = 4000

Example 2:	 A program is running a continuous MOVELINK, when an input is triggered the link
must end at the end of the next cycle. Set bit is used so not to clear any other bits
that may be active.

MOVELINK((1, 1.6, 0.6, 0.6, 1, 4)
WAIT UNTIL IN(1) = ON
REP _ OPTION = REP _ OPTION AND 2

See Also:	 CAMBOX, MOVELINK, REP _ DIST

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-377

REV_IN

Type:	 Axis Parameter

Description:	 This parameter holds the input number to be used as a reverse limit input. When
the reverse limit input is active any motion on that axis is CANCEL ed. When
REV _ IN is active AXISSTATUS bit 5 is set.

The input used for REV _ IN is active low.

Parameters:	 Value:		 1 = disable the input as REV _ IN (default).

		 0-63 = Input to use as the reverse input switch.

Any type of input can be used, built in, TrioCAN I/O, CANopen or virtual.

Example:	 Set up inputs 8 and 9 as forward and reverse limit switches for axis 4.

BASE(4)
FWD _ IN = 8
REV _ IN = 9

See Also:	 FWD _ IN, FS _ LIMIT, RS _ LIMIT

REV_JOG

Type:	 Axis Parameter

Description:	 This parameter holds the input number to be used as a jog reverse input.

When the REV _ JOG input is active the axis moves in reverse at JOG _ SPEED.

The input used for REV _ IN is active low.
It is advisable to use INVERT _ IN on the input for REV _ JOG so that 0V at the
input disables the jog.

FWD _ JOG overrides REV _ JOG if both are active.

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-378

Parameters:	 Value:		 1 = disable the input as REV _ JOG (default).

		 0-63 = Input to use as datum input.

Example:	 Initialise the REV _ JOG so that it is active high on input 12.

INVERT _ IN(12,ON)

RS_LIMIT

Type:	 Axis Parameter

Alternate Format:	 RSLIMIT

Description:	 An end of travel limit may be set up in software thus allowing the program control
of the working envelope of the machine. This parameter holds the absolute
position of the forward travel limit in user units.

Bit 10 of the AXISSTATUS register is set when the axis position is greater than the
RS _ LIMIT.

When DPOS reaches RS _ LIMIT the controller will cancel the move, so the axis will
decelerate at DECEL or FAST _ DEC.

RS _ LIMIT is disabled when it has a value greater than REP _ DIST.

Parameters:	 Value:		 The absolute position of the software forward travel limit in user 	
			 units. (default = 200000000000).

Example 1:	 After homing a machine set up the reverse software limit so that the axis will stop
10mm away from the hard stop. So if the hard limit is at -200, with a maximum
speed of 400 and a FASTDEC of 1000 the reverse limit will be -189.6.

hard _ limit _ position = -200
max _ speed = 400
FASTDEC = 1000

DATUM(3)
WAIT IDLE
RS _ LIMIT= hard _ limit _ position + (max _ speed/FASTDEC +10)

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-379

See Also:	 FS _ LIMIT, FWD _ IN, REV _ IN

SERVO

Type:	 Axis Parameter

Description:	 On a servo axis this parameter determines whether the axis runs under servo
control or open loop. When SERVO=OFF the axis hardware will output demand
value dependent on the DAC parameter. When SERVO=ON the axis hardware will
output a demand value dependant on the gain settings and the following error.

Parameters:	 Value:		 ON = closed loop servo control enabled.

		 OFF = closed loop servo control disabled.

Example:	 Enable axis 1 to run under closed loop control and axis 1 as open loop.

SERVO AXIS(0)=ON’ Axis 0 is under servo control
SERVO AXIS(1)=OFF’ Axis 1 is run open loop

SLOT_NUMBER

Type:	 Axis Parameter (Read Only)

Description:	 Returns the SLOT number where the axis is located. Axis numbers can be
allocated to hardware in a flexible way, so the physical location of the axis cannot
be found by the AXIS number alone. SLOT _ NUMBER returns the value from the
BASE axis or if the AXIS(number) modifier is used, it returns the SLOT associated
with that axis.

Example:	 PRINT SLOT _ NUMBER AXIS(12)

BASE(2)
axis2 _ slot = SLOT _ NUMBER

IF SLOT _ NUMBER AXIS(0)<>-1 THEN
 PRINT “Warning - Built-in axis configuration incorrect”
 PRINT “Axis 0 expected for this application.”
ENDIF

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-380

See also:	 SLOT, AXIS _ OFFSET

SPEED

Type:	 Axis Command

Description:	 The SPEED axis parameter can be used to set/read back the demand speed axis
parameter.

Parameters:	 Value:		 The axis speed in user units.

Example:	 Set the speed and then print it to the user.

SPEED=1000
PRINT “Speed Set=”;SPEED

SPEED_SIGN

Type:	 Reserved Keyword

SPHERE_CENTRE

Type:	 Axis Command

Syntax:	 SPHERE _ CENTRE(tablex, tabley, tablez)

Description:	 Returns the co-ordinates of the centre point (x, y, z) of the most recent
MSPHERICAL. X, Y and Z are returned in the TABLE memory area and can be
printed to the terminal as required.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-381

Parameters:	 tablex:	 Position in table to store the X coordinate.

tabley:	 Position in table to store the Y coordinate.

tablez:	 Position in table to store the Z coordinate.

Example:	 After a MSPHERICAL completes on axis 0 find the coordinates of the centre.

SPHERE _ CENTRE(10, 11, 30) AXIS(0)
PRINT TABLE(10);”, “;TABLE(11);”, “;TABLE(12)

SRAMP

Type:	 Axis Parameter

Description:	 This parameter stores the s-ramp factor. It controls the amount of rounding
applied to trapezoidal profiles. SRAMP should be set, when a move is not in
progress, to a maximum of half the ACCEL/DECEL time. The setting takes a short
while to be applied after changes.

Parameters:	 Value:		 Time between 0..250 milliseconds.

SRAMP MUST BE SET BEFORE A MOVE STARTS. IF FOR EXAMPLE YOU CHANGE THE
SRAMP FROM 0 TO 200, THEN START A MOVE WITHIN 200 MILLISEC THE FULL SRAMP
SETTING WILL NOT BE APPLIED.

Example:	 To provide smooth transition into the acceleration, an S-ramp is applied with a
time of 50msec.

SPEED = 160000
ACCEL = 1600000
DECEL = 1600000
SRAMP = 50

WA(50)

MOVEABS(100000)

Without the S-ramp factor, the acceleration takes 100 msec to reach the set speed.
With SRAMP=50, the acceleration takes 150 msec but the rate of change of force
(torque) is controlled. i.e. Jerk is limited.

!

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-382

START_DIR_LAST

Type:	 Axis Parameter (Read Only)

Description:	 Returns the direction of the start of the last loaded interpolated motion command.
START _ DIR _ LAST will be the same as END _ DIR _ LAST except in the case of
circular moves.

This parameter is only available when using SP motion commands such as MOVESP,
MOVEABSSP etc.

Parameters:	 value:		 End direction, in radians between -PI and PI. Value is always 		
			 positive.

Example1:	 Run two moves the first starting at a direction of 45 degrees and the second 0
degrees.

>>MOVESP(10000,10000)
>>? START _ DIR _ LAST
0.7854
>>MOVESP(0,10000)
>>? START _ DIR _ LAST
0.0000
>>

See Also:	 CHANGE _ DIR _ LAST, END _ DIR _ LAST

STARTMOVE_SPEED

Type:	 Axis Parameter

Description:	 This parameter sets the start speed for a motion command that support the
advanced speed control (commands ending in SP). The VP _ SPEED will decelerate
until STARTMOVE _ SPEED is reached for the start of the motion command.

The lowest value of SPEED, ENDMOVE _ SPEED, FORCE _ SPEED or
STARTMOVE _ SPEED will take priority.

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-383

STARTMOVE _ SPEED is loaded into the buffer at the same time as the move so you
can set different speeds for subsequent moves.

In general START _ MOVE speed is only used by the CORNER _ MODE methods. The
user can program all profiles using only FORCE _ SPEED and ENDMOVE _ SPEED.

Parameters:	 value:		 The speed at which the SP motion command will start, in user 	
			 UNITS. (default 0).

See Also:	 FORCE _ SPEED, ENDMOVE _ SPEED, CORNER _ MODE

STOP_ANGLE

Type:	 Axis Parameter

Description:	 This parameter is used with CORNER _ MODE, it defines the maximum change in
direction of a 2 axis interpolated move that will be merged at speed. When the
change in direction is greater than this angle the reduced to 0.

Parameters:	 value:		 The angle to reduce the speed to 0, in radians).

Example1:	 Reduce the speed to zero on a transition greater than 25 degrees. DECEL _ ANGLE
is set to 25 degrees as well so that there is no reduction of speed below 25
degrees.

CORNER _ MODE=2
STOP _ ANGLE=25 * (PI/180)
DECEL _ ANGLE=STOP _ ANGLE

See Also:	 CORNER _ MODE, DECEL _ ANGLE

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-384

TANG _DIRECTION

Type:	 Axis Parameter

Description:	 When used with a 2 axis X-Y system, this parameter returns the angle in radians
that represents the vector direction of the interpolated axes.

Parameters:	 The value returned is between -PI and +PI and is determined by the directions of
the interpolated axes.

value: X Y

0 0 1

PI/2 1 0

PI/2(+PI or PI) 0 -1

-PI/2 -1 0

Example:	 Note scale_factor_x MUST be the same as scale_factor_y

UNITS AXIS(4)=scale _ factor _ x
UNITS AXIS(5)=scale _ factor _ y

BASE(4,5)
MOVE(100,50)
angle = TANG _ DIRECTION

Example2:	 BASE(0,1)

angle _ deg = 180 * TANG _ DIRECTION / PI

TRANS_DPOS

Type:	 Axis Parameter (Read Only)

Description:	 TRANS _ DPOS is the axis demand position at output of frame transformation.

TRANS _ DPOS is normally equal to DPOS on each axis. The frame transformation
is therefore equivalent to 1:1 for each axis (FRAME = 0). For some machinery
configurations it can be useful to install a frame transformation which is not 1:1,

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-385

these are typically machines such as robotic arms or machines with parasitic
motions on the axes. In this situation when FRAME is not zero TRANS _ DPOS
returns the demand position for the actual motor.

Parameters:	 value:		 The axis demand position at the output of the FRAME 			
			 transformation.

See also:	 FRAME

TRIOPCTESTVARIAB

Type:	 Reserved Keyword

UNITS

Type:	 Axis Parameter

Description:	 UNITS is a conversion factor that allows the user to scale the edges/ stepper
pulses to a more convenient scale. The motion commands to set speeds,
acceleration and moves use the UNITS scalar to allow values to be entered in more
convenient units e.g.: mm for a move or mm/sec for a speed.

Units may be any positive value but it is recommended to design systems with an
integer number of encoder pulses/user unit. If you need to use a non integer number
you should use ENCODER _ RATIO. STEP _ RATIO can be used for non integer
conversion on a stepper axis.

Parameters:	 value:		 The number of counts per required units.

Example:	 A leadscrew arrangement has a 5mm pitch and a 1000 pulse/rev encoder. The units
should be set to allow moves to be specified in mm.

The 1000 pulses/rev will generate 1000 x 4=4000 edges/rev in the controller. One
rev is equal to 5mm therefore there are 4000/5=800 edges/mm.

>>UNITS=1000*4/5

Trio Motion Technology

Triobasic Commands
Axis Parameters

8-386

Example 2:	 A stepper motor has 180 pulses/rev. There is a built in 16 multiplier so the
controller will use 180*16 counts per revolution.

To program in revolutions the unit conversion factor will be:	

>>UNITS=180*16

See Also:	 ENCODER _ RATIO, STEP _ RATIO

VECTOR_BUFFERED

Type:	 Axis Parameter (Read only)

Description:	 This holds the total vector length of the buffered moves. It is effectively the
amount the VPU can assume is available for deceleration. It should be executed
with respect to the first axis in the group.

Parameters:	 value:		 The vector length of buffered moves on the axis group.

Example:	 Return the total vector length for the current buffered moves whose axis group
begins with axis(0).

>>BASE(0,1,2)
>>? VECTOR _ BUFFERED AXIS(0)
1245.0000
>>

VERIFY

Type:	 Reserved Keyword

Technical Reference Manual

Triobasic Commands
Axis Parameters

8-387

VFF_GAIN

Type:	 Axis Parameter

Description:	 The velocity feed forward gain is a constant which is multiplied by the change
in demand position. Velocity feed forward gain can be used to decreases the
following error during constant speed by increasing the output proportionally
with the speed. For a velocity feed forward Kvff and change in position ΔPd, the
contribution to the output signal is:

0vff = Κvff x ΔPd

Parameters:	 value:		 Velocity feed forward constant (default =0).

Example:	 Set the VFF _ GAIN on axis 15 to 12

BASE(15)
VFF _ GAIN=12

VP_SPEED

Type:	 Axis Parameter (Read Only)

Alternate Format:	VPSPEED

Description:	 The velocity profile speed is an internal speed which is ramped up and down as the
movement is velocity profiled.

Parameters:	 value:		 The velocity profile speed in user units/second.

Example:	 Wait until command speed is achieved:

MOVE(100)
WAIT UNTIL SPEED=VP _ SPEED

9CHAPTER

SUPPORT SOFTWARE

Trio Motion Technology

SUPPORT SOFTWARE9-2
﻿

Technical Reference Manual

SUPPORT SOFTWARE 9-3
Motion Perfect 2

Support Software

Motion Perfect 2
Motion Perfect 2 is an application for the PC, designed to be used in conjunction
with the Motion Coordinator range of multi-tasking motion controllers.

Motion Perfect provides the user with an easy to use Windows based interface for
controller configuration, rapid application development, and run-time diagnostics
of processes running on the Motion Coordinator.

Trio Motion Technology

SUPPORT SOFTWARE9-4
Motion Perfect 2

System Requirements
The following equipment is required to use Motion Perfect 2.

PC Minimum Specification Recommended

CPU Pentium class processor,
operating at 1GHz

Pentium class processor,
operating at 2GHz

RAM 256MB (XP), 512 MB (Vista) 512MB (XP), 1GB (Vista)

Hard disk space 20 Mb 20 Mb

Operating System Windows XP or Vista . Windows XP or Vista.

Display 1024 x 768, 24-bit colour. 1024 x 768, 24-bit colour.

Communications Single RS232 Serial Port RS232 serial port, USB port

Motion Perfect may work on Windows 2000 but it is no longer supported on this
platform. It will not work on Windows 95, 98 or ME.

Motion Coordinator controller or compatible controllers
Compatible controllers include:

MC2, MC202, MC204, MC402e, Euro205, Euro205x, MC206, MC206X, PCI208, MC216,
MC224, MC302, MC464 etc.

In order to use the serial link Packet Communications mode, system software
version 1.49 or higher is required.

You should always try to use the most recent version of Motion Perfect.
Updates are available from your local distributor or you can download the latest
version from the Trio Web site: WWW.TRIOMOTION.COM

Connecting Motion Perfect to a controller
Motion Perfect can be connected to the Motion Coordinator using a serial, USB,
Ethernet or PCI connection depending on the interface(s) fitted to the Motion
Coordinator.

It is possible to edit a project without having a controller connected to your PC by
using the MC Simulator program.

Technical Reference Manual

SUPPORT SOFTWARE 9-5
Motion Perfect 2

Running Motion Perfect 2 for the First time
Make sure the Motion Coordinator is connected to the PC and turned on then, with
Windows running, select “TrioMotion / Motion Perfect 2” from “All Programs” on
the Windows start menu to Launch Motion Perfect. As Motion Perfect starts up
you will see a splash screen such as the one below.

The splash screen features a small messages window (bottom left) which is used
to display the status of the connection process. In this example Motion Perfect is
connected to an MC464 controller via an Ethernet link to IP address 192.168.11.181
on Ethernet port 23.

Motion Perfect 2 Projects
One of the keys to using Motion Perfect is to understand its concept of a “Project”.
The project facilitates the application design and development process, by
providing a disk based copy of the multiple controller programs, parameters and
data which may be used for a single motion application. Once the user has defined
a project, Motion Perfect works behind the scenes automatically maintaining
consistency between the programs on the controller and the files on the PC. When
creating or editing programs on the controller they are automatically duplicated
on the PC which means you do not have to worry about loading or saving programs
and you can be confident that next time you connect to the controller you will
have the correct information on your PC .

Trio Motion Technology

SUPPORT SOFTWARE9-6
Motion Perfect 2

Project Check Window
Whenever you connect to the
controller, Motion Perfect will
perform a project check to compare
the programs on the controller with
those defined in the current project
on the PC. During the project check a
window similar to the one below will
be displayed. If the projects match
then you will see a “project checked
ok” message and an OK button to
continue. If however there is any
inconsistency between the controller
and the PC, the display will feature
a number of addition options, shown
below.

You can force Motion Perfect to
perform a project check at any time
with the “Check Project” option from
the project menu. (Ctrl+Alt+P)

Project Check Options

Save: Save the controller contents to disk.
If you have never connected with this controller before, and therefore do not have
the project on your PC, or if there in an inconsistency in the project check and you
are sure that the project on the controller is the correct version, then select SAVE
to copy the programs on the controller to disk.

This will of course overwrite any programs already in the PC copy of the project. If
you are unsure which is the correct versiom, you should save the project with a new
name to avoid overwriting any existing project programs on the PC.

Load: Load the PC files onto the controller
If you are uploading a complete project from the PC to the controller, or the
project check fails and you are sure the version on your PC is correct, then you
should use this option to upload the entire project from the PC to the controller.

Note: The entire contents of the programs on the controller will be erased. If you
are unsure, SAVE the controller contents first!

Change: Change the project on the PC to compare with.
If you have been working on more than one project, the project on the controller
may not match the ‘last project’ remembered by Motion Perfect. If this is the
case you can use this option to select another project on the PC. Once you select
an alternative, Motion Perfect will perform a fresh project check and the above
process will be repeated.

Technical Reference Manual

SUPPORT SOFTWARE 9-7
Motion Perfect 2

New: Create a new project
The controller contents will be erased and a new project created on the PC. You
will be prompted to select a directory and project name.

When you create a new project, Motion Perfect will make a new directory with
the project name, and within that directory a project file with the same name (the
.PRJ extension is added to the filename).

Trio Motion Technology

SUPPORT SOFTWARE9-8
Motion Perfect 2

Resolve:
This option should be used when you have the correct project selected, but one or
more of the files differ between the controller and PC version, or do not exist in
one of the copies.

You will need to use your judgment to decide whether the disk or controller
version is correct. Typically, if you are recovering the project after a comms
failure or PC crash then the version on the controller should be saved. If you have
modified the disk based copy of the program then you will need to load this version
onto the controller. The examine button starts an external compare program to
allow you to visually compare the version on the controller to the one on the PC.

Cancel:
Cancels the connection process and starts Motion Perfect in disconnected mode.

Once the project has been checked and is consistent then a backup copy of the PC
project will be created.

Technical Reference Manual

SUPPORT SOFTWARE 9-9
The Motion Perfect Desktop

The Motion Perfect Desktop

Main Menu: Standard Windows menu to access all features of the
Motion Perfect application.

Toolbar: Shortcut buttons to access the Motion Perfect tools

Control Panel: Displays the current controller contents and provides
controls for interrogating the controller status, running /
editing programs

Desktop Workspace: This area is used to display the user windows and tools

Controller Messages: Status and error messages reported by the controller

Status Bar: Information about the current project and controller
connection.

Trio Motion Technology

SUPPORT SOFTWARE9-10
The Motion Perfect Desktop

Main Menu

Project: Options for Creating, Loading & Saving Motion Perfect
Projects, Loading/Saving program files and Table data

Controller: Options relating to the controller hardware, including
connecting/disconnecting and checking configuration
information.

Program: Program specific options, including creating, editing and
running controller tasks.

Tools: Access to the main Motion Perfect tools. These options
are also available from the Toolbar

Options: Configure the Motion Perfect Environment. Includes
options to setup the communications ports and to
customise the editor display.

Window: Control the appearance of the Motion Perfect desktop.

Help: Access the help files and version information.

Technical Reference Manual

SUPPORT SOFTWARE 9-11
The Motion Perfect Desktop

Controller Menu

The controller menu contains the following items:

Connect: Connect to the controller and start the project manager. This
is only available if Motion Perfect is currently disconnected
from the controller.

Connect using
project

Connect to the controller and start the project manager,
displaying a “Select Project” dialogue to allow the user to
specify a project. This is only available if Motion Perfect is
currently disconnected from the controller.

Disconnect: Disconnect from the controller, and stop using the project
tools. Only available if Motion Perfect 2 is currently
connected to the controller.

Connect to
Simulator:

Connect to the controller simulator and start the project
manager. The controller simulator is started if it is not
already running. This is only available if Motion Perfect is
currently disconnected from the controller.

Reset Controller: Perform a software-reset (EX) on the controller. This will
cause Motion Perfect 2 to disconnect from the controller.

Recover Project
from EPROM:

Reset the controller and restore the programs which were
previously stored in the EPROM.

Trio Motion Technology

SUPPORT SOFTWARE9-12
The Motion Perfect Desktop

Controller
Configuration:

Display hardware and system software configuration data for
the controller.

CANIO Status: Display the ststus of any CAN I/O modules connected to the
controller.

Ethernet
Configuration:

Configure the parameters of any ethernet interfaces on the
controller.

Enable Features: Enable or disable any features which can be enabled using
feature codes.

Enable Editing: Restore the power-up state of a controller currently starting
from EPROM to run from RAM and allow editing.

Fix Project into
EPROM:

Store the programs in RAM into the controllers flash-EPROM
memory. The startup state for each program will not be
changed.

Flash Stick/
Memory Card:

Store the current project on a flash stick or load a project
from a flash stick/memory card (for controllers with a flash
stick interface).

Load System
Software:

Update the controller system software.

Full Directory: Display a complete listing of all files on the controller, details
of memory used and the run status of each program.

Lock Controller: Lock the controller to prevent modification of the programs.

Unlock
Controller:

Unlock a previously locked controller to allow programs to be
edited.

Technical Reference Manual

SUPPORT SOFTWARE 9-13
The Motion Perfect Desktop

Controller Configuration
This screen interrogates the hardware and displays the configuration information
reported back by the controller.

Looking at the example screen shown here from top to bottom:

Controller: We are connected to a Motion Coordinator MC464

Software
Version:

The controller is running version 2.00 (development version
36) of the system software. The main FPGA on the controller
is at version 26

Servo Period: The controller is running with a control servo period of
1000µs.

Axis: A list of the types of all the axes on the controller.

Comms: If the controller is fitted with any of the extended /
communications daughter boards or modules, they will be
shown here. Certain internal communication or axes can also
be shown here.

I/O: The channel range available for each type of I/O both digital
and analogue. Remember that on many Motion Coordinator
the digital channels are shared, e.g. if Output 15 is available,
then it implies that Input 15 is also available and shares the
same connection.

Trio Motion Technology

SUPPORT SOFTWARE9-14
The Motion Perfect Desktop

FPGA versions are not shown for all Motion Coordinators.

CAN I/O Status
This shows the status of the built-in CAN port on a Motion Coordinator and any CAN
I/O modules connected to it.

Address: This is the CAN address of the built-in CAN port. The address can
be set in the range 32 to 47. If the address is 32 the controller can
automatically poll CAN I/O modules connected to it.

Enable: If this is checked (and the CAN address is set to 32) automatic
polling of I/O modules is active.

Status: This shows the status of groups of I/O modules by CAN address,
green for OK, red for error.

Initialise: Clicking on this initilises the built-in CAN port on the controller.

Initialised: This shows the state of the built-in CAN port, green for OK, red
for error.

Ethernet Configuration
This shows the configuration for an ethernet interface on the controller. It allows
the user to set up ethernet addressing parameters for built-in or daughterboard
ethernet interfaces.

Technical Reference Manual

SUPPORT SOFTWARE 9-15
The Motion Perfect Desktop

Slot: This is the expansion module slot (-1 for built-in) of the
ethernet interface being viewed.

IP Address: This is the ethernet IP address of this ethernet interface.

Subnet Mask: This is the ethernet subnet mast for the network to which
this ethernet interface is connected.

Default Gateway: This is the default gateway for this ethernet interface. It is
only needed if the controller is required to communicate
with a device on a different ethernet subnet to its own.

MAC Address: This is the hardware MAC address for the current interface.

Normal
Communications
Port Number:

This is the IP port number on which normal
communications will take place. This is the port used by
Motion Perfect for communications. The default value is
23, which is the reserved port for telnet communications.

Normal
Communications
Port Number:

This is the IP port used for token based communications.
This port is used by the Trio PC Motion ActiveX control.
The default value is 3240, which is the reserved port for
Trio Motion Control.

Ethernet firmware
version:

This shows the version number of the ethernet firmware
for the current interface.

MODBUS tcp mode: This sets the type of numerical representation used by
MODBUS tcp over this interface. The value can be float or
integer.

Trio Motion Technology

SUPPORT SOFTWARE9-16
The Motion Perfect Desktop

Feature Enable
The MC464 Motion Coordinator has the ability to unlock additional axes by entering
a “Feature Enable Code”.

When you access the Feature Enable dialogue, you will be presented with a display
similar to one of the following:

This display shows the features which are currently available. If the codes for
additional features have been purchased and stored on the PC, the relevant boxes
will be available for checking, otherwise the check boxes will be greyed out. If a
feature has been enabled on the controller but the code has not been stored on
the PC its box will be checked but also greyed out.

Enabling Additional Features
To enable a feature you must enter a Feature Enable Code, which is unique to
each controller and feature. To obtain a Feature Enable Code, you will need to
specify the feature required and the security code for the specific controller
to be updated. The order for the required codes should be FAXed to Trio or an
authorised Trio distributor.

Security Code
Controllers with features which can be enabled each have a unique security code
number which is implanted when the
unit is manufactured. This security code
number is displayed on the above screen
(as highlighted right).

Once you have the required codes, select the button.

Technical Reference Manual

SUPPORT SOFTWARE 9-17
The Motion Perfect Desktop

A dialogue similar to the following example will appear.

Each feature requested has a feature number. Enter the relevant code for each
feature number, being careful to enter the characters in upper case. Take care to
check that 0 (zero) is not confused with the letter “O” and 1 (one) is not confused
with the letter “I”.

Feature Code File
Motion Perfect stores all of the Feature Enable Codes of which it is aware in a file
called “FeatureCodes.TFC”. By default this file is located in the same directory as
the Motion Perfect 2 executable file.

Memory Card Support
When a controller with SD Card support is powered on with a memory card
inserted, then the controller will automatically run the program TRIOINIT.BAS in
the root directory of the SD Card. Full details of this can be found in Trio Technical
Note TN20-99

Trio Motion Technology

SUPPORT SOFTWARE9-18
Loading New System Software

When the Memory Card dialogue is first displayed it shows only the root directory.
Double clicking on its icon will expand the tree one level. Double clicking on a
directory icon at any time will toggle its state from collapsed to expanded and vice
versa.

The function buttons on the right of the dialogue are enabled and disabled
according to the type of item selected in the directory tree or the directory listing.
The functions are as follows:

New Directory: Creates a new subdirectory on the card in the
directory selected.

Load Program / File: Loads the selected program from the card onto the
controller.

Save Program / File: Saves a program file from the controller into the
directory currently selected on the card.

Load Project: Loads the project selected on the card onto the
controller.

Save Project: Saves the project on the controller into the directory
currently selected on the card.

Delete Program / File: Delete the program file currently selected on the card.

Delete Directory: Deletes the selected directory from the card.

Technical Reference Manual

SUPPORT SOFTWARE 9-19
Loading New System Software

Loading New System Software
Motion Coordinators feature a flash EPROM for storage of both user programs and
the system software. From Motion Perfect 2 it is possible to upgrade the software
to a newer version using a system file supplied by Trio.

We do not advise that you load a new version of the system software unless you are
specifically advised to do so by your distributor or by Trio.

When you select the ‘Load System Software’ option from the controller menu,
you will first be presented with a warning dialogue to ensure you have saved your
project and are sure you wish to continue.

if you press OK you will then be warned that the operation will delete all programs
on the controller. This must be done because the programs are stored on the
controller in a tokenized form and loading new system code may change the token
list, consequently changing the commands in the programs.

When you press Yes you will be presented with the standard Windows file selector
to choose the file you wish to load.

Trio Motion Technology

SUPPORT SOFTWARE9-20
Loading New System Software

Each Motion Coordinator controller has its own system file, identified by the first
letter (or letters) of the file name.

System Software File Prefix Codes:
Filename	 Controller Type

MC464		 MC464

You must ensure that you load only software designed for this specific controller,
other versions will not work and will probably make the controller unusable.

When you have chosen the appropriate file you will be prompted once again to
check that you wish to continue. Press OK to start the download process.

Technical Reference Manual

SUPPORT SOFTWARE 9-21
Loading New System Software

Downloading may take several minutes, depending on the speed of your PC and
the controller. During the download, you should see the progress of each section
updated as follows:-

When the download is complete, a checksum is performed to ensure that
the download process was successful. If it saw you will be presented with a
confirmation screen and asked if you wish to store the software into EPROM.

When you press Yes, the controller will take a few moments to fix the project into
the EPROM and you can then continue as normal.

Trio Motion Technology

SUPPORT SOFTWARE9-22
Loading New System Software

At this point you can check the controller configuration to confirm the new
software version.

Lock / Unlock

Lock Controller:
Locking the controller will prevent any unauthorised user from viewing or
modifying the programs in memory.

You simply need to enter a numeric code (up to 7 digits). This value will be
encoded by the system and used to lock the directory structure. The lock code is
held in encrypted form in the flash memory of the Motion Coordinator.

Once you have entered a code and clicked on Lock another dialogue will appear
asking you to confirm the lock code.

Technical Reference Manual

SUPPORT SOFTWARE 9-23
Motion Perfect Tools

Once the Motion Coordinator is locked it is not possible to list, edit or save any of
the controller programs. You cannot connect to the controller with Motion Perfect
2, although the terminal screen and unlock dialogue will still be available.

If you forget the lock code there is no way to unlock the controller. You will need
to return it to Trio or a distributor to have the lock removed.

Unlock Controller:
In order to unlock the controller you need to enter the same numeric code which
was used to lock it. Once the unlock code is entered it will be possible to gain full
access to the programs in memory.

Trio Motion Technology

SUPPORT SOFTWARE9-24
Motion Perfect Tools

Motion Perfect Tools
The Motion Perfect tools can be accessed from either the Tools Menu or the
Toolbar buttons.

	 Connect to Controller

	 Disconnect from Controller

	 Launch Terminal Tool

	 Launch Axis Parameter Tool

	 Launch Intelligent Drives Configuration Tool

	 Launch Oscilloscope

	 Launch Keypad Emulator

	 Launch Jog Axes Tool

	 Launch Digital I/O Tool

	 Launch Analogue I/O Tool

	 Launch Table Viewer

	 Launch VR Variable Viewer

	 Launch Variable Watch Tool

Technical Reference Manual

SUPPORT SOFTWARE 9-25
Motion Perfect Tools

	 Connect to Simulator

	 Motion Perfect Help

	 TrioBASIC Help

Terminal
The terminal window provides a direct connection to the Motion Coordinator. Most
of the functions that must be performed during the installation, programming
and commissioning of a system with a Motion Coordinator have been automated
by the options available in the Motion Perfect menu options. However, if direct
intervention is required the terminal window may be used.

When Motion Perfect is in connected mode then, on starting the
terminal tool you will be presented with a dialogue to select the
communications channel. Channel 0 is used for the controller
command line and channels 5, 6 and 7 are used for communication
with programs running on the controller. Selecting the required
channel then pressing “OK” will start a terminal tool on the
selected channel. Only one terminal tool (or keypad tool) can be
connected to a channel at one time.

When Motion Perfect is in disconnected
mode then, on starting the terminal tool you
will be presented with a dialogue to select
the communications port for connection.
The available ports will be those previously
configured in the communications options
tool. Selecting an interface (probably COM1)
and pressing “OK” will start a terminal tool.
Only one terminal tool can be used at any on
time when operating in disconnected mode.

Trio Motion Technology

SUPPORT SOFTWARE9-26
Motion Perfect Tools

Terminal Menus
Terminal	 This controls terminal logging and scripting.

Edit		 This has cut and paste as well as clear screen operations.

Options		 This controlls the terminal emulatuon (ASCII or VT100) and the line 	
		 length and number of lines buffered for display.

Terminal Logging
When logging is active all the data displayed on the terminal is also written to a
file. The name of the log file is displayed in the status bar at the bottom of the
terminal window.

Terminal Scripting

Introduction:
Motion Perfect 2 has built in support for simple terminal scripting. This allows the
user to write files of commands and then send the file contents to the controller in
a single operation. In addition to the commands to be sent to the controller there
are some extra commands which are used by Motion Perfect to control the running
of the script.

Technical Reference Manual

SUPPORT SOFTWARE 9-27
Motion Perfect Tools

Interaction with the controller:
Command lines are sent to the controller one at a time in sequence. Motion
Perfect sends a command then waits to receive a prompt (>>) before sending the
next one.

To not wait for a prompt put the two character sequence \& on the end of the line.
These extra characters are not sent to the controller.

Script commands:
Script commands control the running of the script. All script commands start with
two colons. The following commands are valid:

Command Parameter Description
::Timeout timeout in seconds Changes the time Motion Perfect waits for a

prompt to be returned. The default value is
10 seconds.

::Wait wait time in seconds Wait and do nothing for the given time

Example:	 ::Timeout 55

sets the timeout to 55 seconds

Tests
Special support has been added in order to enable the use of scripts for testing
purposes. The response from a command can be tested by Motion Perfect and
the results written to a log file. A test is written on the line after the one whose
response is to be tested and consists of a single ^ character followed by a list of
alternative responses seperated by single | characters. The comparison is done as
a string comparison after all leading and training spaces have been removed.

Example:	 ^12.0000|13.0000

gives a PASS if the returned string is “12.0000” or “13.0000”, otherwise a FAIL.

The PASS or FAIL state of each test is logged in the log file and a summary of
passes and failures is given at the end.

Editing Scripts:
To edit or write a new script, select Terminal/Script/Edit from the terminal
window menu.

Running Scripts:
To run a script normally, select Terminal/Script/Run from the terminal window
menu. This does not produce a log of what has happened.

Trio Motion Technology

SUPPORT SOFTWARE9-28
Motion Perfect Tools

To run a script with full logging, select Terminal/Script/Run logged from the
terminal window menu. The log will contain a full log of what has happened
including test results.

To run a script in test mode, select Terminal/Script/Run Test from the terminal
window menu. This will produce a log containing only test failures and a PASS/
FAIL summary.

Technical Reference Manual

SUPPORT SOFTWARE 9-29
Motion Perfect Tools

Axis Parameters
The Axis Parameters window enables you to monitor and change the motion
parameters for any axis on the controller. The
window is made up of a number of cells,
separated into two banks, bank 1 at the top and
bank 2 at the bottom:

Bank 1		 contains the values of 		
		 parameters that may be 		
		 changed by the user.

Bank 2	 	 contains the values of 		
		 parameters that cannot be 		
		 changed by the user, as 		
		 these values are set by 		
		 the system software of 		
		 the Motion Coordinator as it
		 processes the TrioBASIC motion 	
		 commands and monitors the 	
		 status of the external inputs.

The black dividing bar that separates the two
banks may be repositioned using the mouse to
redistribute the space occupied by the different
banks, for example to allow the user to shrink
the window and view other windows whilst still
watching the bank 2 information.

When there are more parameters in a bank that can be shown in the window a
scroll bar will appear beside that bank so that the user can scroll up and down the
parameter list to see the required values.

The user can select different parameters using the cursor keys or using the mouse.
Multiple items may be selected by pressing the shift key and then using the cursor
keys or the clicking the mouse to select a different cell, or by pressing the left
mouse button in the start cell and the moving the mouse to select the last cell
in the selection. Functions may be implemented in the future that work on a
selection of multiples cells.

When the user changes the UNITS parameter for any axis, all the data for this axis
is re-read as many of the parameters, such as the SPEED, ACCEL, MPOS, etc., are
adjusted by this factor to be shown in user units.

In the Motion Perfect axis parameter screen the AXISSTATUS parameter is
displayed as a series of characters, ocyxehdrfmaw.

Trio Motion Technology

SUPPORT SOFTWARE9-30
Motion Perfect Tools

These characters represent AXISSTATUS bits in order, as follows:-

char status bit

w Warning FE Range

a Drive Comms Error

m Remote Drive Error

f Forward Limit

r Reverse Limit

d Datum Input

h Feed Hold Input

e Following Error

x Forward Soft Limit

y Reverse Soft Limit

c Cancelling Move

o Encoder Overcurrent

Parameter Screen Options

Select Axes
This shows a dialogue that allows the user to select the
axes for which the data will be displayed.

The axes set by the last Create Startup, Jog Axes window
or Axes Parameters window will be displayed by default.

Refresh Display
In order to minimise the load placed upon the controller
communications, the parameters in the bank 1 section
are only read when the screen is first displayed or the
parameter is edited by the user. It is possible that if
a parameter is changed in a user program then value
displayed may be incorrect. The refresh button will force Motion Perfect to read
the whole selection again.

Technical Reference Manual

SUPPORT SOFTWARE 9-31
Motion Perfect Tools

If there is any possibility that a program has changed any of the parameters then you
should ensure that your refresh the display before making changes.

Oscilloscope

The software oscilloscope can be used to trace axis and motion parameters, aiding
program development and machine commissioning.

There are four channels, each capable of recording at up to 1000 samples/sec,
with manual cycling or program linked triggering.

The controller records the data at the selected frequency, and then uploads the
information to the oscilloscope to be displayed. If a larger time base value is used,
the data is retrieved in sections, and the trace is seen to be plotted in sections
across the display. Exactly when the controller starts to record the required data
depends upon whether it is in manual or program trigger mode. In program mode,
it starts to record data when it encounters a TRIGGER instruction in a program
running on the controller. However, in manual mode it starts recording data
immediately.

Trio Motion Technology

SUPPORT SOFTWARE9-32
Motion Perfect Tools

Controls
There are four groups of controls, one for each ot the oscilloscope’s four channels,
a group of horizontal function controls and a group to control up to four cursors.

Oscilloscope Channel Controls
The controls for each of the four channels are grouped
together and are surrounded by a coloured rectangle if the
channel is ON, or a coloured bar to the left of the group if the
channel is OFF. The colour is the same as the trace for that channel.

The group contains controls for channel operating mode, parameter selection and
scaling.

Parameter:
The parameters which the oscilloscope can record and display
are selected using the pull-down list box in the upper left
hand corner of each channel control block. Depending upon
the parameter chosen, the next label switches between ‘axis’
or ‘ch’ (channel). This leads to the second pull-down list box which enables the
user to select the required axis for a motion parameter, or channel for a digital
input/output or analogue input parameter. It is also possible to plot the points held
in the controller table directly, by selecting the ‘TABLE’ parameter, followed by
the number of a channel whose first/last points have been configured using the
advanced options dialogue. If the channel is not required then ‘NONE’ should be
selected in the parameter list box.

Axis / Channel Number:
A pull-down list box which enables the user to select the
required axis for a motion parameter, or channel for a digital
input/output or analogue input parameter. The list box label
switches between being blank if the oscilloscope channel
is not in use, ‘axis’ if an axis parameter has been selected, or ‘ch’ if a channel
parameter has been selected.

Operating Mode:
The channel operting mode controls how the trace is
displayed and scaled

	 Trace off - no data gathered, trace not displayed

	 Automatic Scaling - data gathered - trace automatically scaled to fit display

	 Manual Scaling - data gathered - trace manually scaled

	 Frozen - no data gathered - trace dsiplayed as it was when frozen

Technical Reference Manual

SUPPORT SOFTWARE 9-33
Motion Perfect Tools

Vertical Scaling:
In automatic mode the oscilloscope calculates the most
appropriate scale when it has finished recording, prior to
displaying the trace. The value shown is the value calculated
by the oscilloscope.

In manual mode the user selects the scale per grid division.

The vertical scale is changed by pressing the up/down scale buttons on the left
side of the current scale text box.

Some parameters can be scaled by units. This is controlled by the button to
the right of the scale box. In the up position the trace is scaled in raw units as
gathered internally in the Motion Coordinator. In the down position the raw value
is devided by the value of UNITS before being displayed. If a parameter cannot be
scaled by UNITS this control is greyed out.

Channel Trace Vertical Offset:
There are three controls which control the vertical offset of
the trace:

	 The vertical offset buttons are used to move a trace vertically on the 		
	 display. This control is of particular use when two or more traces are 		
	 identical, in which case they overlay each other and only the uppermost 	
	 trace will be seen on the display.

	 This clears the vertical offset.

	 When in the up position , only manual offset is applied.

	 When in the down position the trace is offset so that the average value 	
	 of the trace is in the centre of the screen. This is equivalent to AC coupling 	
	 on a conventional oscilloscope.

Oscilloscope Horizontal Controls
The oscilloscope horizontal controls appear in the lower left of the oscilloscope
window. From here you can control such aspect as the timebase, triggering modes
and memory used for the captured data.

Timebase:
The required time base is selected using the up/down scale
buttons on the left side of the current time base scale text
box. The value selected is the time per grid division on the
display.

Trio Motion Technology

SUPPORT SOFTWARE9-34
Motion Perfect Tools

If the time base is greater than a predefined value, then the data is retrieved from
the controller in sections (as opposed to retrieving a compete trace of data at one
time.) These sections of data are plotted on the display as they are received, and
the last point plotted is seen as a white spot.

After the oscilloscope has finished running and a trace has been displayed, the
time base scale may be changed to view the trace with respect to different
horizontal time scales. If the time base scale is reduced, a section of the trace can
be viewed in greater detail, with access provided to the complete trace by moving
the horizontal scrollbar.

Horizontal scrollbar:
Once the oscilloscope has finished running and displayed
the trace of the recorded data, if the time base is changed
to a faster value, only part of the trace is displayed. The
remainder can be viewed by moving the thumb box on the
horizontal scrollbar.

Additionally, if the oscilloscope is configured to record both motion parameters
and plot table data, then the number of points plotted across the display can
be determined by the motion parameter. If there are additional table points
not visible, these can be brought into view by scrolling the table trace using the
horizontal scrollbar. The motion parameter trace does not move.

Horizontal Display Mode:
Button up = One Shot Trigger Mode.

In one-shot mode, the oscilloscope runs until it has been triggered and one set of
data recorded by the controller, retrieved and displayed.

Button down = Continuous (Auto-repeat) Trigger Mode.

In continuous mode the oscilloscope continues running and retrieving data
from the controller each time it is re-triggered and new data is recorded. The
oscilloscope continues to run until the trigger button is pressed for a second time.

One Shot / Continuous Trigger Mode:
IButton up = One Shot Trigger Mode.

In one-shot mode, the oscilloscope runs until it has been triggered and one set of
data recorded by the controller, retrieved and displayed.

Button down = Continuous (Auto-repeat) Trigger Mode.

In continuous mode the oscilloscope continues running and retrieving data
from the controller each time it is re-triggered and new data is recorded. The
oscilloscope continues to run until the trigger button is pressed for a second time.

Technical Reference Manual

SUPPORT SOFTWARE 9-35
Motion Perfect Tools

Manual/Program Trigger Mode:
The manual/program trigger mode button toggles between these two modes.
When pressed, the oscilloscope is set to trigger in the program mode, and two
program listings can be seen on the button. When raised, the oscilloscope is set to
the manual trigger mode, and a pointing hand can be seen on the button.

Button up = Manual Trigger Mode:

In manual mode, the controller is triggered, and starts to record data immediately
the oscilloscope trigger button is pressed.

Button down = Program Trigger Mode:

In program mode the oscilloscope starts running when the trigger button is
pressed, but the controller does not start to record data until a TRIGGER
instruction is executed by a program running on the controller. After the trigger
instruction is executed by the program, and the controller has recorded the
required data. The required data is retrieved by the oscilloscope and displayed.

The oscilloscope stops running if in one-shot mode, or it waits for the next trigger
on the controller if in continuous mode

Trigger Button:
When the trigger button is pressed the oscilloscope is enabled. If it is manual
mode the controller immediately commences recording data. If it is in program
mode then it waits until it encounters a trigger command in a running program.

After the trigger button has been pressed, it changes to (stop) whilst the
oscilloscope is running. If the oscilloscope is in the one-shot mode, then after the
data has been recorded and plotted on the display, the trigger button returns to

 indicating that the operation has been completed. The oscilloscope can be
halted at any time when it is running by pressing the button.

Oscilloscope Cursors
The cursor bars are enabled/disabled by clicking on one of the
the cursor buttons which shows/hides the corresponding
cursor. A cursor can be moved by positioning the mouse
cursor over the required bar, holding down the left mouse
button, and dragging the bar to the required position. Cursors are automatically
allocated to the first channel currently enabled. To allocate a
cursor to a different channel, right click on its button and
choose the desired channel from the pop-up menu. When a
cursor is active a coloured bar representing the channel to
which the cursor has been allocated is displayed under the
cursor’s button.

The cursor (right click) menu allows the user to assign the
cursor to a channel and also contains Reset which resets the
cursor position to a position close to the start of the display and Go To which
scrolls the display so that the cursor is visible (only if zoomed in).

Trio Motion Technology

SUPPORT SOFTWARE9-36
Motion Perfect Tools

If the Show numeric display box is checked then the numeric display is enabled,
this shows maximum and minimum values for all enabled traces if there are no
cursors active or the positions of the active cursors if there are cursors active.

Capture Configuration
When the options button is pressed the advanced oscilloscope configuration
settings dialogue is displayed, as shown below. Click the mouse button over the
various controls to reveal further information.

Samples per division:
The oscilloscope defaults to recording five points per horizontal (time base) grid
division. This value can be adjusted using the adjacent scrollbar.

To achieve the fastest possible sample rate it is necessary to reduce the number of
samples per grid division to 1, and increase the time base scale to its fastest value
(1 servo period per grid division).

It should be noted that the trace might not be plotted completely to the right hand
side of the display, depending upon the time base scale and number of samples per
grid division.

Technical Reference Manual

SUPPORT SOFTWARE 9-37
Motion Perfect Tools

Oscilloscope Table Values:
The controller records the required parameter data values in the controller as
table data prior to uploading these values to the scope. By default, the lowest
oscilloscope table value used is zero. However, if this conflicts with programs
running on the controller which might also require this section of the table, then
the lower table value can be reset.

The lower table value is adjusted by setting focus to this text box and typing in
the new value. The upper oscilloscope table value is subsequently automatically
updated (this value cannot be changed by the user), based on the number of
channels in use and the number of samples per grid division. If an attempt is made
to enter a lower table value which causes the upper table value to exceed the
maximum permitted value on the controller, then the original value is used by the
oscilloscope.

Table Data Graph:
It is possible to plot controller table values directly, in which case the table limit
text boxes enable the user to enter up to four sets of first/last table indices.

Parameter Checks:
If analogue inputs are being recorded, then the fastest oscilloscope resolution
(sample rate) is the number of analogue channels in msec (ie; 2 analogue inputs
infers the fastest sample rate is 2msec). The resolution is calculated by dividing
the time base scale value by the number of samples per grid division.

It is not possible to enter table channel values in excess of the controllers
maximum TABLE size, nor to enter a lower oscilloscope table value. Increasing
the samples per grid division to a value which causes the upper oscilloscope table
value to exceed the controller maximum table value is also not permitted.

If the number of samples per grid division is increased, and subsequently the time
base scale is set to a faster value which causes an unobtainable resolution, the
oscilloscope automatically resets the number of samples per grid division.

Before the oscilloscope is triggered a sample quantization check is done to make
sure that it is possible to gather the data at the sample interval requested. This
may cause the number of samples per division to be adjusted so that the controller
is able to gather the data at a sample period which is a whole number of servo
cycles.

Options
The oscilloscope options are used to control the visual look of the oscilloscope
display. Most colours and line thichnesses can be set, allowing the user to set up
the osciiloscope to their own preference.

Trio Motion Technology

SUPPORT SOFTWARE9-38
Motion Perfect Tools

The X/Y mode only settings control the matching of the two channels used to
ccapture X/Y data and the number of data sets buffered (and displayed) when in
X/Y mode.

General Oscilloscope Information
Displaying Controller Table Points:

If the oscilloscope is configured for both table and motion parameters, then
the number of points plotted across the display is determined by the time base
(and samples per division). If the number of points to be plotted for the table
parameter is greater than the number of points for the motion parameter, the
additional table points are not displayed, but can be viewed by scrolling the table
trace using the horizontal scrollbar.

Data Upload from the controller to the oscilloscope:
If the overall time base is greater than a predefined value, then the data is
retrieved from the controller in blocks, hence the display can be seen to be
updated in sections. The last point plotted in the current section is seen as a white
spot.

If the oscilloscope is configured to record both motion parameters, and also to plot
table data, then the table data is read back in one complete block, and then the
motion parameters are read either continuously or in blocks (depending upon the
time base).

Even if the oscilloscope is in continuous mode, the table data is not re-read, only
the motion parameters are continuously read back from the controller.

Technical Reference Manual

SUPPORT SOFTWARE 9-39
Motion Perfect Tools

Enabling/Disabling of oscilloscope controls:
Whilst the oscilloscope is running all the oscilloscope controls except the trigger
button are disabled. Hence, if it is necessary to change the time base or vertical
scale, the oscilloscope must be halted and re-started.

Display accuracy:
The controller records the parameter values at the required sample rate in the
table, and then passes the information to the oscilloscope. Hence the trace
displayed is accurate with respect to the selected time base. However, there
is a delay between when the data is recorded by the controller and when it is
displayed on the oscilloscope due to the time taken to upload the data via the
communications link.

Trio Motion Technology

SUPPORT SOFTWARE9-40
Motion Perfect Tools

Keypad Emulation
The keypad requires one of the user communications channels, and
so you will be prompted for the channel to use.

If the specified channel is already in use, either by another keypad
or a terminal window, the window will not open. Once a channel
has been reserved then the keypad will be shown.

In the TrioBASIC program the channel definition for the commands that are
associated with the Keypad must be changed from 3 (or 4) to the channel that
corresponds with the channel selected for the emulation. We recommend that the
channel assignment be made through a variable, so when time comes to run the
program on the real machine, only one program change will be required.

Example:	 kpd=5

PRINT #kpd, “Press any key..”

Emulating Channel:
The normal operation of the keypad emulation returns the characters as if they
were read from channel #3 with the DEFKEY translation. Alternatively, the Motion
Coordinator can read the characters returned directly from the Keypad using
channel 4. If the emulate #4 codes is selected then the keypad emulation will
return the raw characters.

It is only possible to emulate the default DEFKEY table.

Technical Reference Manual

SUPPORT SOFTWARE 9-41
Motion Perfect Tools

Key Functions

menu keys This is a keypad menu key. Normally it is associated with a
message on the display. This button can only be pressed by
clicking the mouse over it.

function keys 1-8 This is the keypad function key 1. Normally it has an
associated user label. This button can be pressed by
clicking the mouse over it or using the ‘1’ - ‘8’ keys in the
QWERTY area of the PC keyboard.

number keys This is a keypad number key. It can be pressed by clinking
the mouse over it or using the corresponding number in
the numerical keypad of your PC keyboard.

Y/N keys This is the keypad ‘Y’ and ‘N’ keys. This is usually used
to respond YES or NO to some question on the display. It
can be pressed by clicking the mouse over it or using the
‘Y’/’N’ keys in the QWERTY area of the PC keyboard.

CLR key This is the keypad ‘CLR’ key. This is usually used to
perform some form of CANCEL operation. It can be
pressed by clicking the mouse over it or using the ‘ESC’ in
the QWERTY area of the PC keyboard.

Return key This is the keypad Return key. This is usually used to
perform some form of ACCEPT operation. It can be pressed
by clicking the mouse over it or using the ‘Enter’ in the
QWERTY area or numerical keypad of the PC keyboard.

- key This is the keypad ‘-’ key. This is usually used for entering
negative numbers. It can be pressed by clicking the mouse
over it or using the ‘-’ in the QWERTY area or numerical
keypad of the PC keyboard.

. key This is the keypad ‘.’ key. This is usually used for entering
fractional numbers. It can be pressed by clicking the
mouse over it or using the ‘.’ in the QWERTY area or
numerical keypad of the PC keyboard.

arrow keys This is the keypad up arrow key. This is usually used to
select between options on the display. It can be pressed
by clicking the mouse over it or using the appropriate
arrow key of the PC keyboard.

centre button This is the keypad centre key. It can only be pressed by
clicking the mouse over it.

Trio Motion Technology

SUPPORT SOFTWARE9-42
Motion Perfect Tools

Table / VR Editor
The Table and VR Editor tools are very similar. You are
presented with a spreadsheet style interface to view
and modify a range of values in memory.

To modify a value, click on the existing value with the
mouse and type in the new value and press return.
The change will be immediate and can be made whilst
programs are running.

Options
Range:

In both tools you have the option to set the start and end of the range to view. In
the Table view tool the max value displays the highest value you can
read (this is the system parameter TSIZE).

If the range of values is larger than the dialogue box can display, then
the list will have a scrollbar to enable all the values to be seen.

Refresh Button:

This screen does not update automatically, so if a Table or VR is changed by the
program you will not see the new value until you refresh the display.

Jog Axes
This window allows the user to move the axes on the Motion Coordinator.

Technical Reference Manual

SUPPORT SOFTWARE 9-43
Motion Perfect Tools

This window takes advantage of the bi-directional I/O channels on the Motion
Coordinator to set the jog inputs. The forward, reverse and fast jog inputs are
identified by writing to the corresponding axis parameters and are expected to
be connected to NC switches. This means that when the input is on (+24V applied)
then the corresponding jog function is DISABLED and when the input is off (0V)
then the jog function is ENABLED.

The jog functions implemented here disable the fast jog function, which means
that the speed at which the jog will be performed is set by the JOGSPEED axis
parameter. What is more this window limits the jog speed to the range 0..demand
speed, where the demand speed is given by the SPEED axis parameter.

Before allowing a jog to be initiated, the jog window checks that all the data set in
the jog window and on the Motion Coordinator is valid for a jog to be performed.

Jog Reverse

This button will initiate a reverse jog. In order to do this, the following check
sequence is performed:

If this is a SERVO or RESOLVER axis and the servo is off then set the warning
message

If this axis has a daughter board and the WatchDog is off then set the warning
message

If the jog speed is 0 the set the warning message

If the acceleration rate on this axis is 0 then set the warning message

If the deceleration rate on this axis is 0 then set the warning message

If the reverse jog input is out of range then set the warning message

If there is already a move being performed on this axis that is not a jog move then
set the warning message

If there were no warnings set, then the message “Reverse jog set on axis?” is set in
the warnings window, the FAST _ JOG input is invalidated for this axis, the CREEP
is set to the value given in the jog speed control and finally the JOG _ REV output
is turned off, thus enabling the reverse jog function.

Jog Forward
This button will initiate a forward jog. In order to do this, a check sequence
identical to that used for Jog Reverse is performed.

Trio Motion Technology

SUPPORT SOFTWARE9-44
Motion Perfect Tools

Jog Speed
This is the speed at which the jog will be performed. This
window limits this value to the range from zero to the demand
speed for this axis, where the demand speed is given by the
SPEED axis parameter. This value can be changed by writing
directly to this control or using the jog speed control. The scroll bar changes the
jog speed up or down in increments of 1 unit per second

Jog Inputs
These are the inputs which will be associated with the forward /
reverse jog functions.

They must be in the range 8 to the total number of inputs in the
system as the input channels 0 to 7 are not bi-directional and so
the state of the input cannot be set by the corresponding output.

The input is expected to be ON for the jog function to be disabled and OFF for the
reverse jog to be enabled. In order to respect this, when this is set to a valid input
number, the corresponding output is set ON and then the corresponding REV _ JOG
axis parameter is set.

Warnings
This shows the status of the last jog request. For example, the screen below shows
axis 0 with IO channel 7 selected. This is an Input-only channel and therefore
cannot be used in the jog screen.

Technical Reference Manual

SUPPORT SOFTWARE 9-45
Motion Perfect Tools

Axes
This displays an axis selector box which enables the user
to select the axis to include in the jog axes display. By
default, the physical axes fitted to the controller will be
displayed.

Digital IO Status
This window allows the user to view the status of all the IO channels and toggle
the status of the output channels. It also optionally allows the user to enter a
description for each I/O line.

Digital Inputs
This shows the total number of input channels on the Motion Coordinator.

Digital Outputs

This shows the total number of output channels on the Motion Coordinator.

I/O Mimic

Input Banks (Green)

The LEDs show the status of the dedicated input channels. If an LED is ON then the
corresponding input is ON. If an LED is OFF (grey) then the corresponding input is
OFF.

I/O Banks (Yellow)

The LEDs show the status the bi-directional I/O channels. If an LED is ON then the
corresponding input is ON. If an LED is OFF (grey) then the corresponding input is
OFF. Under normal conditions the input status mimics the output status, except:

Trio Motion Technology

SUPPORT SOFTWARE9-46
Motion Perfect Tools

•	 If this input is connected to an external 24V then it may be ON without the
corresponding output being ON.

•	 If the output chip detects an overcurrent situation, then the output chip will
shut down and so the outputs will not be driven, even though they may be
turned on.

If the LED is clicked with the mouse the status corresponding output channel is
toggled, i.e. if the LED is OFF then the output will be turned ON, if the LED is ON
then the output channel will be turned OFF.

Output Banks (Orange)

These banks of LEDs show the status the dedicated outut channels. If an LED
is ON then the corresponding output is ON. If an LED is OFF (grey) then the
corresponding output is OFF.

Virtual I/O Banks (Cyan)

These perform in a similar way to the I/O banks except for the fact that the I/O
lines are not connected to any hardware. The state of the input always reflects
the state of the output.

Descriptions
Checking the Show Description check box will show I/O line descriptions which are
editable by the user. The descriptions are stored in the project file.

Configuration
The Config. button allows the user to show or hide I/O
banks using the Digital I/O Configuration dialogue.

If the box next to an I/O bank is checked it will be shown,
otherwise it will be hidden.

The I/O poll time can also be set from this dialogue.

Technical Reference Manual

SUPPORT SOFTWARE 9-47
Linking to External Tools

Analogue Input Viewer
The analogue input viewer is only available if the
system has analogue inputs. It displays the input
values of all analogue inputs in the system using a
bar-graph with numeric display. All inputs have the
range -2048 to 2047.

Linking to External Tools
The External menu in Motion Perfect allows you to run other
programs directly from the main Motion Perfect menu. In
the example shown here, the menu has been configured to
launch two other Trio applications, CAD2Motion and DocMaker.
Further information on these applications is given at the end
of this chapter.

Cad2Motion and DocMaker are available to download from the Trio Website at www.
triomotion.com.

Configuring Items on the External menu
Clicking on the Configure item will bring up a list of all installed applications and
from here we can add or delete items from this list.

Adding a new programs to the menu
Clicking on the Add button will open the following dialogue:

Trio Motion Technology

SUPPORT SOFTWARE9-48
Linking to External Tools

You can either directly enter the path and program file name in the “File” box, or
use the “Browse” option to open up a standard windows file
selector box which you can use to locate the file on your
computer.

Once you have selected the file, it will automatically appear in
the External menu every time you run Motion Perfect 2.

Removing program items from the menu
To delete a program from the External menu, you simply need to click on the
program name in the list and press the Delete button.

This simply removes the program from the menu. It does NOT affect the original
program on disk!

Control Panel
The control panel appears on the left hand side of the main Motion Perfect
window.

It provides direct links to many of the frequently used operations within Motion
Perfect, in particular the file and directory functions.

Certain Control Panel Features behave differently on controller without a battery
backup. The differences are described later in this section.

Control Panel Features
Fixed/Editable radio buttons

Technical Reference Manual

SUPPORT SOFTWARE 9-49
Linking to External Tools

When the project is “fixed”, the programs are copied to the Flash EPROM on the
Motion Coordinator, the Motion Coordinator is set to run from EPROM and the
programs cannot be modified by Motion Perfect. Usually this is done when the
machine programs are completed. The Flash EPROM provides a reliable permanent
storage for the programs.

Drives radio button

Drives Enabled Drives Disabled

This radio button toggles the state of the enable (watchdog) relay on the
controller, going between drives disabled (watchdog off) and drives enabled
(watchdog on).

The LED mimic next to this control shows the status of the error LED on the Motion
Coordinator. If it is yellow then the drives are disabled, if it is grey the drives are
enabled and if it is flashing then there has been a motion error on at least one axis
of the controller.

Axis Status Error

This will normally be greyed out unless a motion error occurs on the controller.

When an error does occur you can use this button to clear the error condition.

Program directory

This is a scrollable list of the programs on the controller.
The list shows the program name followed by two optional
indicators.

The colour of the program name text is black for
TrioBASICprograms, red for encrypted programs, green for
G-Code programs, blue for text files (not runnable) and orange
for IEC programs. The program name is shown in italics if the program ins running.
The currently selected program is highlighted in the system highlight colour (yellow
in the example above). If a program is listed more than one this represents more
than one running instance of the same program.

The first optional indicator is the number of the process on which the program is
currently running. If it is not running then this space is blank.

The second indicator shows the status of the program. If it has a tick then the
program has been compiled successfully and is runnable. If it has a cross then
there was an error during the compilation of the program and it cannot be run.
The indicator is blank if the program has not been compiled. For programs / files
which are not runnable it is always blank.

Trio Motion Technology

SUPPORT SOFTWARE9-50
Linking to External Tools

If a program name is clicked then it will become the selected program if there are
no programs running. If there are programs running the select will be ignored.

If a program name is double clicked then it will be opened for editing assuming
that there are no programs running. If there are programs running then the editor
will open in read-only mode.

Right clicking on an entry in the program list causes
a pop-up menu to appear allowing easy access to
operations commonly performed on programs. The
right click operation highlights the entry in the program
list under the cursor whilst the pop-up menu is visible.
It reverts to the program which is currently selected on
the controller when the menu is closed.

Run buttons
The run buttons provide short cut keys for running, stopping and single stepping
programs. They can be in one of three states, red, green or yellow.

RED Click on the red button to start the corresponding program
running. The button will turn Green. *

GREEN Click on the green button to stop the corresponding program. The
button will turn red. *

YELLOW Click on the yellow button to single step through the program.

* If the program goes into trace mode, through the use of a trace button, the
selected program step button, the debug option of the program menu, the debug
button on the tool bar or a TRON/STEPLINE command in a program or the terminal
window, then the red/green run button will turn yellow. If the button is clicked
when it is yellow then the program will be stepped one line.

Technical Reference Manual

SUPPORT SOFTWARE 9-51
Linking to External Tools

General Options

	 Show Controller Configuration

	 Show a full directory of all programs in memory

	 Create a New Program. Same as the Program menu item.

	 HALT - Stop all programs which are running

Selected Program

The text box displays the currently selected program and the
buttons below, the operations which can be performed on that
program.

From left to right they are:

Run, Step, Stop, Edit and Power Up Mode.

Free Memory

Shows the total free memory available on the controller.

Motion Stop

Stops all running programs, cancels moves on all axes and disables the watchdog
relay.

Motion Stop is a software function. It is not a substitute for a hardware E_Stop circuit
and should not be used as an emergency stop.

Creating and Running a program
In order to create a new program on the controller, you must first have an active
project. If you have already connected to the controller then you can use the
default project which was created at this time.

You will be presented with a program selector dialogue and prompted to enter a
name for your program file and a program type (BASIC, G-Code etc). It is a good
idea to make this name representative of the task performed by the program, for
example “mmi”, “motion”, “logic” or something similar. In the following example,
we will add a program called “test” to the current project.

Trio Motion Technology

SUPPORT SOFTWARE9-52
Linking to External Tools

Once you have created a new program it will be added to both the controller and
the Motion Perfect project file. You can now edit the file in Motion Perfect Editor,
if appropriate for the program type seleted, which will have been started up
automatically when the new program was created.

The Motion Perfect Editor
You can start the Editor from the main Program Menu, the Edit button in the
program section of the control panel or by right clicking in an entry in the control
panel program list and selecting Edit from the pop-up menu.

If you launch the editor from the control panel it will start immediately. From
the program menu you will first be prompted with a program selector dialogue to
confirm the file you wish to edit.

The Motion Perfect Editor is designed to operate in a similar manner to any simple
text editor found on a PC. Standard operations such a block editing functions, text
search and replace and printing are all supported and conform to the standard
Windows shortcut keys. In addition it provides TrioBASIC syntax highlighting,
program formatting and program debugging facilities.

Technical Reference Manual

SUPPORT SOFTWARE 9-53
Linking to External Tools

Editor Options
Options for the editor are controlled by the Editor Options dialogue. This can
be opened by selecting Options/Editor from Motion Perfect’s main menu. The
dialogue allows to user to change the fonts used for screen display and printing,
the colours used for syntax and line highlighting and the spacings used when
automatically formatting a program.

Screen Font
This is the font used by Motion Perfect to display text in the editor window on the
screen. The font is restricted to fixed pitch fonts only.

Trio Motion Technology

SUPPORT SOFTWARE9-54
Linking to External Tools

Printer Font
This is the font used by Motion Perfect to print program listings. The font is
restricted to fixed pitch fonts only.

Colours

Colours can be specified for the following:

•	 Normal Text - Text which is not highlighted using systax highlighting.

•	Screen Background.

•	Current Line (background) - the current line during debugging.

•	Break Line (background) - a line containing a break (TRON) command.

•	Current Line Break (background) - a line containing a break command which
is also the current line.

•	Error Line (background) - The first line containing a compilation error.

•	BASIC key word - A key word in the TrioBASIC language, usually a command or
some type of system variable.

•	Comment Text

•	Constant Text - text making up a constant value (number).

•	Strings

•	Label Defenition - where a program label is defined.

•	Label Reference - where a jump or branch (GOTO, GOSUB etc.) in program
execution is required. The jump or branch changes the execution point to
the place where the label is defined.

Technical Reference Manual

SUPPORT SOFTWARE 9-55
Linking to External Tools

Format
The format options affect text entry and the automatic reformatting preformed by
Motion Perfect.

For automatic reformatting the code start column and the tab width are
specifiable. As label definitions always start in column 0, the code start column can
be used to indent all lines containing code thus making label definitions clearer.

The when Auto tab on enter check box is checked pressing the “enter” key will
automatically indent the next (new) line to the same position as the current one.

Keyword Assist
This controls the Keyword Assist and Command Template functions of the
editor. The functions can be enabled or disabled using the check boxes and the
background colour of the popup windows can be selected by clicking on the
appropriate Background Colour button.

Trio Motion Technology

SUPPORT SOFTWARE9-56
Linking to External Tools

Other
The other options cover things which do not easily fit into any of the above
categories.

When the Show long variable name warnings box is checked, the editor will give a
warning if a variable name exceeds the maximum number of characters which the
controller checks for uniqueness of variable names (currently 16).

When the Use inline breakpoints in BASIC programs if available box is checked, the
debugger uses inline breakpoints which the controller inserts without modifying
the program. If the box is not checked then the debugger inserts a TRON statement
into the program. The advantage of inline breakpoints is that, because they do not
actually modify the program, they can be inserted whilst the program is running
(or paused).

When the Print in colour box is checked any printing from the editor will be done
in colour if the printer supports it. Otherwise printing is done in monochrome.

Editor Menus

Program

Save

Normally the program is only saved to disk when the editor is closed or a program
is run, however if you have modified the program the Save Button will be available
and will force Motion Perfect to save the file immediately.

Technical Reference Manual

SUPPORT SOFTWARE 9-57
Linking to External Tools

Printing

Use Page Setup to set the page margins, Print Setup to configure you printer
settings and the Print option to send the program to the printer.

Edit
The edit menu functions are similar to many other text editors and provide the
standard block cut/copy/paste operations as well as a simple text find/replace, and
various select and delete functions.

Find/Replace

The options for the find & replace dialogues are very similar and feature many of
the same options

You should enter the text to search for in the “Find What” box, and if using find
and replace, the text to replace it with in the “Replace With” box.

Normally the “Case Sensitive” search option is not selected, You should only use
this option if you have an exact pattern to match, generally the default option is
best.

Trio Motion Technology

SUPPORT SOFTWARE9-58
Linking to External Tools

Goto

The Goto option will bring up the following dialogue:

A list of labels defined in the program is displayed. You can either select a label
from here, or enter a line number directly in the “Selected Line” field. Pressing
the the button at the head of one of the columns in the list will cause the list to be
sorted by the values in that column.

Pressing OK after a selection has been made will cause the cursor in the editor to
jump directly to the beginning of the selected line.

Program Debugger
The Motion Perfect debugger allows you to run a program directly from the editor
window in a special ‘trace mode, executing one line at a time (known as stepping)
whilst viewing the line in the window. It is also possible to set breakpoints in the
program, and run it at normal speed until it reaches the breakpoint where it will
stop, and this line of code will be highlighted in the debug window.

Technical Reference Manual

SUPPORT SOFTWARE 9-59
Linking to External Tools

When programs are running on the controller, any open editor windows will
automatically switch to Debug Mode and will become read-only. Hence,
breakpoints are set in the edit window, and the code viewed in the same window
in debug mode when the program is running.

Stepping Through a program
To commence stepping a program:

Use the mouse to press the yellow button alongside the required program name in
the list box on the control panel

if the required program is currently selected, press the ‘Step’ button on the
control panel() or use the menu item ‘Debug-Step line’

The currently executing line of code is indicated in the debug window by
highlighting it with a green background, and a breakpoint is highlighted with a red
background.

To continue stepping the program, repeatedly press the yellow button alongside
the program name in the list box on the control panel, or press the ‘Step’ button
or the ‘F8’ function key if the program required is currently selected on the Motion
Coordinator.

Breakpoints
Breakpoints are special place markers in the code which allow a particular section
(or sections) of the program to be identified when debugging the code. If a
breakpoint is inserted, the program will pause at that point and return control to
Motion Perfect where the controller may be interrogated or the program run in
step mode as described above.

To insert a breakpoint, first position the text cursor on the line at which you
want the break to occur, then use either Ctrl-B or the menu item to insert the
breakpoint.

If the editor option Use inline breakpoints in BASIC programs if available has been
selected and the controller supports inline breakpoints (this is true of most current
controllers) then an inline breakpoint will be inserted. Otherwise the TrioBASIC
instruction TRON is used to mark a breakpoint and TROFF to terminate a ‘traced’
block.

Inline breakpoints can be added or removed whilst programs are running (or paused).
It is not possible to add or remove TRON breakpoints whilst any programs are running
or are paused.

Trio Motion Technology

SUPPORT SOFTWARE9-60
Linking to External Tools

Running to a breakpoint

A program can be run to the next break point by:

•	using the mouse to press the red button alongside
the program name in the list box on the control
panel.

•	 if it is the currently selected program on the Motion Coordinator, you can
pressing the ‘Run’ button () on the control panel/editor tool bar, or by using
the keyboard <F5> function key.

•	by selecting the ‘Debug->Run’ menu option

Stopping a Program

If it is necessary to stop the program running before it reaches the breakpoint
then:

•	press the green button alongside the program name (running on the
required process) in the list box on the control panel.

•	press the stop button ()on the control panel if the program is
currently selected (this will stop all running copies of the program)

•	use the ‘Debug-Stop’ menu option.

Alternatively all programs can be stopped by pressing the ‘Halt’ button on the
control panel, or selecting the ‘Program’ ‘Halt all programs’ menu option, or using
the <Ctrl><F> key combination.

Switching a running program into trace mode

A running program can enter trace (stepping) mode by pressing the yellow button
alongside the required program name in the list box on the control panel, or
the ‘Step’ button if the required program is currently selected on the Motion
Coordinator.

Viewing variables

The Variable Watch Tool is used to view the values if internal program variables
and global VR variables. To add a variable to the watch tool highlight the variable
name in the program then select Debug / Watch Variable from the editor menu or
click on the tool button in the editor.

Variable Watch Tool
The Variable Watch Tool is used to view the values if internal program vaariables
and global VR variables.

Technical Reference Manual

SUPPORT SOFTWARE 9-61
Linking to External Tools

Local variables in a program on a Motion Coordinator are held as part of the
process information. This allows more than one instance of a program to run
concurrently with each instance having its own local variables. Global VR variables
have a single instance on the Motion Coordinator and allow values to be passed
between programs / processes.

Adding Variables

Variables are normally added to the watch tool from the editor but can be added
manually by entering the variable name, program name and process nuber (for
local) or VR with number e.g. VR(99) (for global).

Removing Variables

A varable can be removed by deleting its name from the watch tool grid, then
pressing the refersh button .

Values

The values are updated every time a program is paused or stepped using the Step
button in the editor. They can also be refreshed manually using the refresh button

.

The value of a variable can be changed by entering a new value into the grid.
The new value is written to the Motion Coordinator when the edit control which
appears on the grid is closed (by pressing ‘return’ or clicking somewhere else in
the grid).

Running Programs
You can start/stop programs running in one of four ways:

From the control panel
If the program is currently selected (highlighted in the control
panel), you can press the green start arrow in the “selected
program” box.

Trio Motion Technology

SUPPORT SOFTWARE9-62
Linking to External Tools

From the program list
Pressing the red button to the left of the program name in the
list will start it running, the button will change to green and it
will then function as a stop button for the same task.

From the editor toolbar
If you have an editor or debug window open for the program you can use either the
Debug menu or toolbar buttons to start the program running

From the Program Menu
The program menu provides us with a slightly different option when running the
program as we are presented with a program selector box which includes an option
to choose which task we want to run the program on.

Making programs run automatically

Set Powerup Mode
It is possible to make the programs on the controller run automatically when the
system first starts up. From the Program Menu, select “Set Powerup Mode” to open
the following dialogue.

Click on the program you want to auto run and a small drop-down list will appear
to the right of the window. If you are happy to let the controller allocate which
task to run on then you should choose “default” as the process number, otherwise
you can specify the task explicitly in the box.

Technical Reference Manual

SUPPORT SOFTWARE 9-63
Configuring The Motion Perfect 2 Desktop

Storing Programs in the Flash EPROM
This is accomplished by selecting the “Fixed” option in the
controller status section of the control panel, or the “Fix
Program Into EPROM” option from the controller menu.

When the controller is fixed into EPROM, the programs actually
still run from RAM. The information stored is copied into RAM when the controller
is first started, therefore if the controller has been switched off for an extended
period, or there is any corruption of the RAM, it will be refreshed with a correct
copy of the programs.

When the controller is set to fixed you will not be able to edit any programs.
In order to make changes you must select “Editable” from the control panel or
“Enable Editing” from the controller menu.

Variations for controllers without battery backup
On those controllers without battery backup, it is essential that you store your
programs into the EPROM to avoid loss of data.

The control panel the fixed / editable radio buttons are replaced
by a single button labelled “Store Programs into EPROM”.

If the programs in memory have been edited, the button will be
highlighted to remind you to fix into EPROM before exiting the
program.

Configuring The Motion Perfect 2
Desktop
There are a number of ways in which you can configure Motion Perfect 2 to suit
your requirements. The Options menu provides a number of choices:-

Trio Motion Technology

SUPPORT SOFTWARE9-64
Configuring The Motion Perfect 2 Desktop

Communications
Set up the default communications device for Motion Perfect 2 to use.

Motion Perfect 2 needs a connection to the controller in order to operate. This
can be an RS-232 serial connection, a USB connection if your controller and PC have
USB ports, an ethernet connection if your controller and PC have ethernet ports,
or PCI if your controller is PCI based. The Communications Links tool (“Options
/ Communications” from Motion Perfect’s main menu) shows the communication
links which have been configured.

If the port you wish to use is not shown, you need to select the Add Port option
which will select the following dialogue.

The configuration parameters will change according the the interface type
selected (serial, Ethernet etc.).

Select the interface type required, then change the parameters as required.

Technical Reference Manual

SUPPORT SOFTWARE 9-65
Configuring The Motion Perfect 2 Desktop

Communications message timeout
Certain operations on the controller may cause the controller to stop
communicating for a few seconds. If you find that your PC seems to disconnect
often, you can change Motion Perfect 2’s default timeout value to allow the
program to wait for a longer time before disconnecting.

Changing Communications Parameters
Serial

The default settings for serial communications on
MC2 series controllers is:- 9600 baud, 7 data bits, 2
stop bits, even parity. For MC3 series controllers it
is 34k8 baud, 8 data bits, 1 stop bit, even parity. If
you wish to change these values you can do so with
the configure button in the Configure Communications
dialogue.

If you change the port setting to anything other than
the default, you may encounter problems when the
controller is reset because it will revert to the default values.

In order to avoid this your controller will need to set the comms parameters within
an auto-running program. See the SETCOM instruction in the TrioBASIC reference
for further information.

USB

There are no configuration options for USB communications.

Ethernet

For Ethernet communications the controller acts as a
server and Motion Perfect a client. The “Server name
/ IP Address” should normally be set to the Ethernet
IP address of the controller. The IP port is normally
set to 23 (telnet port).

PCI

There are no configuration options for PCI communications.

Active Link Selection

If the “Single Link” box is ticked
then it is only posssible to select one
communications link in the link list.
Clicking on the check box of a link in the
list will select it (or deselect it) leaving all
other links deselected.

If the “Single Link” box is not ticked then
clicking on the check box of a link in the
list will select it (or deselect it if it is

Trio Motion Technology

SUPPORT SOFTWARE9-66
General Options

already selected). Motion Perfect will try all the selected links in the list in order
until it finds a controller to connect to. The up and down arraws can be used the
move the position of the currently highlighted link entry up and down in the list.

Editor Options
The Editor Options dialogue allows you to modify the appearance of the Motion
Perfect 2 editor to suit your own personal taste. You can change both the default
font used and the colours used by the syntax highlighting feature. See the Editor
section for more details.

General Options
This dialogue allows the user to change a number of options relating to how Motion
Perfect 2 starts up and handles projects.

When you select General Options you will be presented with the following screen.

The check-boxes enable the following features:

Auto-connect at startup

If this option is selected then Motion Perfect will try and connect automatically
when it is started up. This is the default behaviour and is the same as older
versions of Motion Perfect which did not have this option.

Restore last Main Window position at startup

If this option is selected Motion Perfect will save the Main Window position when
it is closed and restore it when it is started again. If it is not selected, the Main
Window will open maximized.

Check controller type against project file

Technical Reference Manual

SUPPORT SOFTWARE 9-67
General Options

Checks the type of the connected controllerg used against the one in the project
file when a Check Project operation is performed.

Restore desktop on reconnect

If this option is selected, the program will attempt to automatically save the
desktop layout when disconnecting from the controller.

When you reconnect, Motion Perfect 2 will automatically restore the last desktop
layout saved.

Auto EPROM if no Battery Backed RAM

If the controller does not feature battery-backed RAM memory and this option is
selected, the program will attempt to automatically save the controller memory to
EPROM before disconnecting from the controller.

Allow program program operations when running

If this option is selected, some program operations such as loading or editing can
be used when programs are running (normally none are allowed when programs
are running). It isadvisable NOT to use this option as it is only available on some
controllers and can cause Motion Perfect to become very slow and unreliable.

Force Slow Project Load

This option causes Motion Perfect to use the old, slow method of loading a project
even on controllers which support the fast loadin method. This should only be
used if fast loading is unreliable.

Force Slow Program Load

This option causes Motion Perfect to use the old, slow method of loading a
program even on controllers which support the fast loadin method. This should
only be used if fast loading is unreliable.

Terminal script editor

This allows the user to select a program with which to edit terminal scripts. The
default is Windows Notepad.

CAN Drive Options
The CAN Drive Options dialogue controlls how Motion Perfect interacts with CAN
based drives.

Trio Motion Technology

SUPPORT SOFTWARE9-68
General Options

Scanning for Drives
Normally Motion Perfect will scan all available CAN interfaces for drives. It is
possible to inhibit scanning for drives on one or more of the CAN interfaces on
the controller by ticking the appropriate check box. This is used when other CAN
devices connected to a CAN interface (drives and other devices should not be
connected to the same CAN interface).

CAN Drive Type
Motion Perfect currently only Infranor SMT_DB1 and Infranor CD1 drives. When
the CD1 drive type is selected this gives limited functionality with other CANopen
based drives.

CAN Bus Speed
This allows the CAN Bus speed to be set. Maximun speed is 1MBaud.

Diagnostics
This is used to log communications and some of the internal workings of Motion
Perfect as an aid to fault diagnosis. This should not be used except under direction
from Trio Motion Technology as the data logging function has a significant effect
on the speed of operation of Motion Perfect.

Terminal Font
This is used to set the font used in all terminal tool windows.

Program Compare
This is used to specify the external application used to display the differences
between controller and PC versions of a program during the check project /
resolve operation. The standard Motion Perfect installer installs a version of the
GLP licensed program WinMerge to do this but you can choose another program if
you prefer.

Technical Reference Manual

SUPPORT SOFTWARE 9-69
General Options

CX-Drive Configuration
Not required for operation with Trio controllers.

FINS Configuration
Not required for operation with Trio controllers.

Saving the Desktop Layout
When you have a number of windows open, you can save the layout so that it
can be quickly restored later. Alternatively the desktop can be set to restore
automatically on each re-connection by ticking the checkbox under the menu:
Options/General options.

From the Window menu

Restore Last Desktop Restores the last desktop which was automatically
saved by Motion Perfect 2 when it disconnected from
the controller.

Restore Saved Desktop Restore the last desktop saved using the Save Desktop
option.

Save Desktop Saves the current desktop layout to a file on disk.

Clear Desktop Closes all open tool windows.

Intelligent drive configuration windows are not restored.

Trio Motion Technology

SUPPORT SOFTWARE9-70
Running Motion Perfect 2 Without a Controller

Running Motion Perfect 2 Without a
Controller
Normally you will run Motion Perfect 2 on-line, that is connected to a controller.
In fact Motion Perfect 2 is designed to operate in this manner and has little
functionality without the connection.

In order that you can view or edit your project programs without a controller
connected there is a special application to simulate the controller operation and
to allow Motion Perfect 2 to operate in many ways as if a real controller were
connected.

MC Simulation
MC Simulation (MCSim) is a very simple program designed to run alongside Motion
Perfect 2 in the background. There are no options or configurations to worry
about, you just have to run the program and connect as usual.

Starting MC Simulation from Motion Perfect 2
MCSimulation is automatically started (if it is not already running) when Motion
Perfect tries to connect to it. To connect to MCSimulation either use the Connect
to Simulator tool button or set up a Simulation link in the connection list.

Use the Add Port option to select a new port and choose “Simulation” as the Port
Type.

Technical Reference Manual

SUPPORT SOFTWARE 9-71
Running Motion Perfect 2 Without a Controller

The new device will normally appear at the end of the list. Use the “move up”
button to make it the default option.

Limitations of MC Simulation
The MCSimulation program does not yet cover all the functionality present in a real
controller. It does allow connection to Motion Perfect for program editing and the
running of programs in the simulated environment.

There are some unsupported TrioBASIC commands (mainly those related to
communications busses such as CAN).

The motion engine built into the simulation is still under development although it
will handle all move types except linked moves. There is an axis demand position
display which can be used to monitor the axes when moves are taking place. This
can be toggled on and off by selecting View/Axes from the MCSimulation main
menu. The motion engine can be enabled/disabled by checking/unchecking the the
Motion Simulator Enabled check box.

Trio Motion Technology

SUPPORT SOFTWARE9-72
Project Encryptor

PC Requirements
Operating System:	 Windows 2000, XP and Vista

Processor:		 1.5GHz pentium class

RAM:			 256MBytes for Windows 2000, more for others

The reliability of the connection between Motion Perfect and the Simulator is
effected greatly by the performance of the PC and any other software running on
it. The PC should have plenty of spare capacity in both RAM and processing power.
Better performance can usually be obtained from a faster PC and also by running
fewer applications at the same time.

Project Encryptor

Introduction
Motion Perfect Project Encryptor is a stand alone program running under
MicrosoftTM Windows which encrypts one or more programs in a Motion Perfect
project so that the TrioBASIC source for that program cannot be read. This gives
solution providers a way of protecting their work form possible reverse engineering
attempts by third parties

Encryption Process
The encryption process uses a “Project Password” to encrypt one or more
TrioBASIC programs in a project. The encryption of other types of program or file is
not supported.

The encryption process creates a new project leaving the original unencrypted
version intact. When the encrypted version of a project is loaded onto a motion
coordinator a decryption key is required. This key, which is also generated
by the encryption program, is used by the controller to decrypt the program
for compilation purposes. The decryption key is generated from the “Project
Password” and the security code of the target Motion Coordinator and is unique
to that Motion Coordinator. The security code is derived from the unit’s serial
number and a hardware identification code which is built into the motion
coordinator.

Encrypting a Project

Entering the Project Password
When the project encryptor is first started, or when the “Set / Change Project
Password” button is pressed, the Password “Set Project Password” dialogue is
displayed.

Technical Reference Manual

SUPPORT SOFTWARE 9-73
Project Encryptor

The password needs to be entered twice to reduce the chance of an entry error
occurring. For security reasons the password is not displayed in the application’s
main window.

Selecting Source and Destination Projects
In order to be able to encrypt a project the user must select the project to be
encrypted (source project) and the name and location of the encrypted project
(destination project).

Trio Motion Technology

SUPPORT SOFTWARE9-74
Project Encryptor

Source Project
The source project is selected, either by entering the full path of the project file
(which has a .prj extension) into the source project text entry box or by using the
browse button (...) to the right of the source project text entry box to open up a
file selection dialogue.

Select the source project by clicking on an entry in the disk directory tree.

Destination Project
The destination project (which must be different from the source project) is
selected, either by enterning the full path of the new project directory into the
destination project text entry box or by using the browse button (...) to the right
of the destination project text entry box to open up a directory selection dialogue.

Select the parent directory for the project using the disk directory tree and enter
the project name into the project name text entry box.

Technical Reference Manual

SUPPORT SOFTWARE 9-75
CAD2Motion

Selecting the programs to be encrypted
To select which programs to encrypt tick the check boxes next to the program
names.

Encrypting
Click on the Encrypt button to encrypt the project. If it is not enabled then some
of the data required to perform the encryption has not been entered.

Trio Motion Technology

SUPPORT SOFTWARE9-76
CAD2Motion

CAD2Motion

Introduction
CAD to Motion is an application which displays a two dimensional motion path
as specified in a TrioBASIC program. It also allows the importation of path data
exported from a CAD system in DXF format.

It has a build-in editor and some tools for manipulating the sequence of movements
which go to make up a movement path.

CAD2Motion is designed to be used in conjunction with Trio Motion Technology’s
Motion Perfect motion controller configuration program.

Main Screen
The main application form consists of a graph area to the left, a program list area
to the right and a toolbar at the top.

Technical Reference Manual

SUPPORT SOFTWARE 9-77
CAD2Motion

Main Menu

Menu Function

File New Create a new, blank program

Open Open an existing program

Save Save the current program

As Save the current program using a different
name.

Close Close the current program file

Import Import CAD data

Import Options Change the options used when importing
CAD data

Append Append another program or some CAD data
to the current program

Exit Exit from CAD2Motion

Plot Redraw Redraw the graph display

Zoom Extents Zoom to display the extents of the current
program

Zoom Extents, Centre
Zero

Zoom to display the extents of the current
program with the point (0,0) in the centre
of the display

Zoom In Zoom in a fixed ammount

Zoom Out Zoom out a fixed ammount

Zoom Box Zoom in to a box

Pan Pan the graph display

Options Manually set the display options

Edit Cut Cut selected text from the program list

Copy Copy selected text from the program list

Paste Paste text to the program list

Delete Delete selected text in program list

Select All Select all the text in the program list

Undo Undo the last change

Trio Motion Technology

SUPPORT SOFTWARE9-78
CAD2Motion

Tools Reverse Sequence Reverse the current sequence

Shift Sequence Shift the current sequence

Scale Sequence Scale the current sequence

Rotate Sequence Rotate the current sequence

Mirror Sequence Mirror the current sequence

Reorder Sequences Reorder the sequences

Reverse All Reverse the whole motion path

Shift All Shift the whole motion path

Scale All Scale the whole motion path

Rotate All Rotate the whole motion path

Mirror All Mirror the whole motion path

Auto Code Inserter Automatically insert code at defined places
in the program

Check Program Check the program for sequence coding
errors

Windows Toolbar Show/hide the toolbar

File Status Bar Show/hide the file status bar

Graph Status Show/hide the graph status bar

Help Help Topics Show main help file for CAD2Motion

About Show CAD2Motion version information

Toolbar

	 Create a new program

	 Open an existing program file

	 Save the current program

	 Change the graph options

	 Zoom to the extents of the program data

	 Zoom to the extents of the program data with the point (0,0) in the centre 	
	 of the display

	 Redraw the graph

	 Zoom in by a fixed ammount

	 zoom out by a fixed ammount

Technical Reference Manual

SUPPORT SOFTWARE 9-79
CAD2Motion

	 Zoom in to a box

	 Pan the graph display

	 Reverse the current sequence

	 Shift the current sequence

	 Scale the current sequence

	 Rotate the current sequence

	 Mirror the current sequence

	 Undo the last edit operartion

Sequence Manipulation Tools
The Sequence Manipulation Tools are used to manipulate the sequences of moves
which make up a single motion path. These tools allow for reversal, shifting,
scaling, rotating and mirroring of single sequences of moves.

Reverse Reverse the current sequence. Any non move commands may
not appear in the correct place in the reversed sequence.

Shift Shift the current sequence.

Scale Scale the current sequence.

Rotate Rotate the current sequence.

Mirror Mirror the current sequence about the X or Y axis.

The functions of all of these tools are available from the Tools menu.
The whole of the file can be manipulated using the File Manipulation Tools.
Transformations can be undone using the undo button.

Files
The program handles two types of file:

1.	the TrioBASIC program file
2.	the DXF drawing file.

It is possible to read and write TrioBASIC files and to import DXF files. It is also
possible to append data from a TrioBASIC or DXF file.

Import Options
The import options are available through the File / Import Options menu. The
options are set using the following dialogue:

Trio Motion Technology

SUPPORT SOFTWARE9-80
CAD2Motion

Endpoint Matching
This is used to define the distance between the end point of one line and the start
point of another line below which they will be considered as the same point. Three
types of matching can be used:

3.	Default specifies a tight relative tolerance which is good for most purposes.
4.	Relative specifies the tolerance as a percentage of the span of the imported
5.	drawing. Absolute specifies the tolerance in same units as used in the

drawing.

WHEN ONE POINT IS MATCHED WITH ANOTHER THE TWO POINTS ARE CONSIDERED TO
BE THE SAME AND ONE POINT IS EFFECTIVELY REMOVED. THE EFFECT OF THIS IS THAT
IF THE MATCHING TOLERANCE IS LOOSE IT WILL APPEAR THAT THE END POINTS OF
SOME OF THE LINES IN THE DRAWING HAVE BEEN MOVED. THIS EFFECT SHOULD BE
CONSIDERED WHEN SETTING THE END POINT MATCHING TOLERANCE VALUE.

Graph
The graph display shows a two dimensional display of the motion path specified by
the program shown in the program list.

If a line is selected on the graph the cursor in the program list is moved to the
start of the line which produces the movement represented by the line. The line is
highlighted in red in the graph display. If a line is double clicked the whole text of
the appropriate program line is selected.

The current sequence will be highlighted in magenta with the leading MOVEABS
highlighted in cyan. All other sequences will be displayed in black with the leading
MOVEABS in light grey.

The graph has X and Y axis rulers to show values and has scroll bars to allow
movement of the viewed area.

The graph view can also be changed using the graph display tools.

!

Technical Reference Manual

SUPPORT SOFTWARE 9-81
DocMaker

Preparing A Drawing For CAD2Motion
Because of the way CAD2Motion imports data from a DXF file it is important that
the information in the CAD drawing used to produce the DXF file is constructed in
the correct way.

A motion path must be drawn on a single layer. Nothing else can be on this layer
except one or more other motion paths. The motion path must be continuous (have
no gaps in it), although the lines which make up the motion path can be drawn in
any order. CAD2Motion will only import straight lines and arcs so special curves
must NOT be used. All objects used to make up the motion path must be simple
objects (i.e. not groups or blocks).

CAD2Motion interprets the following DXF entities:

ARC	

CIRCLE	

LINE	

LWPOLYLINE	

POINT	

POLYLINE	

SPLINE		 Gives a series of straight lines joining the control points NOT full 	
		 interpretation

VERTEX		 As part of POLYLINE

Program List
The program list contains the TrioBASIC statements which are interpreted to make
up the motion path displayed in the graph.

It is possible to use the program list as an editor to make manual changes to the
program.

When the cursor is moved onto a line with a move command on it the appropriate
line will be highlighted in the graph display. If the line is part of a sequence of
moves the whole sequence will also be highlighted.

The program list editor follows normal Windows conventions and includes text cut
and paste facilities. Multilevel undo is available using the Undo Button or the Undo
option from the Edit Menu.

Trio Motion Technology

SUPPORT SOFTWARE9-82
DocMaker

DocMaker
DocMaker is an application to assist in documenting a project created in Motion
Perfect for a Trio Motion Technology Motion Coordinator. It can be used to print
program listings and to report on the programs (variables, labels, I/O and VR’s) and
on overall I/O and VR usage.

DocMaker analyses the content of the program files in the project. It can be used
to print program listings and to report on the programs (variables, labels, I/O and
VR’s) and on overall I/O and VR usage. There is also a checking routine which does
a quick check on the whole project and flags up possible errors

DocMaker Benefits
Automatic Analysis of Motion Perfect Project Files

Highlight potential errors due to labels or variables

Generates fully cross-referenced reports

Reformat programs with auto-indenting

Docmaker Hardware Requirements
IBM PC or Compatible running Microsoft Windows 98 or higher

Works with all current Motion Coordinators

Technical Reference Manual

SUPPORT SOFTWARE 9-83
DocMaker

10CHAPTER

AUTO LOADER AND
MCLOADER ACTIVEX

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX
﻿

10-2

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX
Project Autoloader

10-3

AutoLoader and MCLoader ActiveX

Project Autoloader
Trio Project Autoloader is a stand alone Motion Coordinator program to load projects
created using Motion Perfect 2 onto a Trio Motion Coordinator

The program is intended for easy loading of projects onto controllers without the
need to run Motion Perfect and so allows OEM manufacturers to update customers
equipment easily.

Operation of the program is controlled using a script file which gives a series of
commands to be processed, in order, by the program.

Using the Autoloader

General
The autoloader is primarily intended to be used to update controllers already installed
in equipment to allow OEM manufacturers to update customers equipment easily. It can
be used from a hard disk or CD-ROM.

Script File
The autoloader program uses a script file AutoLoader.tas as a source of commands.
These commands are executed in order until all commands have been processed or an
error has occurred.

If any command fails the execcution terminates without completing the scripted
command sequence.

Project
The project to be loaded using LOADPROJECT is in the form of a normal Motion Perfect
2 project. This consists of a directory containing a project definition file and TrioBASIC
program files. The directory must have the same name as the project definition file
less the extension.

i.e. project definition file TestProj.prj, directory TestProj

The project directory must be in the LoaderFiles directory.

Timeout
If there are large programs in the project the command timeout may need to be
increased from its default value of 10 seconds otherwise the project load may fail due
to the long time it takes to select a new program on the controller. The TIMEOUT
command should appear in the script file before any LOADPROJECT command.

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX
Project Autoloader

10-4

Tables
Any tables to be loaded must be in the form of *.lst files produced by Motion Perfect 2.

Normally these table files will be in the LoaderFiles directory.

Extra Programs
Programs which need to be loaded using LOADPROGRAM because they are not in the
project being loaded (or if no project is being loaded)

Normally these program files will be in the LoaderFiles directory.

Files
The autoloader is designed to work with the following file structure (fixed names are
shown in bold italic type).

AutoLoader.exe

Base Directory

AutoLoader.tas

Table1.lst

ExtProg1.bas

Project

Loader Files

Project.prj

Prog1.bas

Pro2.bas

Where:

Base Directory is normally the root directory, but can be any directory.

Project is the Motion Perfect 2 project directory for the project to be loaded using
the LOADPROJECT command, Project.prj being the project file and Proj?.bas are the
program files in the project.

Table?.lst are the table files to be loaded using the LOADTABLE command.

ExtProg?.bas are the extra programs to be loaded using the LOADPROGRAM command.

Any or all of the objects in the LoaderFiles directory can be located elsewhere as long
as the file (or directory) name is specified using a full path. The script file can be
specified as a single argument to the AutoLoader program.

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX
Project Autoloader

10-5

Running the program
The program can be started in the same way as any other Windows program, in which
case the LoaderFiles directory must be in the same directory as the AutoLoader
executable file.

It can also be started from the command line with an optional argument which
specifies the script file to process. e.g.

AutoLoader E:\MXUpdate\20051203\UpDate1.tas

Start Dialog
The start dialog displays a message specified in the script and has continue and cancel
buttons so that the user can exit from the program without running the script.

Main Window
The program main window consists of two message windows; one to display the current
command and the other to display the name of the program or file currently being
loaded. There is a button to show the current status (Starting, running, pass or fail) and
a progress bar to show the progress during file and table loading.

The close button closes the dialog. If it is pressed while a script is being processed then
script processing will be terminated at the end of the current operation.

﻿

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-6

Script Commands

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-7

Script Commands

The following commands are available for use in script files

AUTORUN
CHECKPROJECT
CHECKTYPE
CHECKUNLOCKED
CHECKVERSION
COMMLINK (alternative COMMPORT)
COMPILEALL
COMPILEPROGRAM
DELETEALL (alternative NEWALL)
EPROM
FASTLOADPROJECT
HALTPROGRAMS
LOADPROGRAM
LOADPROJECT
LOADTABLE
SETPROJECT
SETRUNFROMEPROM
STARTUPMESSAGE
TIMEOUT
DELTABLE

All commands return a result of OK or Fail. An OK result allows script execution to
continue, a Fail result will make script execution terminate at that point.

Script Commands

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-8

AUTORUN

Purpose:	 To run the programs on the controller which are set to run automatically at power-
on.

 Syntax:	 AUTORUN

CHECKPROJECT

Purpose:	 To check the programs on a controller against a project on disk.

Syntax:	 CHECKPROJECT [<ProjectName>]

Where <ProjectName> is the optional path of the project directory. If the project
directory is in the same directory as the ALoader.exe executable then it is just
the name of the of the project directory. If no <ProjectName> is specified then
the current project, set by a previous SETPROJECT or LOADPROJECT command, is
used. This operation is automatically performed by a LOADPROJECT operation.

Examples:	 CHECKPROJECT

CHECKPROJECT TestProj

CHECKTYPE

Purpose:	 To check the controller type.

Syntax:	 CHECKTYPE <Controller List>

Where <Controller List> is a comma separated list of one or more valid controller
ID numbers.

i.e. 206,216

Examples:	 CHECKTYPE 206

CHECKTYPE 202,216,206

Controller ID Numbers
Each type of controller returns a different ID number in response to the TrioBASIC
command ?CONTROL[0] . The table below gives the ID number for current
controllers.

Script Commands

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-9

Controller CONTROL

MC302X 293

Euro205x 255

Euro209 259

MC206X 207

PCI208 208

MC224 224

CHECKUNLOCKED

Purpose:	 To check that the controller is not locked.

Syntax:	 CHECKUNLOCKED

CHECKVERSION

Purpose:	 To check the version of the controller system code.

Syntax:	 CHECKVERSION <Operator><Version>

CHECKVERSION <LowVersion>-<HighVersion>

Examples:	 CHECVERSION >1.49

CHECKVERSION >= 1.51
CHECKVERSION 1.42-1.50

Comment

Purpose:	 To allow the user to put descriptive comments into a script.

Syntax:	 ‘ <Text>

Where <Text> is any text.

Script Commands

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-10

Examples:	 ‘ This is a comment line

COMMLINK (alternative COMMPORT)

Purpose:	 To set the communications port and parameters.

Syntax:	 Serial

For a serial port this string is similar to COM1:9600,7,e,2 to specify the port, speed,
number of data bits, parity and number of stop bits. 9600,7,e,2 are the default
parameters for a controller.

USB
For a USB connection the string is USB:0 as only a single USB connection (0) is
supported.

Ethernet
For an ethernet connection the string is similar to Ethernet:192.168.0.123:23 which
specifies an ethernet connection to IP address 192.168.0.123 on port 23. The final
‘:’ and the port number can be omitted, in which the port number defaults to 23.

PCI
For a PCI connection the string is similar to PCI:0 which specifies a connection to
PCI card 0.

Examples:	 COMMLINK COM2:9600,7,e,2

COMMLINK USB:0
COMMLINK Ethernet:192.168.0.111
COMMLINK PCI:1

COMPILEALL

Purpose:	 To compile all the programs on the controller.

Syntax:	COMPILEALL

COMPILEPROGRAM

Purpose:	 To compile a program on the controller.

Syntax:	 COMPILEPROGRAM <Program>

Where <Program> is the program name.

Script Commands

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-11

Examples:	 COMPILEPROGRAM Prog

The LOADPROGRAM command automatically compiles programs after thay are
loaded so under normal circumstances there is no need to use this command.

DELETEALL (alternative NEWALL)

Purpose:	 To delete all programs on the controller.

Syntax:	 DELETEALL

EPROM

Purpose:	 To store the project currently in controller RAM into EPROM

Syntax:	 EPROM

FASTLOADPROJECT

Purpose:	 To load a project from disk onto the controller.

Description:	 FASTLOADPROJECT is a faster alternative to LOADPROJECT. It is
only compatible with system software version 1.63 or later for ‘2’ series Motion
Coordinators, and version 1.9013 or later for ‘3’ series Motion Coordinators.

FASTLOADPROJECT must be used if a project contains encrypted programs.

Syntax:	 FASTLOADPROJECT [<ProjectName>]

Where <ProjectName> is the optional path of the project directory. If the project
directory is in the same directory as the ALoader.exe executable then it is just the
name of the of the project directory. If no <ProjectName> is specified then the
current project, set by a previous SETPROJECT command, is used.

Examples:	 FASTLOADPROJECT

FASTLOADPROJECT TestProj

If FASTLOADPROJECT fails and the project only contains TrioBASIC source files then
using LOADPROJECT may work.

Script Commands

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-12

HALTPROGRAMS

Purpose:	 To halt all programs on the controller.

Syntax:	 HALTPROGRAMS

This operation is automatically performed as part of LOADPROJECT, LOADPROGRAM
and DELTABLE commands.

LOADPROJECT

Purpose:	 To load a project from disk onto the controller.

Syntax:	 LOADPROJECT <ProjectName>

Where <ProjectName> is the optional path of the project directory. If the project
directory is in the same directory as the ALoader.exe executable then it is just the
name of the of the project directory. If no <ProjectName> is specified then the
current project, set by a previous SETPROJECT command, is used.

Examples:	 LOADPROJECT

LOADPROJECT TestProj

LOADPROJECT will only load TrioBASIC soruce files.

LOADPROGRAM

Purpose:	 To load a program not in a project onto the controller.

Syntax:	 LOADPROGRAM <ProgramFile>

Where <ProgramFile> is the path of the program file. If the program file is in the
same directory as the ALoader.exe executable then this is just the file name of the
program file.

Examples:	 LOADPROGRAM TestProg.bas

LOADPROGRAM will only load TrioBASIC soruce files.

Script Commands

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-13

LOADTABLE

Purpose:	 To load a table onto the controller.

Syntax:	 LOADTABLE <TableFile>

Where <TableFile> is the path of the table file. If the table file is in the LoaderFiles
directory then this is just the file name of the table file.

This command should always be used after the LOADPROJECT command.

Examples:	 LOADTABLE Tbl.lst

SETPROJECT

Purpose:	 To set the current project for following commands.

Syntax:	 SETPROJECT <ProjectName>

Where <ProjectName> is the path of the project directory. If the project directory
is in the same directory as the ALoader.exe executable then it is just the name of
the of the project directory.

Examples:	 SETPROJECT TestProj

SETRUNFROMEPROM

Purpose:	 To set the controller to use the programs stored in its EPROM. (It actually copies
the programs from EPROM into RAM at startup).

Syntax:	 SETRUNFROMEPROM <State>

Where <State> is 1 for copy from EPROM and 0 is use programs currently in RAM.

A single @ character can be used to specify state in the project file.

Examples:	 SETRUNFROMEPROM 1

SETRUNFROMEPROM @

This command only applies to controllers which have battery backed RAM
(controllers with no battery backed RAM will always copy programs from EPROM).

Script Commands

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-14

Startup Message

Purpose:	 To allow the user to display a custom message in the startup dialog.

Multiple lines can be used to specify the message, they are displayed in the order
that they appear in the script file. The message can be specified anywhere in the
script file and the lines need not be together in the file.

Syntax:	 # <Text>

Where <Text> is any text.

Examples:	 # ***

This autoloader was set up by ABCD Inc. to change Valve Machine to left-hand
thread

TIMEOUT

Purpose:	 To set the command timeout.

Syntax:	 TIMEOUT time

Where time is the timeout value in seconds (default is 10).

Examples:	 TIMEOUT 30

It will normally only be necessary to increase the timeout above 10 if there are
large programs in the target controller or you are loading large programs onto it.

Script Commands

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-15

Script File
The autoloader program uses a script file AutoLoader.tas as a source of commands.
These commands are executed in order until all commands have been processed or
an error has occurred.

If any command fails the exececution terminates without completing the scripted
command sequence.

Sample Script

 ‘ Test Script

‘ **************

‘ Startup Message

This autoloader was set up by TRIO to load a test project onto
a controller of fixed type.

COMMLINK COM1:9600,7,e,2

CHECKTYPE 206

CHECKVERSION > 1.45

CHECKUNLOCKED

LOADPROJECT LoaderTest

LOADTABLE tbl _ 1.lst

CHECKPROJECT LoaderTest

LOADPROGRAM flashop.bas

LOADPROGRAM clrtable.bas

LOADPROGRAM settable.bas

EPROM

SETRUNFROMEPROM @

For this script to work correctly the LoaderFiles directory must contain a project
directory LoaderTest, a table file tbl_1.lst and three program files: flashop.bas,
clrtable.bas and settable.bas.

MC Loader

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-16

MC Loader

Trio MC Loader is a Windows ActiveX control which can load projects
(produced with Motion Perfect) and programs onto a Trio Motion Coordinator.
Communication with the Motion Coordinator can be via Serial link, USB, Ethernet
or PCI depending on the Motion Coordinator.

Requirements
•	PC with one or more of USB interface, Ethernet network interface, or PCI

based Motion Coordinator.

•	Microsoft Windows XP, Vista or Windows 7 32bit versions (Windows 2000 or XP
only for PCI connection)

•	TrioUSB driver - for USB connection

•	Trio PCI driver - for PCI connection (Windows 2000 and XP systems only)

•	Knowledge of the Trio Motion Coordinator to which the TrioPC ActiveX
controls will connect.

•	Knowledge of the TrioBASIC programming language.

Installation of the MC Loader Component
Launch the program “Install_TrioMCLoader” and follow the on-screen instructions.
The TrioUSB driver and TrioPC ocx will be installed and registered to your Windows
environment. The Trio MC Loader driver will also be installed on systems running
Windows 2000 or Windows XP. A Windows Help file is included as an alternative to
the printed pages in this manual.

Using the Component
The MC Loader component must be added to the project within your programming
environment. Here is an example using Visual Basic, however the exact sequence
will depend on the software package used.

From the Menu select Project then Components... (or use shortcut ctrl+T).

When the Components dialogue box has opened, scroll down until you find “Trio
MC Loader Control Module” then click in the block next to Trio MC Loader. (A tick
will appear)

Now click OK and the component should appear in the control panel on the left
side of the screen. It is identified as TrioMCLoader Control.

Once you have added the Trio MC Loader component to your form, you are ready
to build the project and include the Trio MC Loader methods in your programs.

MC Loader

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-17

Properties
The control has the following properties:

CommLink

ControllerType

ControllerSystemVersion

DecryptionKey

Locked

ProjectFile

RunFromEPROM

Timeout

Events

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-18

Events

The control does not generate any events.

CommLink

Type:	 BSTR (string)

Access:	 Read / write

Description:	 This property is used to get or set the configuration of the communications link.
The format of the string depends on the type of communications link being used.

Serial

For a serial port this string is similar to COM1:9600,7,e,2 to specify the port, speed,
number of data bits, parity and number of stop bits. 9600,7,e,2 are the default
parameters for most controllers.

USB

For a USB connection the string is USB:0 as only a single USB connection (0) is
supported.

Ethernet

For an ethernet connection the string is similar to Ethernet:192.168.0.123:23 which
specifies an ethernet connection to IP address 192.168.0.123 on port 23. The final
‘:’ and the port number can be omitted, in which the port number defaults to 23.

PCI

For a PCI connection the string is similar to PCI:0 which specifies a connection to
PCI card 0.

Examples:	 Visual BASIC:

axLoader.CommLink = “Ethernet:192.168.22.11”

Visual C#:

axLoader.CommLink = “Ethernet:192.168.22.11”;

Events

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-19

ControllerType

Type:	 unsigned long

Access:	 Read

Description:	 This is a read-only property which returns the Controller Type code.

Examples:	 Visual BASIC:

Dim ConType As Long
ConType = axLoader.ControllerType

Visual C#:

ulong ulConType;
ulConType = axLoader.ControllerType;

ControllerSystemVersion

Type:	 double

Access:	 Read

Description:	 This is a read-only property which returns the controller system software version
number.

Examples:	 Visual BASIC:

Dim Version As Double
Version = axLoader.ControllerSystemVersion

Visual C#:

double dVersion;
dVersion = axLoader.ControllerSystemVersion;

Events

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-20

DecryptionKey

Type:	 BSTR (string)

Access:	 Read / write

Description:	 The DecryptionKey property sets/gets the decryption key for a subsequent fast
mode LoadProject operations. The decryption key is only used when a project
containing one or more encrypted programs is loaded onto a controller using fast
LoadProject.

Examples:	 Visual BASIC:

axLoader.DecryptionKey = “hjiHU87OOo”

Visual C#:

axLoader.DecryptionKey = “hjiHU87OOo”;

Decryption keys are a derived from the key string used to encrypt the program(s) and
the security code of the target controller. Decryption keys can be generated using the
Project Encryptor tool distributed with Motion Perfect.

Locked

Type:	 Variant_bool

Access:	 Read

Description:	 This is a read-only property which returns the locked state of the controller (true
for locked, false for unlocked).

Examples:	 Visual BASIC:

Dim IsLocked As Boolean
IsLocked = axLoader.Locked

Visual C#:

bool bLocked;
bLocked = axLoader.Locked;

Events

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-21

ProjectFile

Type:	 BSTR (string)

Access:	 Read / write

Description:	 This property is used to get or set the current project file. The full path to the
project file should be used when setting this property.

Examples:	 Visual BASIC:

If axLoader.ProjectFile.Length = 0 then
 axLoader.ProjectFile = “C:\Projects\PPX\PPX.prj”
End If

Visual C#:

if (axLoader.ProjectFile.Length == 0)
 axLoader.ProjectFile = “C:\\Projects\\PPX\\PPX.prj”;

RunFromEPROM

Type:	 Variant_bool

Access:	 Read / write

Description:	 This property is used to control how the controller starts up. When set to false
it uses programs stored in its RAM memory. When set to true the controller uses
programs stored in its EPROM memory (overwriting the programs in RAM).

Examples:	 Visual BASIC:

If not axLoader.RunFromEPROM then
 axLoader.RunFromEPROM = True
End If

Visual C#:

if (!axLoader.RunFromEPROM)
 axLoader.RunFromEPROM = true;

Events

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-22

Timeout

Type:	 unsigned long

Access:	 Read / write

Description:	 This property is used to set the command timeout for communications with the
controller. The default value is 10 (seconds) but may need to be increased if you
are using large programs or have a large project.

Examples:	 Visual BASIC:

If axLoader.Timeout < 20 Then
 axLoader.Timeout = 25
End If

Visual C#:

if (axLoader.Timeout < 20)
 axLoader.Timeout = 25;

Methods

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-23

Methods

The control has the following methods:

AutoRun
CheckProject
CompileAll
CompileProgram
DeleteAll
DeleteTable
GetLastError
GetLastErrorString
HaltPrograms
LoadProgram
LoadProject
LoadTable
Lock
Unlock

AutoRun

Parameters:	 none

Return Type:	 Variant_bool

Description:	 This method is used to run any programs on the controller which are set to auto-
run on startup.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.AutoRun Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.AutoRun())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

Methods

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-24

CheckProject

Parameters:	 none

Return Type:	 Variant_bool

Description:	 This method is used to check the programs on the controller against the project
previously set using the ProjectFile.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.CheckProject Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.CheckProject())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

CompileAll

Parameters:	 none

Return Type:	 Variant_bool

Description:	 This method is used to compile all programs on the controller.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.CompileAll Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

Methods

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-25

if (!axLoader.CompileAll())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

CompileProgram

Parameters:	 BSTR (string): ProgramName

Return Type:	 Variant_bool

Description:	 This method is used to compile a single program on the controller.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.CompileProgram(“PROG”) Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.CompileProgram(“PROG”))
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

DeleteAll

Parameters:	 none

Return Type:	 Variant_bool

Description:	 This method is used to delete the all the programs on the controller.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.DeleteAll Then

Methods

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-26

 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)

End If

Visual C#:

if (!axLoader.DeleteAll())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

DeleteTable

Parameters:	 none

Return Type:	 Variant_bool

Description:	 This method is used to delete the table on the controller. It only works on
controllers which do not have dedicated table memory.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.DeleteTable Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Variant_bool

if (!axLoader.DeleteTable())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

Methods

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-27

GetLastError

Parameters:	 none

Return Type:	 unsigned long

Description:	 This method is used to retrieve the error code after a method call has failed
(returned false). The returned error code is only valid for the previous method call.

The following error codes can be returned:

Code 	 Error Description

0 	 No error

1 	 File does not exist

2 	 Error opening file

3 	 Invalid IP address

4 	 Invalid IP port

5 	 Invalid integer

6 	 Invalid communications port

7 	 Invalid communications parameters

8 	 Communications error

9 	 Invalid controller system version

10 	 Invalid controller type

11 	 Controller type not found

12 	 Invalid range

13 	 Failed version check

14 	 Controller locked

15 	 Failed to set project

16 	 Invalid command

17 	 Directory does not exist

18 	 No file specified

19 	 Program not in project

20 	 Program not on controller

21 	 CRC mismatch

22 	 Invalid directory

Methods

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-28

23 	 Failed to create directory

24 	 Invalid program file name

25 	 Error writing to file

26 	 Error reading CRC

27 	 Error calculating CRC

28 	 File not in project

29 	 Invalid program name

30 	 Failed to halt programs

31 	 Error reading directory

32 	 Program failed to compile

33 	 Failed to set communications parameters

34 	 Failed to get communications parameters

35 	 Transmit failure

36 	 Invalid connection type

37 	 Internal pointer error

38 	 Error sending string

39 	 Error sending command

40 	 Failed to select program

Further error information can be obtained by calling the GetLastErrorString
method.

Examples:	 Visual BASIC:

If Not axLoader.CompileAll Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.CompileAll())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

Methods

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-29

GetLastErrorString

Parameters:	 none

Return Type:	 BSTR (string)

Description:	 This method is used to retrieve additional information from the controller. The
string contains extra information which can be used in conjunction with the error
code returned by the GetLastError method.

Examples:	 Visual BASIC:

If Not axLoader.CompileAll Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.CompileAll())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

HaltPrograms

Parameters:	 none

Return Type:	 Variant_bool

Description:	 This method is used to halt all programs currently running on the controller.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.HaltPrograms Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.HaltPrograms())
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

Methods

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-30

LoadProgram

Parameters:	 BSTR (string): ProgramFileName

Variant_bool: Compile

Return Type:	 Variant_bool

Description:	 This method is used to load a single program onto the controller. It is generally
good practice to compile after loading the program.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.LoadProgram(“C:\Programs\Prog.bas”, True) Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.LoadProgram(“C:\\Programs\\Prog.bas”, true))
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

LoadProject

Parameters:	 Variant_bool: FastLoad

Return Type:	 Variant_bool

Description:	 This method is used to load the project previously set using the ProjectFile
property onto the controller. If FastLoad is true, the loader will use the fast
loading algorithm. Fast loading is not available some controllers and is only
available in more recent versions of system software. All controllers will perform
a normal (slow) load. Fast load must be used if the project contains one or more
encrypted programs.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Methods

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-31

Examples:	 Visual BASIC:

If Not axLoader.LoadProject(False) Then

 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)

End If

Visual C#:

if (!axLoader.LoadProject(false))
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

LoadTable

Parameters:	 BSTR (string): TableFileName

Return Type:	 Variant_bool

Description:	 This method is used to load data into the table on the controller from a table list
file (usually saved by Motion Perfect).

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.LoadTable(“C:\Tables\ThisTable.lst”) Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.LoadTable(“C:\\Tables\\ThisTable.lst”))
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

Methods

Trio Motion Technology

AUTO LOADER AND MCLOADER ACTIVEX10-32

Lock

Parameters:	 unsigned long: Lock Code

Return Type:	 Variant_bool

Description:	 This method is used to lock the controller so that programs cannot be edited.
The lock code used here must also be used if the controller is unlocked using the
Unlock method.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.Lock(1234) Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Visual C#:

if (!axLoader.Lock(1234))
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

Unock

Parameters:	 unsigned long: LockCode

Return Type:	 Variant_bool

Description:	 This method is used to unlock a locked controller so that programs can be edited.
The lock code used here must be the same as the code used to lock the controller.

The return value is true if the method call succeded and false if it failed.
Further error information can be obtained by calling the GetLastError and
GetLastErrorString methods.

Examples:	 Visual BASIC:

If Not axLoader.Unlock(1234) Then
 DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString)
End If

Methods

Technical Reference Manual

AUTO LOADER AND MCLOADER ACTIVEX 10-33

Visual C#:

if (!axLoader.Unlock(1234))
DisplayError(axLoader.GetLastError,axLoader.GetLastErrorString);

11CHAPTER

USING THE PC MOTION
ACTIVEX CONTROL

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-2
﻿

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-3
TrioPC Motion ActiveX Control

TrioPC Motion ActiveX Control
The TrioPC ActiveX component provides a direct connection to the Trio MC
controllers via a USB or ethernet link. It can be used in any windows programming
language supporting ActiveX (OCX) components, such as Visual Basic, Delphi, Visual
C, C++ Builder etc.

Requirements
•	PC with USB and/or ethernet network support

•	Windows XP, Windows Vista (32 bit verions) or Windows 7 (32 bit versions)

•	Trio PCI driver - for PCI based Motion Coordinators

•	Trio USB driver - for Motion Coordinator with a USB interface.

•	Knowledge of the Trio Motion Coordinator to which the TrioPC ActiveX
controls will connect.

•	Knowledge of the TrioBASIC programming language.

Installation of the ActiveX Component
The component and auxiliary documentation is provided as an MSI installer
package. Double clicking on the .msi file will start the install process. It is
recommended that any previous version should be uninstalled before the install
process is initiated. The installer also installs the Trio USB and Trio PCI drivers and
registers the ActiveX component.

Using the Component
The TrioPC component must be added to the project within your programming
environment. Here is an example using Visual Basic, however the exact sequence
will depend on the software package used.

From the Menu select Tools then Choose Toolbox Items.

When the Choose Toolbox Items dialogue box has opened, select the COM
components tab, then scroll down until you find “TrioPC Control” then click in the
block next to TrioPC. (A tick will appear).

Now click OK and the component should appear in the control panel on the left
side of the screen. It is identified as TrioPC Control.

Once you have added the TrioPC component to your form, you are ready to build
the project and include the TrioPC methods in your programs.

Connection Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-4

Connection Commands

Open

Description:	 Initialises the connection between the TrioPC ActiveX control and the Motion
Coordinator.

The connection can be opened over a PCI, Serial, USB or Ethernet link, and can
operate in either a synchronous or asynchronous mode. In the synchronous mode
all the TrioBASIC methods are available. In the asynchronous mode these methods
are not available, instead the user must call SendData() to write to the Motion
Coordinator, and respond to the OnReceiveChannelx event by calling GetData() to
read data received from the Motion Coordinator. In this way the user application
can respond to asynchronous events which occur on the Motion Coordinator
without having to poll for them.

If the user application requires the TrioBASIC methods then the synchronous mode
should be selected. However, if the prime role of the user application is to respond
to events triggered on the Motion Coordinator, then the asynchronous method
should be used.

Syntax:	 Open(PortType, PortMode)

Parameters:	 Short PortType:	 See Connection Type.

Short PortMode:	 See Communications Mode.

Return Value:	 Boolean; TRUE if the connection is successfully established. For a USB connection,
this means the Trio USB driver is active (an MC with a USB interface is on, and
the USB connections are correct). If a synchronous connection has been opened
the ActiveX control must have also successfully recovered the token list from the
Motion Coordinator. If the connection is not successfully established this method
will return FALSE.

Example:	 Rem Open a USB connection and refresh the TrioPC indicator

TrioPC _ Status = TrioPC1.Open(0, 0)
frmMain.Refresh

Connection Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-5

Close

Description:	 Closes the connection between the TrioPC ActiveX control and the Motion
Coordinator.

Syntax:	 Close(PortId)

Parameters:	 Short PortMode:	 -1: all ports, 0: synchronous port, >1: asynchronous port

Return Value:	 None

Example:	 Rem Close the connection when form unloads

Private Sub Form _ Unload(Cancel As Integer)
 TrioPC1.Close
 frmMain.Refresh
EndSub

IsOpen

Description:	 Returns the state of the connection between the TrioPC ActiveX control and the
Motion Coordinator.

Syntax:	 IsOpen(PortMode)

Parameters:	 Short PortMode:	 See Communications Mode.

Return Value:	 Boolean; TRUE if the connection is open, FALSE if it is not .

Example:	 Rem Close the connection when form unloads

Private Sub Form _ Unload(Cancel As Integer)
 If TrioPC1.IsOpen(0) Then
 TrioPC1.Close(0)
 End If
 frmMain.Refresh
End Sub

Connection Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-6

SetHost

Description:	 Sets the ethernet host IPV4 address, and must be called prior to opening an
ethernet connection. The HostAddress property can also be used for this function

Syntax:	 SetHost(host)

Parameters:	 String host:	 host IP address as string (eg “192.168.0.250”).

Return Value:	 None

Example:	 Rem Set up the Ethernet IPV4 Address of the target Motion Coordinator

TrioPC1.SetHost(“192.168.000.001”)
Rem Open a Synchronous connection
TrioPC _ Status = TrioPC1.Open(2, 0)
frmMain.Refresh

GetConnectionType

Description	 Gets the connection type of the current connection.

Syntax:	 GetConnectionType()

Parameters:	 None

Return Value:	 -1: No Connection, See Connection Type.

Example:	 Rem Open a Synchronous connection

ConnectError = False
TrioPC _ Status = TrioPC1.Open(0, 0)
ConnectionType = TrioPC1.GetConnectionType()
If ConnectionType <> 0 Then
 ConnectError = True
End If
frmMain.Refresh

Properties

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-7

Properties

Board

Description	 Sets the board number used to access a PCI card.

The PCI cards in a PC are always enumerated sequentially starting at 0. It must be
set before the OPEN command is used.

Type:	 Long

Access	 Read / Write

Default Value:	 0

Example:	 Rem Open a PCI connection and refresh the TrioPC indicator

If TrioPC.Board <> 0 Then
 TrioPC.Board = 0
End If
TrioPC _ Status = TrioPC1.Open(3, 0)
frmMain.Refresh

HostAddress

Description:	 Used for reading or setting the IPV4 host address used to access a Motion
Coordinator over an Ethernet connection. The SetHost command can also be used
for setting the host adddress.

Type:	 String

Access:	 Read / Write

Default Value:	 “192.168.0.250”

Example:	 Rem Open a Ethernet connection and refresh the TrioPC indicator

If TrioPC.HostAddress <> “192.168.0.111” Then
 TrioPC.HostAddress = “192.168.0.111”
End If

Properties

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-8

TrioPC _ Status = TrioPC1.Open(2, 0)
frmMain.Refresh

CmdProtocol

Description:	 Used to specify the version of the ethernet communications protocol to use to be
compatible with the firmware in the ethernet daughterboard. The following values
should be used:

0: for ethernet daughterboard firmware version 1.0.4.0 or earlier.

1: for ethernet daughterboard firmware version 1.0.4.1 or later.

Type:	 Long

Access:	 Read / Write

Default Value:	 1

Example:	 Rem Set ethernet protocol for firmware 1.0.4.0

TrioPC.CmdProtocol = 0
Users of older daughterboards will need to update their programs
to set the value of this proporty to 0.

FlushBeforeWrite

Description:	 The USB and serial communications interfaces are error prone in electrically noisy
environments. This means that spurious characters can be received on these
interfaces which will cause errors in the OCX. If FlushBeforeWrite is non-zero then
the OCX will flush the communications interface before sending a new request, so
minimizing the consequences of a noisy environment. The flush routine clears the
current contents of the communications buffer and waits 100ms to make sure that
there are no other pending characters coming in.

Type:	 Long

Access:	 Read / write

Example:	 TrioPC1.FlushBeforeWrite = 0

Properties

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-9

FastSerialMode

Description:	 The Trio Motion Coordinator have two standard RS232 communications modes:
slow and fast. The slow mode has parameters 9600,7,e,1 whereas the fast mode
has parameters 38400,8,e,1. If FastSerialMode is FALSE then the RS232 connection
will use the slow mode parameters. If the FastSerialMode is TRUE then the RS232
connection will use the fast mode parameters.

Access:	 Read / write

Type:	 Boolean

Example:	 TrioPC1.FastSerialMode = True

Motion Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-10

Motion Commands

MoveRel

Description	 Performs the corresponding MOVE(...) command on the Motion Coordinator.

Syntax:	 MoveRel(Axes, Distance, [Axis])

Parameters:	 short Axes:		 Number of axes involved in the MOVE command.

Double Distance:	 Distance to be moved, can be a single numeric value or an 	
			 array of numeric values that contain at least Axes values.

Short Axis:		 Optional parameters that must be a single numeric value that 	
			 specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

Base

Description:	 Performs the corresponding BASE(...) command on the Motion Coordinator.

Syntax:	 Base(Axes,[Order])

Parameters:	 short Axes:		 Number of axes involved in the move command.

Short Order:	 A single numeric value or an array of numeric values that 	
			 contain at least Axes values that specify the axis ordering for 	
			 the subsequent motion commands.

Return Value:	 See TrioPC STATUS.

Motion Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-11

MoveAbs

Description:	 Performs the corresponding MOVEABS(...) AXIS(...) command on the.

Syntax:	 MoveAbs(Axes, Distance, [Axis])

Parameters:	 short Axes:		 Number of axes involved in the MOVEABS command.

Double Distance:	 Absolute position(s) that specify where the move must 		
			 terminate. This can be a single numeric value or an array of 	
			 numeric values that contain at least Axes values.

Short Axis:		 Optional parameters that must be a single numeric value that 	
			 specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

MoveCirc

Description:	 Performs the corresponding MOVECIRC(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 MoveCirc(EndBase, EndNext, CentreBase, CentreNext, Direction,
[Axis])

Parameters:	 Double EndBase:		 Distance to the end position on the base axis.

Double EndNext:		 Distance to the end position on the axis that follows 	
				 the base axis.

Double CentreBase: 	 Distance to the centre position on the base axis.

Double CentreNext: 	 Distance to the centre position on the axis that 		
				 follows the base axis.

Short Dir:			 A numeric value that sets the direction of rotation. A 	
				 value of 1 implies a clockwise rotation on a positive 	
				 axis set, 0 implies an anti-clockwise rotation on a 	
				 positive axis set.

Short Axis:			 Optional parameters that must be a single numeric 	
				 value that specifies the base axis for this move.

Motion Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-12

Return Value:	 See TrioPC STATUS.

AddAxis

Description:	 Performs the corresponding ADDAX(...) command on the Motion Coordinator.

Syntax:	 AddAxis(LinkAxis, [Axis])

Parameters:	 short LinkAxis:		 A numeric value that specifies the axis to be “added” 	
					 to the base axis.

short Axis:			 Optional parameters that must be a single numeric 	
				 value that specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

CamBox

Description:	 Performs the corresponding CAMBOX(...) command on the Motion Coordinator.

Syntax:	 CamBox(TableStart, TableStop, Multiplier, LinkDist, LinkAxis,
LinkOption, LinkPos, [Axis])

Parameters:	 Short TableStart:		 The position in the table data on the Motion 			
					 Coordinator where the cam pattern starts.	

Short TableStop:		 The position in the table data on the Motion 			
				 Coordinator where the cam pattern stops.	

Double Multiplier:	 The scaling factor to be applied to the cam 			
				 pattern. 	

Double LinkDist: 		 The distance the input axis must move for the cam to 	
				 complete.	

Short LinkAxis:		 Definition of the Input Axis.	

Short LinkOption:	 1	 link commences exactly when registration 	
					 event occurs on link axis.

Motion Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-13

				 2	 link commences at an absolute position on link 	
					 axis (see param 7).

				 4	 CAMBOX repeats automatically and bi-			
					 directionally when this bit is set.

				 8	 Pattern Mode.

				 32	 Link is only active during positive moves.

Double LinkPos:		 The absolute position on the link axis where the cam 	
				 will start.	

Short Axis:			 Optional parameters that must be a single numeric 	
				 value that specifies the base axis for this move.	

Return Value:	 See TrioPC STATUS.

Cam

Description	 Performs the corresponding CAM(...) AXIS(...) command on the Motion Coordinator.

Syntax:	 Cam(TableStart, TableStop, Multiplier, LinkDistance, [Axis])

Parameters:	 Short TableStart:		 The position in the table data on the Motion 			
					 Coordinator where the cam pattern starts.

Short TableStop:		 The position in the table data on the Motion 			
				 Coordinator where the cam pattern stops.

Double Multiplier:	 The scaling factor to be applied to the cam pattern.

Double LinkDistance: 	 Used to calculate the duration in time of the cam. 	
				 The LinkDistance/Speed on the base axis specifies the 	
				 duration. The Speed can be modified during the move, 	
				 and will affect directly the speed with which the cam 	
				 is performed.

Short Axis:			 Optional parameters that must be a single numeric 	
				 value that specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

Motion Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-14

Cancel

Description:	 Performs the corresponding CANCEL(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 Cancel(Mode,[Axis])

Parameters:	 Short Mode:		 Cancel mode.

			 0 cancels the current move on the base axis.

			 1 cancels the buffered move on the base axis.

Short Axis:		 Optional parameters that must be a single numeric value that 	
			 specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

Connect

Description:	 Performs the corresponding CONNECT(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 Connect(Ratio, LinkAxis, [Axis])

Parameters:	 Double Ratio:	 The gear ratio to be applied.

Short LinkAxis:	 The driving axis.

Short Axis:	Optional parameters that must be a single numeric value that
specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

Motion Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-15

Datum

Description:	 Performs the corresponding DATUM(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 Datum(Sequence, [Axis])

Parameters:	 The type of datum procedure to be performed: 	

Short sequence:	 0	 The current measured position is set as demand 		
				 position (this is especially useful on stepper axes with 	
				 position verification). DATUM(0) will also reset 		
				 a following error condition in the AXISSTATUS 		
				 register for all axes.

Short Axis:		 1	 The axis moves at creep speed forward till the 		
				 Z marker is encountered. The Demand position 		
				 is then reset to zero and the Measured position 		
				 corrected so as to maintain the following error.

			 2	 The axis moves at creep speed in reverse till the 	
				 Z marker is encountered. The Demand position is 	
				 then reset to zero and the Measured position 			
				 corrected so as to maintain the following error.

			 3	 The axis moves at the programmed speed forward 	
				 until the datum switch is reached. The axis then 	
				 moves backwards at creep speed until the datum 	
				 switch is reset. The Demand position is then reset to 	
				 zero and the Measured position corrected so as 		
				 to maintain the following error .

			 4	 The axis moves at the programmed speed reverse 	
				 until the datum switch is reached. The axis then 	
				 moves at creep speed forward until the datum switch 	
				 is reset. The Demand position is then reset to zero 	
				 and the Measured position corrected so as to maintain 	
				 the following error .

			 5	 The axis moves at programmed speed forward until 	
				 the datum switch is reached. The axis then moves at 	
				 creep speed until the datum switch is reset. The axis 	
				 is then reset as in mode 2.

			 6	 The axis moves at programmed speed reverse until 	
				 the datum switch is reached. The axis then moves at 	
				 creep speed forward until the datum switch is reset. 	
				 The axis is then reset as in mode 1.

Motion Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-16

			 Optional parameters that must be a single numeric value that 	
			 specifies the base axis for this move 	

Return Value:	 See TrioPC STATUS.

Forward

Description:	 Performs the corresponding FORWARD(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 Forward([Axis])

Parameter:	 Short Axis:		 Optional parameters that must be a single numeric value that 	
				 specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

Reverse

Description:	 Performs the corresponding REVERSE(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 Reverse([Axis])

Parameters:	 Short Axis:		 Optional parameters that must be a single numeric value that 	
				 specifies the base axis for this move.

Return Value:	 See TrioPC STATUS.

Motion Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-17

MoveHelical

Description	 Performs the corresponding MOVEHELICAL(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 MoveHelical(FinishBase, FinishNext, CentreBase, CentreNext,
Direction, LinearDistance, [Axis])

Parameters:	 Double FinishBase:		 Distance to the finish position on the base axis.

Double FinishNext:		 Distance to the finish position on the axis that 	
					 follows the base axis.

Double CentreBase: 		 Distance to the centre position on the base 	
					 axis.

Double CentreNext: 		 Distance to the centre position on the axis that 	
					 follows the base axis.

Short Direction:			 A numeric value that sets the direction of 	
					 rotation. A value of 1 implies a clockwise 		
					 rotation on a positive axis set, 0 implies an 	
					 anti-clockwise rotation on a positive axis set.

Double LinearDistance: 	 The linear distance to be moved on the base 	
					 axis + 2 whilst the other two axes are 			
					 performing the circular move.

Short Axis:				 Optional parameters that must be a single 	
					 numeric value that specifies the base axis for 	
					 this move.

Return Value:	 See TrioPC STATUS.

MoveLink

Description:	 Performs the corresponding MOVELINK(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 MoveLink(Distance, LinkDistance, LinkAcceleration,
LinkDeceleration, LinkAxis, LinkOptions, LinkPosition, [Axis])

Parameters:	 Double Distance:			 Total distance to move on the base axis.	

Double LinkDistance:		 Distance to be moved on the driving axis.	

Motion Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-18

Double LinkAcceleration	 Distance to be moved on the driving axis 		
					 during the acceleration phase of the move.

Double LinkDeceleration	 Distance to be moved on the driving axis 		
					 during the deceleration phase of the 			
					 move.	

Short LinkAxis:			 The driving axis for this move.	

Short LinkOptions:		 Specifies special processing for this move:

					 0	 no special processing.

					 1	 link commences exactly when 			
						 registration event occurs on link axis.

					 2	 link commences at an absolute position 	
						 on link axis (see param 7).

					 4	 MOVELINK repeats automatically and bi-	
						 directionally when this bit is set. (This 	
						 mode can be cleared by setting bit 1 of 	
						 the REP _ OPTION axis parameter).

					 32	 Link is only activee during positive 	
						 moves on the link axis.

Double LinkPosition:		 The absolute position on the link axis where 	
					 the move will start.	

Short Axis:				 Optional parameters that must be a single 	
					 numeric value that specifies the base axis for 	
					 this move.	

Return Value:	 See TrioPC STATUS.

MoveModify

Description	 Performs the corresponding MOVEMODIFY(...) AXIS(...) command on the Motion
Coordinator.

Syntax:	 MoveModify(Position,[Axis]

Parameters:	 Double Position: 		 Absolute position of the end of move for the base 	
					 axis.

Short Axis:			 Optional parameters that must be a single numeric 	
				 value that specifies the base axis for this move.

Motion Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-19

Return Value:	 See TrioPC STATUS.

RapidStop

Description:	 Performs the corresponding RAPIDSTOP(...) command on the Motion Coordinator.

Parameters:	 None

Return Value:	 See TrioPC STATUS.

Process Control Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-20

Process Control Commands

Run

Description:	 Performs the corresponding RUN(...) command on the Motion Coordinator.

Syntax:	 Run(Program, Process)

Parameters:	 String Program:		 String that specifies the name of the program to be 	
					 run.

Short Process:		 Optional parameter that must be a single numeric 	
				 value that specifies the process on which to run this 	
				 program.

Return Value:	 See TrioPC STATUS.

Stop

Description:	 Performs the corresponding STOP(...) command on the Motion Coordinator.

Syntax:	 Stop(Program, Process)

Parameters:	 String Program:		 String that specifies the name of the program to be 	
					 stopped.

Short Process:		 Optional parameter that must be a single numeric 	
				 value that specifies the process on which the program 	
				 is running.

Return Value:	 See TrioPC STATUS.

Variable Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-21

Variable Commands

GetTable

Description:	 Retrieves and writes the specified table values into the given array.

Syntax:	 GetTable(StartPosition, NumberOfValues, Values)

Parameters	 Long StartPosition:		 Table location for first value in array.

Long NumberOfValues:		 Size of array to be transferred from Table 	
					 Memory.

Double Values:			 A single numeric value or an array of numeric 	
					 values, of at least size NumberOfValues, into 	
					 which the values retrieved from the Table 	
					 Memory will be stored.

Return Value:	 See TrioPC STATUS.

GetVariable

Description:	 Returns the current value of the specified system variable. To specify different
base axes, the BASE command must be used.

Syntax:	 GetVariable(Variable, Value)

Parameters:	 String Variable:			 Name of the system variable to read.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

Variable Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-22

GetVr

Description:	 Returns the current value of the specified VR variable.

Syntax:	 GetVr(Variable, Value)

Parameters:	 Short Variable:			 Number of the VR variable to read.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

SetTable

Description:	 Sets the specified table variables to the values given in an array.

Syntax:	 SetTable(StartPosition, NumberOfValues, Values)

Parameters	 Long StartPosition:		 Table location for first value in array.

Long NumberOfValues:		 Size of array to be transferred to Table 		
					 Memory.

Double Values:			 A single numeric value or an array of numeric 	
					 values that contain at least NumberOfValues 	
					 values to be placed in the Table Memory.

Return Value:	 See TrioPC STATUS.

SetVariable

Description:	 Sets the current value of the specified system variable. To specify different base
axes, the BASE command must be used.

Syntax:	 SetVariable(Variable, Value)

Variable Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-23

Parameters:	 String Variable:			 Name of the system variable to write.

Double Value:			 Variable in which the value to write is stored.

Return Value:	 See TrioPC STATUS.

SetVr

Description:	 Sets the value of the specified Global variable.

Syntax:	 SetVr(Variable, Value)

Parameters:	 Short Variable:	 Number of the VR variable to write.

Double Value:	 Variable in which the value to write is stored.

Return Value:	 See TrioPC STATUS.

GetProcessVariable

Description:	 Returns the current value of a variable from a currently running process. It is quite
difficult to calculate the VariableIndex as the storage for the named variables
is assigned during the program compilation, but it is not stored due to memory
restrictions on the Motion Coordinators. To make things worse, if a program is
modified in such a way the named variables it uses are changed (added, removed,
or changed in order of use) then the indices may change.

Syntax:	 GetProcessVariable(VariableIndex, Process, Value)

Parameters:	 Short VariableIndex:		 The index of the variable in the process 		
						 variables table.

Dhort Process:			 The process number of the running process.

					 Double Value:	Variable in which to store the 	
					 value read.

Example:	 Let us assume that there is the program “T1” on the Motion Coordinator which has
the following contents:

Variable Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-24

y=2
x=1

If this program is run on process 1 by the command RUN “T1”,1 then we could use
the following code in VisualBASIC to read the contents of the x and y variables.

Dim x As Double
Dim y As Double
If Not AxTrioPC1.GetProcessVariable(1, 1, x) Then Exit Sub
If Not AxTrioPC1.GetProcessVariable(0, 1, y) Then Exit Sub
MsgBox(“X has value “ + Format(x))
MsgBox(“Y has value “ + Format(y))

Return Value:	 See TrioPC STATUS.

GetAxisVariable

Description:	 For a system variable that accepts the AXIS modifier this method will return the
value of the that system variable on the given axis. If the system variable does
not exist, or does not accept the AXIS modifier, then this method will fail.

Syntax:	 GetAxisVariable(VariableIndex, Axis, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Axis:				 The axis number.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

SetAxisVariable

Description:	 For a system variable that accepts the AXIS modifier this method will set the value
of the that system variable on the given axis. If the system variable does not exist,
or does not accept the AXIS modifier, then this method will fail.

Syntax:	 SetAxisVariable(VariableIndex, Axis, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Axis:				 The axis number.

Variable Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-25

Double Value:			 Value to set.

Return Value:	 See TrioPC STATUS.

GetProcVariable

Description:	 For a system variable that accepts the PROC modifier this method will return the
value of the that system variable on the given process. If the system variable does
not exist, or does not accept the PROC modifier, then this method will fail.

Syntax:	 GetProcVariable(Variable, Process, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Process:			 The process number of the running process.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

SetProcVariable

Description:	 For a system variable that accepts the PROC modifier this method will set the value
of the that system variable on the given process. If the system variable does not
exist, or does not accept the PROC modifier, then this method will fail.

Syntax:	 SetProcVariable(Variable, Process, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Process:			 The process number of the running process.

Double Value:			 Value to set.

Return Value:	 See TrioPC STATUS.

Variable Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-26

GetSlotVariable

Description:	 For a system variable that accepts the SLOT modifier this method will return the
value of the that system variable on the given slot. If the system variable does not
exist, or does not accept the SLOT modifier, then this method will fail.

Syntax:	 GetSlotVariable(Variable, Slot, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Slot:				 The slot number.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

SetSlotVariable

Description:	 For a system variable that accepts the SLOT modifier this method will set the value
of the that system variable on the given slot. If the system variable does not exist,
or does not accept the SLOT modifier, then this method will fail.

Syntax:	 SetSlotVariable(Variable, Slot, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Slot:				 The slot number.

Double Value:			 Value to set.

Return Value:	 See TrioPC STATUS.

GetPortVariable

Description:	 For a system variable that accepts the PORT modifier this method will return the
value of the that system variable on the given port. If the system variable does
not exist, or does not accept the PORT modifier, then this method will fail.

Variable Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-27

Syntax:	 GetPortVariable(Variable, Port, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Port:				 The port number.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

SetPortVariable

Description:	 For a system variable that accepts the PORT modifier this method will set the value
of the that system variable on the given port. If the system variable does not
exist, or does not accept the PORT modifier, then this method will fail.

Syntax:	 SetPortVariable(Variable, Port, Value)

Parameters:	 String Variable:			 The name of the variable.

Short Port:				 The port number.

Double Value:			 Value to set.

Return Value:	 See TrioPC STATUS.

Input / Output Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-28

Input / Output Commands

Ain

Description:	 Performs the corresponding AIN(...) command on the Motion Coordinator.

Syntax:	 Ain(Channel, Value)

Parameters:	 Short Channel:			 AIN channel to be read.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

Get

Description:	 Performs the corresponding GET #… command on the Motion Coordinator.

Syntax:	 Get(Channel, Value)

Parameters:	 Short Channel:			 Comms channel to be read.

Short Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

In

Description:	 Performs the corresponding IN(...) command on the Motion Coordinator.

Syntax:	 In(StartChannel, StopChannel, Value)

Parameters:	 Short StartChannel:		 First digital I/O channel to be checked.

Short StopChannel:		 Last digital I/O channel to be checked.

Input / Output Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-29

Long Value:				 Variable to store the value read.

Return Value:	 See TrioPC STATUS.

Input

Description:	 Performs the corresponding INPUT #… command on the Motion Coordinator.

Syntax:	 Input(Channel, Value)

Parameters:	 Short Channel:			 Comms channel to be read.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

Key

Description:	 Performs the corresponding KEY #… command on the Motion Coordinator.

Syntax:	 Key(Channel, Value)

Parameters:	 Short Channel:			 Comms channel to be read.

Double Value:			 Variable in which to store the value read.

Return Value:	 See TrioPC STATUS.

Input / Output Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-30

Linput

Description:	 Performs the corresponding LINPUT # command on the Motion Coordinator.

Syntax:	 Linput(Channel, Startvr)

Parameters:	 Short Channel:			 Comms channel to be read.

Short StartVr:			 Number of the VR variable into which to store 	
					 the first key press read.

Return Value:	 See TrioPC STATUS.

Mark

Description:	 Performs the corresponding MARK(...) command on the Motion Coordinator.

Syntax:	 Mark(Axis, Value)

Parameters:	 Short Axis number:		 Axis number.

Short Value:			 The stored capture value for a registration first 	
					 event.

Return Value:	 See TrioPC STATUS. FALSE if no value has been captured (no registration first
event has occurred).

MarkB

Description:	 Performs the corresponding MARKB(...) command on the Motion Coordinator.

Syntax:	MarkB(Axis, Value)

Parameters:			 Short Axis number:	 Axis number.

Short Value:			 The stored capture value for a registration second 	
				 event.

Input / Output Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-31

Return Value:	 See TrioPC STATUS. FALSE if no value has been captured (no registration second
event has occurred).

Op

Description:	 Performs the corresponding OP(...) command on the Motion Coordinator.

Syntax:	 Op(Output, [State])

Parameters:	 Long Output:		 Numeric value. If this is the only value specified then 	
					 it is the 			
					 bit map of the outputs to be specified, otherwise it is 	
					 the number of the output to be written.

Short State:		 Optional numeric value that specifies the desired 	
				 status of the output, 0 implies off, not-0 implies on.

Return Value:	 See TrioPC STATUS.

Pswitch

Description:	 Performs the corresponding PSWITCH(…) command on the Motion Coordinator.

Syntax:	 Pswitch(Switch, Enable, Axis, OutputNumber, OutputStatus,
SetPosition, ResetPosition)

Parameters:	 Short Switch:		 Switch to be set.

Short Enable:		 1 to enable, 0 to disable.

Short Axis:			 Optional numeric value that specifies the base axis for 	
				 this command.

Short OutputNumber:	 Optional numeric value that specifies the number of 	
				 the output to set.

Short OutputStatus:	 Optional numeric value that specifies the signalled 	
				 status of the output, 0 implies off, not-0 implies on.

Double SetPosition:	 Optional numeric value that specifies the position at 	
				 which to signal the output.

Input / Output Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-32

Double ResetPosition:	 Optional numeric value that specifies the position at 	
				 which to reset the output.

Return Value:	 See TrioPC STATUS.

ReadPacket

Description:	 Performs the corresponding READPACKET(…) command on the Motion Coordinator.

Syntax:	 ReadPacket(PortNumber, StartVr, NumberVr, Format)

Parameters:	 Short PortNumber:	 Number of the comms port to read (0 or 1).

Short StartVr:		 Number of the first variable to receive values read 	
				 from the comms port.

Short NumberVr:		 Number of variables to receive.

Short Format:		 Numeric format in which the numbers will arrive.

Return Value:	 See TrioPC STATUS.

Record

Description:	 This method is no longer supported by any current Motion Coordinator.

Regist

Description:	 Performs the corresponding REGIST(...) command on the Motion Coordinator.

Syntax:	 Regist(Mode, Dist)

Parameters:	 Short Mode:			 Registration mode.	

			 1.	 Axis absolute position when Z Mark Rising.

Input / Output Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-33

			 2.	 Axis absolute position when Z Mark Falling.

			 3.	 Axis absolute position when Registration Input Rising.

			 4.	 Axis absolute position when Registration Input Falling.

			 5.	 Unused.

			 6.	 R input rising into REG _ POS and Z mark rising into 	
				 REG _ POSB.

			 7.	 R input rising into REG _ POS and Z mark falling into 	
				 REG _ POSB.

			 8.	 R input falling into REG _ POS and Z mark rising into 	
				 REG _ POSB.

			 9.	 R input falling into REG _ POS and Z mark falling into 	
				 REG _ POSB.

Double Dist:	 Only used in pattern recognition mode and specifies the 	
			 distance over which to record the transitions.	

Return Value:	 See TrioPC STATUS.

Send

Description:	 Performs the corresponding SEND(...) command on the Motion Coordinator.

Syntax:	 Send(Destination, Type, Data1, Data2)

Parameters:	 Short Destination:	 Address to which the data will be sent.

Short Type:			 type of message to be sent:

				 1 	 Direct variable transfer.

				 2 	 Keypad offset.

Short Data1:		 Data to be sent. If this is a keypad offset message 	
				 then it is the offset, otherwise it is the number of the 	
				 variable on the remote node to be set.

Short Data2:		 Optional numeric value that specifies the value to be 	
				 set for the variable on the remote node.

Input / Output Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-34

Return Value:	 See TrioPC STATUS.

Setcom

Description:	 Performs the corresponding SETCOM(...) command on the Motion Coordinator.

Syntax:	 Setcom(Baudrate, DataBits, StopBits, Parity, [Port], [Control])

Parameters:	 Long BaudRate:		 Baud rate to be set.

Short DataBits:		 Number of bits per character transferred.

Short StopBits:		 Number of stop bits at the end of each character.

Short Parity:		 Parity mode of the port (0=>none, 1=>odd, 2=> even).

Short Port:			 Optional numeric value that specifies the port to set 	
				 (0..3).

Short Control:		 Optional numeric value that specifies whether to 	
				 enable or disable handshaking on this port.

 Return Value:	 See TrioPC STATUS.

General commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-35

General commands

Execute

Description:	 Performs the corresponding EXECUTE... command on the Motion Coordinator.

Syntax:	 Execute(Command)

Parameters:	 String Command:		 String that contains a valid TrioBASIC command.

Return Value:	 Boolean; TRUE if the command was sent successfully to the Motion Coordinator
and the EXECUTE command on the Motion Coordinator was completed successfully
and the command specified by the EXECUTE command was tokenised, parsed and
completed successfully. Otherwise FALSE.

GetData

Description:	 This method is used when an asynchronous connection has been opened, to read
data received from the Motion Coordinator over a particular channel. The call will
empty the appropriate channel receive data buffer held by the ActiveX control.

Syntax:	 GetData(channel, data)

Parameters:	 Short channel:		 Channel over which the required data was received 	
					 (0,5,6,7, or 9).

String data:		 data received by the control from the Motion 			
				 Coordinator.

Return Value:	 Boolean; TRUE - if the given channel is valid, the connection open and the data
read correctly from the buffer. Otherwise FALSE.

General commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-36

SendData

Description	 This method is used when the connection has been opened in the asynchronous
mode, to write data to the Motion Coordinator over a particular channel.

Syntax:	 SendData(channel, data)

Parameters:	 Short channel:		 channel over which to send the data (0,5,6,7, or 9).

String data:		 data to be written to the Motion Coordinator.

Return Value:	 Boolean; TRUE - if the given channel is valid, the connection open, and the data
written out correctly. Otherwise FALSE.

Scope

Description:	 Initialises the data capture system in the Motion Coordinator for future data
capture on a trigger event by executing a SCOPE command on the Motion
Coordinator. A trigger event occurrs when the Motion Coordinator executes a
TRIGGER command.

Syntax:	 Scope(OnOff, [SamplePeriod, TableStart, TableEnd, CaptureParams])

Parameters:	 Boolean OnOff:	 TRUE to set up and enable data capture, FALSE to disable it.

Long SamplePeriod:	 Data sample period (in servo periods).

Long TableStart:	 The table index for the start of the block of TABLE memory
which will be used to hold captured data.

Long TableEnd:	 The table index for the start of the block of TABLE memory
which will be used to hold captured data.

String CaptureParams:	 A string of up to 4 comma seperated parameters to
capture.

Example:	 Rem Set up to capture MPOS and DOPS on axis 5

TrioPC_Status = TrioPC1.Scope(True, 10, 0, 1000, “MPOS AXIS(5), DPOS AXIS(5)””)

Return Value:	 See TrioPC STATUS.

General commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-37

Trigger

Description:	 Sends a TRIGGER command to the Motion Coordinator to start data capture
previously configured using a SCOPE command.

Syntax:	 Trigger()

Parameters:	 None.

Return Value:	 See TrioPC STATUS.

Events

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-38

Events

OnBufferOverrunChannel0/5/6/7/9

Description:	 One of these events will fire if a particular channel data buffer overflows. The
ActiveX control stores all data received from the Motion Coordinator in the
appropriate channel buffer when the connection has been opened in asynchronous
mode. As data is received it is the responsibility of the user application to call the
GetData() method whenever the OnReceiveChannelx event fires (or otherwise to
call the method periodically) to prevent a buffer overrun. Which event is fired will
depend upon which channel buffer overran.

Syntax:	 OnBufferOverrunChannelx()

The channel number (x) can be any of the following: 0, 5, 6, 7 or 9.

Parameters:	 None.

Return Value:	 None.

OnReceiveChannel0/5/6/7/9

Description:	 One of these events will fire when data is received from the Motion Coordinator
over a connection which has been opened in the asynchronous mode. Which event
is fired will depend upon over which channel the Motion Coordinator sent the data.
It is the responsibility of the user application to call the GetData() method to
retrieve the data received.

Syntax:	 OnReceiveChannelx()

The channel number (x) can be any of the following: 0, 5, 6, 7 or 9.

Parameters:	 None.

Return Value:	 None.

Events

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-39

OnProgress

Description:	 The file operations LoadProgram, LoadProject and LoadSystem can take a long
time to complete. To give some feedback on this process the OnProgress event is
fired periodically during the file operation.

Syntax:	 OnOnProgress

Parameters:	 Description:		 Textual description of the associated process

Percentage:			 Progress of the process in percent.

Intelligent Drive Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-40

Intelligent Drive Commands

MechatroLink

Description:	 Performs the corresponding MECHATROLINK(...) command on the Motion
Coordinator. For more information on the MECHATROLINK command please see
the corresponding Motion Coordinator user manual. This method will only work on
those Motion Coordinators that support the MehchatroLink interface.

Syntax:	 MechatroLink(Module, Function, NumberOfParameters, MLParameters,
Result)

Parameters:	 Short Module:			 Number of the MechatroLink interface module.

Short Function:			 MechatroLink function number.

Short NumberOfParameters:	 Number of parameters to use in the 			
					 MECHATROLINK command.

Double MLParameters:		 Array of parameters to use for the 			
					 MECHATROLINK command.

Double Result:	 Variable in which the return value is stored.

Return Value:	 See TrioPC STATUS.

Program Manipulation Commands

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-41

Program Manipulation Commands

LoadProject

Description:	 Not implemented.

LoadSystem

Description:	 Not implemented.

LoadProgram

Description:	 Not implemented.

New

Description:	 Deletes a program on the Motion Coordinator.

Syntax:	 New(Program)

Parameters:	 String Program:		 The name of the program to be deleted.

Return Value:	 See TrioPC STATUS.

Program Manipulation Commands

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-42

Select

Description:	 Selects a program on the Motion Coordinator.

Syntax:	 Select(Program)

Parameters:	 String Program:	 The name of the program to be selected.

Return Value:	 See TrioPC STATUS.

Dir

Description:	 Gets a directory listing from the Motion Coordinator.

Syntax:	 Dir(Directory)

Parameters:	 String Program:		 A string object used to return the directory listing.

Return Value:	 See TrioPC STATUS.

InsertLine

Description:	 Inserts a line into a program onto the Motion Coordinator. This will first Select
the given program on the controller and then insert the line text at the given line
number.

Syntax:	 InsertLine(Program, Line, LineText)

Parameters:	 String Program:		 The name of the program.

Short Line:			 The line number at which the new line will be 		
				 inserted.

String LineText:		 The text of the line to be inserted.

Return Value:	 See TrioPC STATUS.

Data Types

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-43

Data Types

The following data types are used by the PC Motion control interface:

Connection Type
Also known as Port Type.

Description:	 An enumeration representing communication port type.

Values:	 -1:		 No connection .

0:	 USB.

1:	 Serial.

2:	 Ethernet.

3:	 PCI.

4:	 Path.

5:	 FINS (Not used on Trio controllers).

Data Types

Trio Motion Technology

USING THE PC MOTION ACTIVEX CONTROL11-44

Communications Mode

Also known as:	 Port Mode.

Description:	 An enumeration representing the operating mode of a communications link.

Values:	
Interface Mode Description
USB: 0 Synchronous.

1 Asynchronous.

Serial: >0 Synchronous on specified port number.
<0 Asynchronous on specified port number.

Ethernet: 0 Synchronous on specified port number.
3240

23 Asynchronous on specified port number (default 23).
other

PCI: 0 Synchronous.
1 Asynchronous.

TrioPC status
Many of the methods implemented by the TrioPC interface return a boolean
status value. The value will be TRUE if the command was sent successfully to the
Motion Coordinator and the command on the Motion Coordinator was completed
successfully. It will be FALSE if it was not processed correctly, or there was a
communications error.

﻿

Technical Reference Manual

USING THE PC MOTION ACTIVEX CONTROL 11-45

12CHAPTER

COMMUNICATIONS
PROTOCOLS

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-2
﻿

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-3
Modbus RTU

Introduction to Modbus

A growing number of programmable keypads and HMIs provide the user with a
choice of interface protocols to enable communication with various PLCs and
Industrial Computers. One such protocol is Modbus. The Motion Coordinator system
software provides built-in support for the Modbus protocol.

Modbus RTU
The Modbus RTU protocol provides single point to point communication between a
programmable keypad/display and the Motion Coordinator. Implementation of the
protocol is provided on serial port 1 for RS232 and port 2 for RS485. Baud rate and
slave address can be set in the TrioBASIC program during serial port initialisation.

Initialisation and Set-up
The Modbus protocol is initialised by setting the mode parameter of the SETCOM
instruction to 4, 7 or 9. The ADDRESS parameter must also be set before the
Modbus protocol is activated.

Example:	 ADDRESS=1

SETCOM(9600,8,1,2,1,mode) ‘Port 1 as MODBUS port at 9600 baud
ADDRESS=1
SETCOM(19200,8,1,2,2,mode) ‘set up the RS485 port at 19200 baud

The protocol can be de-selected by setting the option to 0 in the SETCOM
command.

SETCOM(19200,8,1,2,2,0) ‘set the RS485 port to normal mode

Mode can be set as follows:

mode = 4 16bit signed integer

mode = 7 IEEE floating point

mode = 9 32bit signed long

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-4
Modbus TCP

See Also:	 SETCOM for information about other parameters.

Modbus TCP
The Modbus TCP protocol provides single point to point communication
between a programmable keypad/display and one or more Motion Coordinators.
Implementation of the protocol is provided on the Ethernet Port using the standard
Ethernet “port 502” connection for Modbus. When the remote device opens the
Modbus connection over Ethernet, the data transfers will be 16-bit signed integers
routed to the VR memory area unless this is changed by a setting of the Ethernet
command in a BASIC program run at power up.

Initialisation and Set-up
The Modbus TCP session is started when the remote device opens Ethernet “port
502”. No initialisation is required in the Motion Coordinator unless the required
data type and memory area differ from the default.

Change the Modbus TCP mode.

write=1
slot=-1 ‘mc464 default port
ETHERNET(write,slot,7,1) ‘ Set the Modbus TCP link to transfer
Floating Point Data

Change the Modbus TCP data area.

ETHERNET(write,slot,9,1) ‘ Set the Modbus TCP link to access
TABLE memory

See also:	 ETHERNET command for full details of all options.

Example:	 The following shows a typical set-up for a HMI panel running a Modbus Link.
All references below are to the programming software supplied by the HMI
manufacturer and are not specific to any individual programming environment. See
your HMI programming instructions for the actual set-up sequence.

In the Controller Driver section choose “Modicon Modbus”, choose any Modicon PLC
type from the PLC setup section.

Program the panel to display a variable and open up a dialog box to Define

Choose Example

Input bits, Output bits, Holding Register. Holding Register

Data size/type WORD (Binary)

Address Offset. 13

Display format and field width to be displayed. Numeric 4 digits

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-5
Modbus Technical Reference

The Motion Coordinator is the slave so it will always wait for the HMI to request
the data required. With the set-up shown above, the display should poll the Motion
Coordinator for the value of VR(12) and display the data as a 4 digit number.

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-6
Modbus Technical Reference

Modbus Technical Reference
This section lists the Motion Coordinator’s response to each supported Modbus
Function.

Modbus Code Table
The following Modbus Function Codes are implemented:

Code Function Name Action

1 Read Coil Status Returns output bit pattern

2 Read Input Status Returns input bit pattern

3 Read Holding Registers Returns data from VR() variables

5 Write Single Coil Sets single output ON/OFF

6 Write Single Register Sets the value of a single VR() variable

15 Write multiple coils Sets multiple output ON/OFF

16 Write Multiple Registers Sets the values of a group of VR() variables

23 Read/write multiple
registers

Sets the value of a group of VR() variables
AND returns the values from a group of VR()
variables.

TABLE() memory can be defined as the target data area instead of VR() mamory.

(1) Read Coil Status

Modbus Function Code 1

Mapped Trio Function Read output state: READ_OP(nn, mm)

Starting Address Range 0 to NIO-1 (NIO = Number of Input/Output Bits on
Controller)

Number of Points Range 1 to (NIO-1) – Starting Address

Returned Data Bytes containing “Number of Points” bits of data

(2) Read Input Status

Modbus Function Code 2

Mapped Trio Function Read input word: IN(nn,mm)

Starting Address Range 0 to NIO-1 (NIO = Number of Input/Output Bits on
Controller)

Number of Points Range 1 to (NIO-1) – Starting Address

Returned Data Bytes containing “Number of Points” bits of data

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-7
Modbus Technical Reference

(3) Read Holding Registers

Modbus Function Code 3

Mapped Trio Function Read Variable (VR or TABLE)

Starting Address Range 0 to 65535

Number of Points Range 1 to 127 (Number of variables to be read)

Returned Data 2 to 254 bytes containing up to 127 16-bit Signed
Integers or up to 63 32bit long words or up to 63
floats.

(5) Write Single Coil

Modbus Function Code 5

Mapped Trio Function Set Single Output: OP(n,ON/OFF)

Starting Address Range 8 to 271

Data 00 = Output OFF, ffH = Output ON

Returned Data None

(6) Write Single Register

Modbus Function Code 6

Mapped Trio Function Set Variable: VR(addr)=data or TABLE(addr, data)

Register Address Range 0 to 65535

Data -32768 to 32767 (16 bit signed) or -2^31 to 2^31-1 (32bit
signed) or 32bit IEEE float.

Returned Data None

(15) Write Multiple Coils

Modbus Function Code 15

Mapped Trio Function Set Multiple Outputs: OP(addr, ON/OFF).... OP(addr+n,
ON/OFF)

Starting Address Range 8 to 271

Number of Points Range 1 to 264

Data Bit pattern

Returned Data None

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-8
Modbus Technical Reference

(16) Write Multiple Registers

Modbus Function Code 16

Mapped Trio Function Set Variables: VR(addr)=data1 …… VR(addr+n)=datan or
TABLE(addr, data, ..., datan)

Starting Address Range 0 to 65535

Number of Points Range 1 to 127

Data1 to Datan -32768 to 32767 (16 bit signed) or -2^31 to 2^31-1 (32bit
signed) or 32bit IEEE float.

Returned Data None

(23) Read/Write Multiple Registers

Modbus Function Code 23

Mapped Trio Function Set Variables: VR(addr)=data1 …… VR(addr+n)=datan or
TABLE(addr, data, ..., datan)

Read Variable (VR or TABLE)

Starting Address Range 0 to 65535

Number of Points Range 1 to 127 (Number of variables to be written)

1 to 127 (Number of variables to be read)

Data1 to Datan -32768 to 32767 (16 bit signed) or -2^31 to 2^31-1 (32bit
signed) or 32bit IEEE float.

2 to 254 bytes containing up to 127 16-bit Signed
Integers or up to 63 32bit long words or up to 63 floats.

Returned Data As Data1 to Datan

Glossary

HMI Human – Machine Interface.

MODBUS A communications protocol developed by Modicon, part of
Groupe Schneider.

RTU One of two serial transmission modes used by Modbus, the
other being ASCII.

TCP Protocol used when Modbus is transmitted over Ethernet.

Holding Register A read/write variable as defined for Modicon PLC.

Coil A programmable output as defined for Modicon PLC.

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-9
DeviceNet

DeviceNet
The DeviceNet option allows the Motion Coordinator to be attached as a slave
node to a DeviceNet factory network. If the built-in CANbus port is used for
DeviceNet, it will not be available for CAN I/O expansion, so the digital I/O will be
limited to the 8 in and 8 bi-directional on the Motion Coordinator itself.

Installation and Set-up
The DEVICENET TrioBASIC command must be in a program that runs at power-
up. See the command reference in chapter 8 for information about the use of the
DEVICENET command. In order to prevent the Motion Coordinator from acting as
a CANIO master and generating non-DeviceNet CANbus messages on power-up, set
the CANIO _ ADDRESS to 33. This parameter is written directly into Flash EPROM
and so it is only necessary to set CANIO _ ADDRESS once.

e.g. in an intialisation program:

IF CANIO _ ADDRESS<>33 THEN CANIO _ ADDRESS = 33
DEVICENET(slot, 0, baudrate, macid, pollbase, pollin,pollout)

DeviceNet Information
The Motion Coordinator operates as a slave device on the DeviceNet network
and supports Explicit Messages of the predefined master/slave connection set and
Polled I/O. It does not support the Explicit Unconnected Message Manager (UCMM).

Polled I/O allows the master to send up to 4 integer variables to the Motion
Coordinator and to read up to 4 integer variables from the Motion Coordinator.
These values are mapped to the TABLE memory in the Motion Coordinator. The
values are transferred periodically at a rate determined by the DeviceNet Master.
The Global variables (VRs) and TABLE memory are also accessible over DeviceNet
individually by way of the Explicit Messaging service.

Connection Types Implemented
There are 3 independent connection channels in this DeviceNet implementation:

1.	Group 2 predefined master/slave connection
This connection will only handle Master/Slave Allocate/Release messages.
The maximum message length for this connection is 8 bytes.

2.	Explicit message connection
This connection will handle explicit messaging for the DeviceNet objects
defined below. The maximum message length for this connection is 242
bytes.

3.	I/O message connection
This connection will handle the I/O poll messaging. The maximum message
length for this connection is 32 bytes.

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-10
DeviceNet

DeviceNet Objects Implemented
The Motion Coordinator supports the following DeviceNet object classes.

Class Object Description

0x01 Identity Identification and general information about the device

0x02 Router Provides a messaging connection point through which
a Client may address a service to any object class or
instance residing in the physical device

0x03 DeviceNet Provides the configuration and status of a DeviceNet port

0x04 Assembly Permits access to the I/O poll connection from the explicit
message channel

0x05 Connection Manages the characteristics of the communications
connections

0x8a MC Permits access to the VR variables and TABLE data on the
Motion Coordinator

Identity Object
Class Code: 0x01

Instance Services

Id Service Description

0x05 Reset Reinitialises the DeviceNet protocol

0x0E Get Attribute Single Used to read the instance attributes

Instance Attributes

Attribute ID Access
Rule

Name DeviceNet
Data Type

Data Value

1 Get Vendor UINT 0x0115 (277)

2 Get Product Type UINT Generic Device
(0x0000)

3 Get Product Code UINT The MC type as
returned by the
CONTROL system
variable.

4 Get Revision
Major Revision
Minor Revision

Structure of:
USINT
USINT

3
2

5 Get Status WORD Ony bit 0 (owned) is
implemented

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-11
DeviceNet

Attribute ID Access
Rule

Name DeviceNet
Data Type

Data Value

6 Get Serial Number UDINT The MC Serial Number

7 Get Product Name
String Length
ASCII String1

Structure of:
USINT
STRING(30)

11
“Trio MC_<product
code>”, where
<product code> is the
same as defined for
attribute 3.

DeviceNet Object
Class Code: 0x03

Class Services

Id Service Description

0x0E Get Attribute Single Used to read the class attributes

Class Attributes

Attribute ID Access Rule Name DeviceNet
Data Type

Data Value

1 Get Revision UINT 2

Number of Instances: 1

Instance Services

Id Service Description

0x0E Get Attribute Single Used to read the instance attributes

0x10 Set Attribute Single Used to write the instance attributes

0x4B Allocate Master/Slave
Connection Set

Requests the use of the Predefined Master/
Slave Connection set

0x4C Release Group 2
Identifier Set

Indicates that the specified Connections
within the Predefined Master/Slave
Connection Set are no longer desired.
These Connections are to be released
(Deleted).

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-12
DeviceNet

Instance Attributes

Attribute ID Access
Rule

Name DeviceNet Data
Type

Data Value

1 Get MAC ID USINT DeviceNet node
address. Software
defines

5 Get Allocation
Information

Structure of:
BYTE
USINT

0-63 = master
address
The current
allocation choice

Allocation_byte

bit 0 explicit message Supported, 1 to allocate

bit 1 Polled Supported, 1 to allocate

bit 2 Bit_strobed Not supported, always 0

bit 3 reserved always 0

Assembly Object
Class Code: 0x04

Number of Instances: 2

There are 2 instances implemented. Instance 100 is a static input object,
associated with the I/O poll producer. Instance 101 is a static output object,
associated with the I/O poll consumer.

Instance Services

Id Service Description

0x0E Get Attribute Single Used to read the instance attributes

0x10 Set Attribute Single Used to write the instance attributes

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-13
DeviceNet

Instance Attributes

Attribute ID Access Rule Attibute Description

3 Get / Set Data Get Instance 100 : The I/O
poll producer is executed
and the output buffer
returned.

Set Instance 100: Error.

Get Instance 101: The last
received I/O poll buffer is
returned.

Set Instance 101: The buffer
received is passed to the I/O
poll consumer.

Connection Object
Class Code: 0x05

Instance Services

Id Service Description

0x0E Get Attribute Single Used to read the instance attributes

0x10 Set Attribute Single Used to write the instance attributes

Number of Instances: 2

The values for these attributes are defined in the “Predefined master/slave
connection set” of the “ODVA DeviceNet specification”.

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-14
DeviceNet

Instance Attributes (Instance 1)
Instance Type : Explicit Message

Attribute ID Access
Rule

Name DeviceNet
Data Type

Data Value

1 Get State USINT 0 = nonexistent
1 = configuring
3 = established
4 = timed out

2 Get Instance Type USINT 0 = explicit message

3 Get Transport Class
Trigger

USINT 83 hex

4 Get Produced
Connection ID

UINT 10xxxxxx011 binary

xxxxxx = node address

5 Get Consumed
Connection ID

UINT 10xxxxxx100 binary

xxxxxx = node address

6 Get Initial Comm
Characteristics

USINT 21 hex

7 Get Produced
Connection Size

UINT 7

8 Get Consumed
Connection Size

UINT 7

9 Get / Set Expected
Packet Rate

UINT 2500 default (msec)
with timer resolution
of 1mS

12 Get Watchdog
Timeout Action

USINT 1 = autodelete

13 Get Produced
Connection Path
Length

USINT 0

14 Get Produced
Connection Path

Null (no data)

15 Get Consumed
Connection Path
Length

USINT 0

16 Get Consumed
Connection Path

Null (no data)

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-15
DeviceNet

Instance Attributes (Instance 2)
Instance Type : Polled I/O

Attribute ID Access
Rule

Name DeviceNet
Data Type

Data Value

1 Get State USINT 0 = nonexistent
1 = configuring
3 = established
4 = timed out

2 Get Instance Type USINT 1 = Polled I/O

3 Get Transport Class
Trigger

USINT 0x83

4 Get Produced
Connection ID

UINT 01111xxxxxx binary
xxxxxx = node address

5 Get Consumed
Connection ID

UINT 10xxxxxx101 binary
xxxxxx = node address

6 Get Initial Comm
Characteristics

USINT 0x01

7 Get Produced
Connection Size

UINT 0x08

8 Get Consumed
Connection Size

UINT 0x08

9 Get / Set Expected Packet
Rate

UINT 2500 default (msec)
with timer resolution of
1 msec

12 Get Watchdog
Timeout Action

USINT 0

13 Get Produced
Connection Path
Length

USINT 0

14 Get Produced
Connection Path

Null (no data)

15 Get Consumed
Connection Path
Length

USINT 0

16 Get Consumed
Connection Path

Null (no data)

17 Get Production
Inhibit Time

USINT 0

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-16
DeviceNet

MC Object
Class Code: 0x8A

Instance Services

Id Service Description

0x05 Reset Performs EX on the Motion Coordinator. This will
reset the DeviceNet as well.

0x33 Read Word - TABLE Reads the specified number of TABLE entries and
sends their values in 16 bit 2s complement format

0x34 Read Word - VR Reads the specified number of TABLE entries and
sends their values in 16 bit 2s complement format

0x35 Read IEEE - TABLE Reads the specified number of TABLE entries and
sends their values in 32 bit IEEE floating point
format

0x36 Read IEEE - VR Reads the specified number of VR entries and
sends their values in 32 bit IEEE floating point
format

0x37 Write Word - TABLE Receives the specified number of values in 16 bit
2s complement format and writes them into the
specified TABLE entries

0x38 Write Word - VR Receives the specified number of values in 16 bit
2s complement format and writes them into the
specified VR entries

0x39 Write IEEE - TABLE Receives the specified number of values in 32 bit
IEEE floating point format and writes them into the
specified TABLE entries

0x3A Write IEEE - VR Receives the specified number of values in 32 bit
IEEE floating point format and writes them into the
specified VR entries

The following sections describe the message body area of the Explicit Message
used to specify the different services. This ignores all of the fragmentation
protocol.

Read word format
Request

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 0 Service code = 0x33, or 0x34

byte 1 Class ID = 0x8A

byte 2 Instance ID = 0x01 (this is the only instance supported)

byte 3 bits 15-8 of Source Address

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-17
DeviceNet

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 4 bits 7-0 of Source Address

byte 5 ignored

byte 6 Number of word values to be read

Response

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 1 Service code = 0x33, or 0x34

byte 1 bits 15-8 of Value 0

byte 2 bits 7-0 of Value 0

...

byte n bits 15-8 of Value m

byte n + 1 bits 7-0 of Value m

Write word format
Request

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 0 Service code = 0x37, or 0x38

byte 1 Class ID = 0x8A

byte 2 Instance ID = 0x01 (this is the only instance supported)

byte 3 bits 15-8 of Source Address

byte 4 bits 7-0 of Source Address

byte 5 ignored

byte 6 Number of word values to be written

byte 7 bits 15-8 of Value 0

byte 8 bits 7-0 of Value 0

...

byte n bits 15-8 of Value m

byte n + 1 bits 7-0 of Value m

Response

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 1 Service code = 0x37, or 0x38

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-18
DeviceNet

Read IEEE format
Request

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 0 Service code = 0x35, or 0x36

byte 1 Class ID = 0x8A

byte 2 Instance ID = 0x01 (this is the only instance supported)

byte 3 bits 15-8 of Source Address

byte 4 bits 7-0 of Source Address

byte 5 ignored

byte 6 Number of IEEE values to be read

Response

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 1 Service code = 0x35, or 0x36

byte 1 bits 7-0 of Value 0

byte 2 bits 15-8 of Value 0

byte 3 bits 23-16 of Value 0

byte 4 bits 31-24 of Value 0

...

byte n bits 7-0 of Value m

byte n + 1 bits 15-8 of Value m

byte n + 2 bits 23-16 of Value m

byte n + 3 bits 31-24 of Value m

Write IEEE format
Request

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 0 Service code = 0x39, or 0x3A

byte 1 Class ID = 0x8A

byte 2 Instance ID = 0x01 (this is the only instance supported)

byte 3 bits 15-8 of Source Address

byte 4 bits 7-0 of Source Address

byte 5 ignored

byte 6 Number of IEEE values to be written

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-19
Ethernet

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 7 bits 7-0 of Value 0

byte 8 bits 15-8 of Value 0

byte 9 bits 23-16 of Value 0

byte 10 bits 31-24 of Value 0

...

byte n bits 7-0 of Value m

byte n + 1 bits 15-8 of Value m

byte n + 2 bits 23-16 of Value m

byte n + 3 bits 31-24 of Value m

Response

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

byte 0 1 Service code = 0x39, or 0x3A

Ethernet
Ethernet is the primary connection port to the Motion Coordinator. This section
describes how to set up a simple Ethernet connection.

Default IP Address
The IP address (Internet Protocol address) is a 32-bit address that has two parts:
one part identifies the network, with the network number, and the other part
identifies the specific machine or host within the network, with the host number.
An organization can use some of the bits in the machine or host part of the address
to identify a specific subnet. Effectively, the IP address then contains three parts:
the network number, the subnet number, and the machine number.

The 32-bit IP address is often depicted as a dot address (also called dotted quad
notation) - that is, four groups of decimal digits separated by points.

For example, the Trio Ethernet daughter board has a default IP address of:

	 192.168.000.250

Each of the decimal numbers represents a string of eight binary digits. Thus, the
above IP address really is this string of 0s and 1s:

	 11000000.10101000.00000000.11111010

As you can see, points are inserted between each eight-digit sequence just as
they are in the decimal version of the IP address. Obviously, the decimal version

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-20
Ethernet

of the IP address is easier to read and that’s the form most commonly used
(192.168.000.250).

Part of the IP address represents the network number or address and another
part represents the local machine address (also known as the host number or
address). IP addresses can be one of several classes, each determining how many
bits represent the network number and how many represent the host number. IP
addresses are grouped by classes A,B,C, D and E. The Trio Ethernet is set up for a
Class C address.

Using the above example, here’s how the IP address is divided:

 <-Network address->.<-Host address->
 192.168 . 000.250

The beginning Network Address portion of 192 begins with the first three bits as
110... and classifies it as a Class C address. This means you can have up to 256 host
addresses on this particular network.

If you wanted to add sub-netting to this address, then some portion (in this
example, eight bits) of the host address could be used for a subnet address. Thus:

 <-Network address->.<-Subnet address->.<-Host address->
 192.168 . 000 . 250

To simplify this explanation, the subnet has been divided into a neat eight bits but
an organization could choose some other scheme using only part of the third quad
or even part of the fourth quad.

A subnet (short for “sub-network”) is an identifiably separate part of an
organization’s network. Typically, a subnet may represent all the machines at one
geographic location, in one building, or on the same local area network (LAN).

The Subnet Mask
A router or switch knows which bits to look at (and which not to look at) by looking
at a subnet mask. In a binary mask, a “1” over a number says “Look at the number
underneath”; a “0” says “Don’t look.” Using a mask saves the router having to
handle the entire 32-bit address; it can simply look at the bits selected by the
mask.

Using the Trio default IP address, the combined network number and subnet
number occupy 24 bits or three of the quads. The default subnet mask carried
along with the packet is:

	 255.255.255.000		

Or a string of all 1’s for the first three quads (telling the router to look at these)
and 0’s for the host number (which the router doesn’t need to look at).

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-21
Ethernet

Connecting to the Trio Motion Coordinator
The following steps can be followed to establish an Ethernet connection from a PC
to the Motion Coordinator.

1. One-to-One Connection
The Ethernet connection in the Motion Coordinator will adapt to the cable. Either
straight or cross-over cable can be used.

101011
A

B

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ENABLE

MC 464

The IP address of the Host PC can be set to the match the default value of the Trio
ethernet card.

Host PC IP:	 	 192.168.000.251
Subnet: 		 255.255.255.000

Trio IP:	 	 192.168.000.250
Subnet:			 255.255.255.000

If leaving the Trio’s IP address as default, proceed to step 6 to test
communications.

2. Connecting the Trio to Network through an Ethernet hub/switch
When connecting the Trio Motion Coordinator to an existing Ethernet network on a
hub, simply add the connection using a high quality Ethernet cable.

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-22
Ethernet

101011
A

B

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

ENABLE

MC 464

To Other Network / PCs

The IP address of the Trio Motion Coordinator can be set to the match the network
address. The Trio’s default subnet (255.255.255.000) is generic and allows any host
PC to communicate with the controller regardless of a specific sub-network mask.
Below is a typical example.

Host PC IP:		 92.200.185.001
Subnet:			 255.255.255.224

Trio IP:	 	 192.200.185.a
Subnet:			 255.255.255.000

Where: a = Valid IP address for the Trio ethernet board on the given network

3. Select a valid IP address for the Trio
For this network example, the 224 in the subnet indicates the network can have up
to (6) sub-networks (224 = 11100000). The (5) remaining bits within the 224 mask
will allow up to 30 valid host addresses ranging from 1 to 30.

Valid IP Addresses (a) for above example:

002 = 11100010 to 030 = 11111110
New Trio IP:	 	 192.200.185.002
Trio Subnet:		 255.255.255.000

4. Checking and Setting The Trio’s IP Address
The IP address of the Motion Coordinator can be verified using the command line
interface “>>” of the Motion Coordinator. The command line can be accessed via
the terminal 0 in Motion Perfect2.

At the command line, use the ETHERNET command and type:

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-23
Ethernet

	 >>ETHERNET(0,0,0)

When connected correctly the controller will respond with the line:

	 >>192.168.000.250

The sequence (192.168.000.250) is the IP address of the Motion Coordinator.

5. To change the IP address to a different one
Set a new IP address to match the network:

At the command line, use the ETHERNET command and type:

 >>ETHERNET(1,0,0,192,200,185,2)

Verify the new IP address:

 >>ETHERNET(0,0,0)

The new IP address value prints out:

 >>192.200.185.002

Cycle power to the Motion Coordinator for the new IP address to take effect.

6. Test the Communications
The easiest way to test the ethernet link is to “ping” the Motion Coordinator. This
can be done using the ping command at the Windows command prompt.

From the START button in Windows, select Accessories and then Command Prompt
utility.

At the prompt type ping followed by the Motion Coordinators IP address:

	 C:\>ping 192.168.0.250

Successful reply from controller:

	 Pinging 192.168.0.250 with 32 bytes of data:

	 Reply from 192.168.0.250: bytes=32 time<10ms TTL=64
	 Reply from 192.168.0.250: bytes=32 time<10ms TTL=64
	 Reply from 192.168.0.250: bytes=32 time<10ms TTL=64
	 Reply from 192.168.0.250: bytes=32 time<10ms TTL=64

	 Ping statistics for 192.168.0.250:
 	 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
	 Approximate round trip times in milli-seconds:
 	 Minimum = 0ms, Maximum = 0ms, Average = 0ms

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-24
Ethernet

If the ping command is unsuccessful you will see:

	 C:\>ping 192.168.0.250

	 Pinging 192.168.0.250 with 32 bytes of data:

	 Request timed out.
	 Request timed out.
	 Request timed out.
	 Request timed out.

	 Ping statistics for 192.168.0.250:
	 Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
	 Approximate round trip times in milli-seconds:
	 Minimum = 0ms, Maximum = 0ms, Average = 0ms

7. Motion Perfect Terminal
If the controller was successfully ‘pinged’, then Motion Perfect can be used to
open a remote command-line prompt connection to the controller. This tests the
TCP socket connection.

•	Start in disconnected mode and configure the communication link.

•	From the Motion Perfect menu, select Options... Communications. In the
Communications Links window, click the Add button, select type Ethernet
and enter the IP address of the Motion Coordinator. Leave the IP port
number as 23.

•	Click ok and select this link in the list. Click ok again.

•	Now open a terminal with Tools... Terminal. Make sure it shows your
selected IP address at the top.

•	Press the <return> key and the characteristic Trio command-line prompt (‘>>’)
should be seen.

8. Ethernet Ports
The controller uses various ports for different communications protocols. You
should ensure that the following are all allowed on your network.

Port Function

23 Telnet/ MP2/ MCLoader

80 HTTP

502 Modbus

3240 Trio PCMotion

41100 Multiprog

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-25
Anybus

Anybus
The P875 Anybus adapter module allows a growing range of communication
types to be added to the MC464 Motion Coordinator. It is designed to take an
Anybus CompactCom module. This provides a standard interface into the Motion
Coordinator while the module takes care of the detailed fieldbus operation. To
allow the programmer to make configuration changes, the ANYBUS command in
BASIC can be used to set up and modify the behaviour of the Anybus CompactCom
module.

The following Anybus CompactCom modules are available.

Module Name Function Supported

Fieldbus Versions ll the following are Slave modules (server)

CANopen CANopen slave DS301 specification (v4.02) Contact Trio

CC-Link Conformance to BTP-050227-B
specification

Yes

ControlNet ControlNet slave. CIP functionality Contact Trio

DeviceNet DeviceNet slave. CIP functionality Yes

Modbus-RTU RTU (8bit) and ASCII (7bit) support Contact Trio

Profibus Up to 244 bytes cyclic data transfer Yes

Industrial Ethernet
Versions

All the following are Slave Modules
(server)

EtherCAT EtherCAT I/O Slave. Max 256 Byte Contact Trio

EtherNet/IP EthernetI/P (CIP), webserver and email
sending

Contact Trio

Modbus-TCP Modbus TCP, webserver and email sending Contact Trio

Profinet-IO Profinet, webserver and email sending Contact Trio

Profinet-IO 2-port Profinet, webserver and email sending Contact Trio

Sercos III SERCOS III, webserver and email sending Contact Trio

Other Versions All the following function as serial ports

Bluetooth Bluetooth Class 2 SPP. Virtual Serial port Yes

RS-232 Serial port Yes

RS-485 Serial port Yes

USB Virtual serial port Yes

For full information, go to the Anybus website at this URL:

http://www.anybus.com/products/abcctech.shtml

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-26
Anybus

Anybus Configuration
The Anybus module is automatically recognised by the Motion Coordinator and
most modules are also configured by the system software, so there is not much
setup required in the BASIC. Mostly the configuration is limited to setting the
network parameters, e.g. speed, node address, and setting the target data area
within the Motion Coordinator.

The ANYBUS BASIC command is used to configure the modules. Specific examples
can be found in chapter 8 under the ANYBUS command description.

CC-Link master configuration
The CC-Link module requires some handshaking to enter the process active state.
This section details how to configure the handshaking in the master to enable
communications. It is assumed that the user is experienced with the master and
that they can configure the CC-Link as per the manufacturers’ information.

The master must be configured as per the manufacturers’ instructions. In this
example the master is configured as shown below.

Slave configuration
The current implementation in the MC464 only supports CC-link Version 1. With up
to 4 stations addressable. The final 16 bits are used for handshaking and the final
word write point is used for an error word.

When you map data to the Motion Coordinator it automatically determines how
many stations to activate from the amount of data.

The maximum amount of data that can be mapped is detailed below.

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-27
Anybus

Occupied
Stations

Bit points read Bit points
write

Word points
read

Word points
write

1 16 16 4 3

2 48 48 8 7

3 80 80 12 11

4 112 112 16 15

Handshaking
The handshaking is performed using the final 16 bits read and write.

Bits Slave -> Master Master -> Slave

0 - 7 Reserved Reserved

8 Initial data processing request
flag

Initial data processing complete flag

9 Initial data setting complete flag Initial data setting request flag

A Error status flag Error reset request flag

B Remote READY Reserved

C - F Reserved Reserved

Using the configuration in previously explained (CC-Link master configuration),
the formula for the memory offset is 10(m+n)0 Hex, where m is depending on the
station number and n on the number of occupied stations.

The relations are:

m=(station number-1)*2 and

n=number of occupied stations*2-1.

In this example the station number is 1 therefore the m-factor is zero. The n-factor
will have the values 1,3,5,7 for 1,2,3,4 occupied station(s). In this example the
number of occupied stations is 2 and the m+n-factor consequently is 3. So the
memory offset for the handshaking area is 1030 Hex and the complete address for
the remote ready flag will be 103B.

The handshaking requires of waiting for bit 8, Initial data processing complete flag
to be true. Then set bit 8 in the write area. You should then see bit B, remote
ready become true and the Anybus module will enter process active.

This can be manually done using the Entry Data Monitor (on a Mitsubishi PLC) or
automatically in a program. The following example could be used in structured
text.

IF (X1038=1 AND X103B=0) THEN
	 Y1038=1;
ELSE
	 Y1038=0;
END _ IF;

Trio Motion Technology

COMMUNICATIONS PROTOCOLS12-28
Anybus

DeviceNet / Profibus Master configuration
Setting up the master is quite straight-forward because no handshake is required.
Follow the guidelines provided by the PLC vendor. EDS and GSD files can be
provided. Check the website for details.

Configure DeviceNet with 2 16-bit integer inputs and 2 16-bit integer outputs. This
data is transmitted cyclically using the ‘Polled Connection’ method. Ensure to
configure the master identically to the slave otherwise the data will not transmit.

Anybus Status byte
The following example shows how the Anybus states can be read. This checks for
a change in state and if the module is supervised on the network. It displays the
information on one of the terminal channels.

Read _ state:
 VR(0)=ANYBUS(3,slotnum)
 rdanybus _ state=READ _ BIT(2,0)*$4+READ _ BIT(1,0)*$2+READ _
BIT(0,0)
 IF rdanybus _ state<>anybus _ state THEN
 anybus _ state=rdanybus _ state
 PRINT#term, “ANYBUS CC CHANGED STATE”
 PRINT#term, “ Anybus State = “;
 ON anybus _ state+1 GOSUB s0,s1,s2,s3,s4,s5,s6,s7
 PRINT#term, “”
 anybus _ state=rdanybus _ state
 ENDIF

 ‘check for change in supervisory bit
 IF supbit<>READ _ BIT(3,readbit) THEN
 supbit=READ _ BIT(3,readbit)
 IF READ _ BIT(3,readbit)=0 THEN
 PRINT#term, “Module is not supervised”
 ELSE
 PRINT#term, “Module is supervised by another network
device”
 ENDIF
 ENDIF

RETURN

‘Anybus State list
s0:
 PRINT#term, “SETUP”
 RETURN
s1:
 PRINT#term, “NW _ INIT”
 RETURN
s2:
 PRINT#term, “WAIT _ PROCESS”
 RETURN
s3:

Technical Reference Manual

COMMUNICATIONS PROTOCOLS 12-29
Anybus

 PRINT#term, “IDLE”
 RETURN
s4:
 PRINT#term, “PROCESS _ ACTIVE”
 RETURN
s5:
 PRINT#term, “ERROR”
 RETURN
s6:
 PRINT#term, “(reserved)”
 RETURN
s7:
 PRINT#term, “EXCEPTION”
 RETURN

13CHAPTER

APPENDIX

Trio Motion Technology

APPENDIX
﻿

13-2

Technical Reference Manual

APPENDIX
Communications Ports

13-3

Reference

Communications Ports
Chan Device:-

0 Serial Port 0 - RS232 - Motion Perfect / Command Line

1 Serial Port 1

2 Serial Port 2

3 Fibre optic port (value returned defined by DEFKEY)

4 Fibre optic port (returns raw keycode of key pressed)

5 Motion Perfect user channel

6 Motion Perfect user channel

7 Motion Perfect user channel

8 Used for Motion Perfect internal operations

9 Used for Motion Perfect internal operations

10 Fibre optic network data

Error Codes
Number Message

1 Command not recognized

2 Invalid transfer type

3 Error programming Flashl

4 Operand expected

5 Assignment expected

6 QUOTES expected

7 Stack overflow

8 Too many variables

9 Divide by zero

10 Extra characters at end of line

11] expected in PRINT

Trio Motion Technology

APPENDIX
Error Codes

13-4

Number Message

12 Cannot modify a special program

13 THEN expected in IF/ELSEIF

14 Error erasing Flash

15 Start of expression expected

16) expected

17 , expected

18 Command line broken by ESC

19 Parameter out of range

20 No process available

21 Value is read only

22 Modifier not allowed

23 Remote axis is in use

24 Command is command line only

25 Command is runtime only

26 LABEL expected

27 Program not found

28 Duplicate label

29 Program is locked

30 Program(s) running

31 Program is stopped

32 Cannot select program

33 No program selected

34 No more programs available

35 Out of memory

36 No code available to run

37 Command out of context

38 Too many nested structures

39 Structure nesting error

40 ELSE/ELSEIF/ENDIF without previous IF

41 WEND without previous WHILE

42 UNTIL without previous REPEAT

43 Variable expected

44 TO expected after FOR

Technical Reference Manual

APPENDIX
Error Codes

13-5

Number Message

45 Too may nested FOR/NEXT

46 NEXT without FOR

47 UNTIL/IDLE expected after WAIT

48 GOTO/GOSUB expected

49 Too many nested GOSUB

50 RETURN without GOSUB

51 LABEL must be at start of line

52 Cannot nest one line IF

53 LABEL not found

54 LINE NUMBER cannot have decimal point

55 Cannot have multiple instances of REMOTE

56 Invalid use of $

57 VR(x) expected

58 Program already exists

59 Process already selected

60 Duplicate axes not permitted

61 PLC type is invalid

62 Evaluation error

63 Reserved keyword not available on this controller

64 VARIABLE not found

65 Table index range error

66 Features enabled do not allow ATYPE change

67 Invalid line number

68 String exceeds permitted length

69 Scope period should exceed number of Ain params

70 Value is incorrect

71 Invalid I/O channel

72 Value cannot be set. Use CLEAR_PARAMS command

73 Directory not locked

74 Directory already locked

75 Program not running on this process

76 Program not running

77 Program not paused on this process

Trio Motion Technology

APPENDIX
Error Codes

13-6

Number Message

78 Program not paused

79 Command not allowed when running Motion Perfect

80 Directory structure invalid

81 Directory is locked

82 Cannot edit program

83 Too many nested OPERANDS

84 Cannot reset when drive servo on

85 Flash Stick Blank

86 Flash Stick not available on this controller

87 Slave error

88 Master error

89 Network timeout

90 Network protocol error

91 Global definition is different

92 Invalid program name

93 Program corrupt

94 More than one program running when trying to set GLOBAL/CONSTANT

95 Program encrypted

96 BASIC TOKEN definition incorrect

97 (expected

98 Number expected”;

99 AS expected”;

100 STRING, VECTOR or ARRAY expected

101 String expected

102 Download Abort or Timeout

103 Cannot specify program type for an existing program

104 File error: Invalid COFF image file

105 Variable defined outside include file

106 Command not allowed within INCLUDE file

107 Serial Number must be -1

108 Append block inconsistent

109 Invalid range specified

110 Too many items defined for block

Technical Reference Manual

APPENDIX
Error Codes

13-7

Number Message

111 Invalid MSPHERICAL input

112 Too many labels

113 Symbol table locked

114 Incorrect symbol type

115 Variables not permitted on Command Line

116 Invalid program type

117 Parameter expected

118 Firmware error: Device in use

119 Device error: Timeout waiting for device

120 Device error: Command not supported by device

121 Device error: CRC error

122 Device error: Error writing to device

123 Device error: Invalid response from device

124 Firmware error: Cannot reference data outside current block

125 Disk error: Invalid MBR

126 Disk error: Invalid boot sector

127 Disk error: Invalid sector/cluster reference

128 File error: Disk full

129 File error: File not found

130 File error: Filename already exists

131 File error: Invalid filename

132 File error: Directory full

133 Command only allowed when running Motion Perfect

134 # expected

135 FOR expected

136 INPUT/OUTPUT/APPEND/FIFO_READ/FIFO_WRITE expected

137 File not open

138 End of file

139 File already open

140 Invalid storage area

141 Invalid Floating-Point operation

142 Invalid System Code - wrong controller

143 IEC error - invalid variable access

Trio Motion Technology

APPENDIX
Data Formats and Floating-Point Operations

13-8

Number Message

144 Numerical error : Not-a-Number(NaN) used

145 Numerical error : Infinity used

146 Numerical error : Subnormal value used

147 MAC EEPROM is locked

148 Invalid mix of data types

149 Invalid startup configuration command

Data Formats and Floating-Point
Operations
The TMS320C3x processor used by the Motion Coordinator features several
different data types. In the Motion Coordinator we use two main formats. The
following descriptions are taken directly from the TI documentation.

Single-Precision Floating Point Format
In the single precision format, the floating-point number is represented by an 8-bit
exponent field (e) and a twos complement 24-bit mantissa field (man) with and
implied significant non-sign bit.

Operations are performed with an implied binary point between bits 23 and 22.

When the implied most significant non-sign bit is made explicit, it is located to the
immediate left of the binary point.

The floating point number ‘x’ is given by:

x= 	 01.f x 2e	 if s=0

	 10.f x 2e	 if s=1

	 0		 if e=-128

The following examples illustrate the range and precision if the single-precision
floating-point format:

Most Positive:	 	 x = (2 - 2-23) x 2127 	 = 3.4028234 x 1038

Least Positive: 	 x = 1 x 2-127		 = 5.8774717 x 10-39

Least Negative:	 x = (-1 - 2-23) x 2-127 	= -5.8774724 x 10-39

Most Negative:	 x = -2 x 2127 		 = -3.4028236 x 1038

Technical Reference Manual

APPENDIX
Product Codes

13-9

Single-Precision Integer Format
In the single precision integer format, the integer is represented in twos
complement notation.

31 0

s

The range of an integer x, represented in the single-precision integer format, is:

-231 <= x <=231 -1

Product Codes
Processors

P860 MC464

Expansion Modules

P871 RTEX Interface

P872 SERCOS Interface

P873 SLM interface

P874 FlexAxis 8 Interface

P875 Anybus-CC Module

P876 EtherCAT Interface

P878 Blanking Module

P879 FlexAxis 4 Interface

Options - I/O

P316 CAN 16-I/O

P317 CAN 16-Out Digital

P318 CAN 16-In Digital

P319 CAN 16-I/O Digital

P326 CAN 8-In/4-Out Analogue

P327 CAN 8-Relay Out

Keypads & Cables

P381 FlexAxis Splitter Splitter

Trio Motion Technology

APPENDIX
Product Codes

13-10

Software

P877 IEC 61131 Runtime FEC

P680 KW Multiprog IEC 61131 Programming Environment

A range of Fibre-Optic cables can be supplied for both the Trio FO Network and to
the SERCOS specification. Contact your Trio Distributor for details.

1

CHAPTER

INDEX14

Trio Motion Technology

INDEX
﻿

ii

Technical Reference Manual

INDEX
﻿

iii

SYMBOLS
$ (Dollar) 8-158
+ (Add) 8-278
: (Colon) 8-155
’ (Comment) 8-156
/ (Divide) 8-279
= (Equals) 8-280
> (Greater Than) 8-282
>= (Greater Than or Equal) 8-282
(Hash) 8-157
< (Less Than) 8-283
<= (Less Than or Equal) 8-283
_ (Line Cont) 8-141
* (Multiply 8-279
<> (Not Equal) 8-281
^ (Power) 8-280
.. (Range) 8-109
- (Subtract) 8-278

A
ABS 8-284
ACC 8-13
ACCEL 8-310
ACOS 8-285
ADDAX 8-16
ADDAX_AXIS 8-310
AddAxis 11-12
ADD_DAC 8-14
ADDRESS 8-158
AFF_GAIN 8-311
Ain 11-28
AIN 8-109
AND 8-285
Anybus 12-25
ANYBUS 8-159
AOUT 8-164
ASIN 8-287
ATAN 8-287
ATAN2 8-288
ATYPE 8-311
AutoRun 10-23
AUTORUN 8-164, 10-8
AXIS 8-20

AXIS_ADDRESS 8-313
AXIS_DEBUG_A 8-313
AXIS_DEBUG_B 8-313
AXIS_DISPLAY 8-314
AXIS_ENABLE 8-314
AXIS_ERROR_COUNT 8-315
AXIS_MODE 8-316
AXIS_OFFSET 8-165
Axis Positioning Functions 2-4
AXISSTATUS 8-317
AXISVALUES 8-21

B
BACKLASH 8-22
BACKLASH_DIST 8-318
Backlit Display 2-9
Base 11-10
BASE 8-23
BASICERROR 8-141
Battery 2-9
BATTERY_LOW 8-165
Board 11-7
BOOT_LOADER 8-166
BREAK_ADD 8-166
BREAK_DELETE 8-167
BREAK_LIST 8-167
BREAK_RESET 8-168
B_SPLINE 8-288

C
Cam 11-13
CAM 8-24
CamBox 11-12
CAMBOX 8-29
CAN 8-168
Cancel 11-14
CANCEL 8-37
CANIO_ADDRESS 8-174
CANIO_ENABLE 8-175
CANIO_STATUS 8-175
CANOPEN_OP_RATE 8-176
CHANGE_DIR_LAST 8-318
CHANNEL_READ 8-110

Index

Trio Motion Technology

INDEX
﻿

iv

CHANNEL_WRITE 8-111
CheckProject 10-24
CHECKPROJECT 10-8
CHECKSUM 8-176
CHECKTYPE 10-8
CHECKUNLOCKED 10-9
CHECKVERSION 10-9
CLEAR 8-176
CLEAR_BIT 8-291
CLEAR_PARAMS 8-177
Close 11-5
CLOSE 8-112
CLOSE_WIN 8-319
CLUTCH_RATE 8-319
CmdProtocol 11-8
Comment 10-9
CommLink 10-18
COMMLINK 10-10
COMMPORT 10-10
COMMSERROR 8-177
COMMSPOSITION 8-178
COMMSTYPE 8-178
Communications 11-44
Communications Ports 13-3
COMPILE 8-180
CompileAll 10-24
COMPILE_ALL 8-180
COMPILEALL 10-10
CompileProgram 10-25
COMPILEPROGRAM 10-10
Connect 11-14
CONNECT 8-40
Connection 11-43
Connections to the MC464 2-5
CONNPATH 8-42
CONSTANT 8-292
CONTROL 8-180
ControllerSystemVersion 10-19
ControllerType 10-19
COORDINATOR_DAT 8-320
COPY 8-181
CORNER_MODE 8-320
CORNER_STATE 8-321
COS 8-293
CPU_EXCEPTIONS 8-181
CRC16 8-293
CREEP 8-322

D

DAC 8-325
DAC_OUT 8-326
DAC_SCALE 8-326
Data Formats and Floating-Point Operations 13-8
DATE 8-182
DATE$ 8-183
Datum 11-15
DATUM 8-44
DATUM_IN 8-327
DAY 8-184
DAY$ 8-185
DECEL 8-328
DECEL_ANGLE 8-328
DecryptionKey 10-20
DEFPOS 8-49
DEL 8-185
DeleteAll 10-25
DELETEALL 10-11
DeleteTable 10-26
DEMAND_EDGES 8-329
DEMAND_SPEED 8-330
DeviceNet 12-9
DEVICENET 8-186
D_GAIN 8-323
Dir 11-42
DIR 8-187
DISABLE_GROUP 8-51
DISPLAY 8-188
DLINK 8-189
DPOS 8-330
DUMP 8-193
D_ZONE_MAX 8-323
D_ZONE_MIN 8-324

E
EDPROG 8-194
EMC considerations 3-7
ENCODER 8-331
ENCODER_BITS 8-331
ENCODER_CONTROL 8-332
ENCODER_FILTER 8-333
ENCODER_ID 8-333
ENCODER_RATIO 8-54
ENCODER_READ 8-334
ENCODER_STATUS 8-334
ENCODER_TURNS 8-335
ENCODER_WRITE 8-56
END_DIR_LAST 8-335
ENDMOVE 8-336

Technical Reference Manual

INDEX
﻿

v

ENDMOVE_BUFFER 8-337
ENDMOVE_SPEED 8-337
EPROM 8-197, 10-11
EPROM_STATUS 8-197
ERROR_AXIS 8-197
Error Codes 13-3
ERROR_LINE 8-198
ERRORMASK 8-338
Ethernet 12-19
ETHERNET 8-198
EX 8-206
Execute 11-35
EXECUTE 8-207
EXP 8-295
Expansion Module Assembly 4-3

Anybus-CC Module (P875) 4-14
EtherCAT Interface (P876) 4-16
Fitting Expansion Modules 4-4
FlexAxis Interface (P874 / P879) 4-11
Module SLOT Numbers 4-3
RTEX Interface (P871) 4-5
SERCOS II Interface (P872) 4-7
SLM Interface (P873) 4-9

F
FALSE 8-307
FASTDEC 8-340
FAST_JOG 8-339
FASTLOADPROJECT 10-11
FastSerialMode 11-9
FE 8-340
FEATURE_ENABLE 8-207
FE_LATCH 8-341
FE_LIMIT 8-342
FE_LIMIT_MODE 8-343
FE_RANGE 8-343
FHOLD_IN 8-344
FHSPEED 8-345
FILE 8-112
FLAG 8-118
FLAGS 8-119
FLASH_DUMP 8-209
FLASHTABLE 8-209
FLASHVR 8-210
FLEXLINK 8-57
FlushBeforeWrite 11-8
FORCE_SPEED 8-346
FOR..TO.. STEP.. NEXT 8-142
Forward 11-16

FORWARD 8-59
FPGA_VERSION 8-211
FPU_EXCEPTIONS 8-211
FRAC 8-295
FRAME 8-211
FRAME_TRANS 8-212
FREE 8-212
FS_LIMIT 8-347
FULL_SP_RADIUS 8-348
FWD_IN 8-349
FWD_JOG 8-349

G
Get 11-28
GET 8-120
GetAxisVariable 11-24
GetConnectionType 11-6
GetData 11-35
GetLastError 10-27
GetLastErrorString 10-29
GetPortVariable 11-26
GetProcessVariable 11-23
GetProcVariable 11-25
GetSlotVariable 11-26
GetTable 11-21
GetVariable 11-21
GetVr 11-22
GLOBAL 8-296
GOSUB..RETURN 8-144
GOTO 8-145 ... See also GOSUB..RETURN

H
HALT 8-213
HaltPrograms 10-29
HALTPROGRAMS 10-12
Hardware Overview 2-3

Backlit Display 2-10
Battery 2-9
Connections to the MC464 2-5
MC464 Feature Summary 2-11

HLM_COMMAND 8-214
HLM_READ 8-216
HLM_STATUS 8-217
HLM_TIMEOUT 8-218
HLM_WRITE 8-218
HLS_MODEL 8-220
HLS_NODE 8-220
HostAddress 11-7

Trio Motion Technology

INDEX
﻿

vi

HTTP 8-220
HW_PSWITCH 8-121

I
IDLE 8-146
IEEE_IN 8-297
IEEE_OUT 8-297
IF..THEN..ELSEIF..ELSE..ENDIF 8-146
I_GAIN 8-350
In 11-28
IN 8-122
INCLUDE 8-220
INDEVICE 8-221
INITIALISE 8-222
Input 11-29
INPUT 8-123
INPUTS0 / INPUTS1 8-124
InsertLine 11-42
Installation of the MC464 3-3

Mounting 3-5
Packaging 3-3

INT 8-298
INTEGER_READ 8-299
INTEGER_WRITE 8-299
Introduction to the MC464 1-3, 13-3

Features 1-5
Website 1-6

INVERT_IN 8-125
INVERT_STEP 8-350
I/O Capability 2-4
IsOpen 11-5

J
JOGSPEED 8-351

K
Key 11-29
KEY 8-126

L
LAST_AXIS 8-222
LIMIT_BUFFERED 8-352
LINK_AXIS 8-352
Linput 11-30
LINPUT 8-127

LIST 8-223
LIST_GLOBAL 8-223
LN 8-300
LOADED 8-353
LoadProgram 10-30, 11-41
LOADPROGRAM 10-12
LoadProject 10-30, 11-41
LOAD_PROJECT 8-224
LOADPROJECT 10-12
LoadSystem 11-41
LOADSYSTEM 8-224
LoadTable 10-31
LOADTABLE 10-13
Lock 10-32
LOCK 8-225
Locked 10-20
LOOKUP 8-226

M
Mark 11-30
MARK 8-353
MarkB 11-30
MARKB 8-354
MC464 Features 1-5
MC464 Packaging 3-3
MC464 Serial Connections 2-5
MechatroLink 11-40
MERGE 8-355
MHELICAL 8-61
MHELICALSP 8-64
MOD 8-300
Modbus RTU 12-3
Modbus TCP 12-4
MODULE_IO_MODE 8-128
MOTION_ERROR 8-226
Motion Perfect 2 9-3

Axis Parameters 9-29
Configuring The Desktop 9-63
Controller Configuration 9-13
Creating and Running a program 9-51
Digital IO Status 9-45
Ethernet Configuration 9-14
Feature Enable 9-16
General Options 9-66

CAN Drive 9-67
CX-Drive Configuration 9-69
Diagnostics 9-68
FINS Configuration 9-69
menu 9-69
Program Compare 9-68

Technical Reference Manual

INDEX
﻿

vii

Terminal Font 9-68
Keypad Emulation 9-40
Linking to External Tools 9-47
Loading New System Software 9-19
Lock / Unlock Controller 9-22
Main Menu 9-10
Memory Card Support 9-17
Oscilloscope 9-31
Project Check Window 9-6
Projects 9-5
Running Programs 9-61
Running Without a Controller 9-70

CAD2Motion 9-75
DocMaker 9-81
Project Encryptor 9-72

Table / VR Editor 9-42
Terminal 9-25
The Motion Perfect Desktop 9-9
The Motion Perfect Editor 9-52
Tools 9-24

MOVE 8-67
MoveAbs 11-11
MOVEABS 8-69
MOVEABSSP 8-72
MoveCirc 11-11
MOVECIRC 8-73
MOVECIRCSP 8-76
MoveHelical 11-17
MoveLink 11-17
MOVELINK 8-76
MoveModify 11-18
MOVEMODIFY 8-81
MoveRel 11-10
MOVES_BUFFERED 8-356
MOVESP 8-85
MOVETANG 8-86
MPE 8-227
MPOS 8-356
MSPEED 8-357
MSPHERICAL 8-88
MSPHERICALSP 8-92
MTYPE 8-357

N
NAIO 8-229
N_ANA_IN 8-228
N_ANA_OUT 8-229
NEG_OFFSET 8-359
New 11-41

NEW 8-230
NEWALL 10-11
NEXT 8-148 ... See also FOR..TO.. STEP.. NEXT
NIO 8-231
NOT 8-301
NTYPE 8-359

O
OFF 8-307
OFFPOS 8-360
ON 8-308
OnBufferOverrunChannel0/5/6/7/9 11-38
ON.. GOSUB / GOTO 8-148
OnProgress 11-39
OnReceiveChannel0/5/6/7/9 11-38
Op 11-31
OP 8-129
Open 11-4
OPEN 8-131
OPEN_WIN 8-361
OR 8-301
OUTDEVICE 8-231
OUTLIMIT 8-362
OV_GAIN 8-362

P
PEEK 8-232
P_GAIN 8-363
PI 8-308
PLC_ERROR 8-232
PLC_READ 8-233
PLC_STATUS 8-234
PLM_OFFSET 8-363
PMOVE 8-235
POKE 8-238
PORT 8-239
POS_OFFSET 8-364
POWER_UP 8-239
PP_STEP 8-364
PRINT 8-133
PRMBLK 8-240
PROC 8-236
PROCESS 8-240
PROC_LINE 8-236
PROCNUMBER 8-237
PROC_STATUS 8-236
Product Codes 13-9
ProjectFile 10-21

Trio Motion Technology

INDEX
﻿

viii

PROJECT_KEY 8-241
PROTOCOL 8-241
PS_ENCODER 8-365
Pswitch 11-31
PSWITCH 8-135

R
RAISE_ANGLE 8-368
RapidStop 11-19
RAPIDSTOP 8-92
READ_BIT 8-302
READ_OP 8-137
ReadPacket 11-32
READPACKET 8-242
Record 11-32
REG_INPUTS 8-369
Regist 11-32
REGIST 8-96
REGIST_CONTROL 8-371
REGIST_DELAY 8-372
REGIST_SPEED 8-373
REGIST_SPEEDB 8-373
REG_POS 8-370
REG_POSB 8-371
REMAIN 8-374
REMOTE 8-244
REMOTE_PROC 8-245
Removable Storage 2-4
RENAME 8-246
REP_DIST 8-375
REPEAT.. UNTIL 8-150
REP_OPTION 8-376
RESET 8-237
Reverse 11-16
REVERSE 8-104
REV_IN 8-377
REV_JOG 8-377
R_MARK 8-365
R_REGISTSPEED 8-366
R_REGPOS 8-367
RS_LIMIT 8-378
Run 11-20
RUN 8-246
RUN_ERROR 8-238
RunFromEPROM 10-21
RUNTYPE 8-247

S

SCHEDULE_TYPE 8-248
Scope 11-36
SCOPE 8-249
SCOPE_POS 8-250
Select 11-42
SELECT 8-250
Send 11-33
SendData 11-36
SERCOS 8-251
SERCOS_PHASE 8-256
SERIAL_NUMBER 8-257
SERVO 8-379
SERVO_PERIOD 8-257
SERVO_READ 8-107
SetAxisVariable 11-24
SET_BIT 8-303
Setcom 11-34
SETCOM 8-138
SetHost 11-6
SetPortVariable 11-27
SetProcVariable 11-25
SETPROJECT 10-13
SETRUNFROMEPROM 10-13
SetSlotVariable 11-26
SetTable 11-22
SetVariable 11-22
SetVr 11-23
SGN 8-303
SIN 8-304
SLOT 8-258
SLOT_NUMBER 8-379
SPEED 8-380
SPEED_SIGN 8-380
SPHERE_CENTRE 8-380
SQR 8-305
SRAMP 8-381
START_DIR_LAST 8-382
STARTMOVE_SPEED 8-382
Startup Message 10-14
STEP 8-258
STEPLINE 8-259
STEP_RATIO 8-107
STICK_READ 8-259
STICK_READVR 8-260
STICK_WRITE 8-261
STICK_WRITEVR 8-262
Stop 11-20
STOP 8-263
STOP_ANGLE 8-383
STORE 8-264

Technical Reference Manual

INDEX
﻿

ix

SYSTEM_ERROR 8-264
SYSTEM_VARIABLE 8-264

T
TABLE 8-265
TABLE_POINTER 8-267
TABLEVALUES 8-268
TAN 8-305
TANG _DIRECTION 8-384
THEN 8-150
TICKS 8-269
TIME 8-270
Timeout 10-22
TIMEOUT 10-14
TIMER 8-139
TO 8-151 ... See also FOR..TO.. STEP.. NEXT
TOKENTABLE 8-270
TRANS_DPOS 8-384
Trigger 11-37
TRIGGER 8-270
TrioPC Motion ActiveX Control 11-3
TRIOPCTESTVARIAB 8-385
TROFF 8-271
TRON 8-272
TRUE 8-308

U
UNITS 8-385
Unock 10-32
UNTIL 8-151

V
VECTOR_BUFFERED 8-386
VERIFY 8-386
VERSION 8-274
VFF_GAIN 8-387
VIEW 8-275
VP_SPEED 8-387
VR 8-275
VRSTRING 8-277

W
WA 8-152
WAIT 8-152
WDOG 8-277

WEND 8-153 ... See also WHILE
WHILE 8-154

X
XOR 8-306

	Title
	Contents
	1 Introduction to the MC464
	Features
	The Trio Motion Technology Website

	2 Hardware Overview
	Motion Coordinator MC464
	Connections to the MC464
	Battery
	Backlit Display
	MC464 Feature Summary

	3 Installation of the MC464
	Packaging
	Mounting
	EMC considerations
	Background to EMC Directive
	Installation Requirements to Ensure EMC Conformance

	4 Module Assembly
	Fitting Expansion Modules
	RTEX Interface (P871)
	SERCOS II Interface (P872)
	SLM Interface (P873)
	FlexAxis Interface (P874 / P879)
	Anybus-CC Module (P875)
	EtherCAT Interface (P876)

	5 Input / Output Modules
	General Description
	CAN 16-I/O Module (P316)
	CAN 16-Output Module (P317)
	CAN 16-Input Module (P318)
	Alternative connection protocols
	Software Interfacing P316, P317
	Troubleshooting- P316, P317
	Specification P316:
	Specification P317
	Specification P318

	CAN Analogue I/O Module (P326)
	Software Interfacing P326
	Troubleshooting- P326
	Specification P326

	6 System Setup and Diagnostics
	Preliminary Concepts
	System Setup
	Preliminary checks
	Checking Communications and System Configuration

	Setting Servo Gains
	Diagnostic Checklists

	7 What is a program?
	Controlling the Sequence of Events
	Controller Functions
	Parameters
	Command Line Interface
	Example Programs

	8 TrioBASIC Commands
	Motion and Axis Commands
	ACC
	ADD_DAC
	ADDAX
	AXIS
	BACKLASH
	BASE
	CAM
	CAMBOX
	CANCEL
	CONNECT
	CONNPATH
	DATUM
	DEFPOS
	DISABLE_GROUP
	ENCODER_RATIO
	ENCODER_WRITE
	FLEXLINK
	FORWARD
	MHELICAL
	MHELICALSP
	MOVE
	MOVEABS
	MOVEABSSP
	MOVECIRC
	MOVECIRCSP
	MOVELINK
	MOVEMODIFY
	MOVESP
	MOVETANG
	MSPHERICAL
	MSPHERICALSP
	RAPIDSTOP
	REGIST
	REVERSE
	SERVO_READ
	STEP_RATIO

	Input / Output Commands
	.. (Range)
	AIN
	AIN0..3 / AINBI0..3
	CHANNEL_READ
	CHANNEL_WRITE
	CLOSE
	FILE
	FLAG
	FLAGS
	GET
	HW_PSWITCH
	IN
	INPUT
	INPUTS0 / INPUTS1
	INVERT_IN
	KEY
	LINPUT
	MODULE_IO_MODE
	OP
	OPEN
	PRINT
	PSWITCH
	READ_OP
	SETCOM
	TIMER

	Program Loops and Structures
	_ (Line Cont)
	BASICERROR
	FOR..TO.. STEP.. NEXT
	GOSUB..RETURN
	GOTO
	IDLE
	IF..THEN..ELSEIF..ELSE..ENDIF
	NEXT
	ON.. GOSUB / GOTO
	REPEAT.. UNTIL
	THEN
	TO
	UNTIL
	WA
	WAIT
	WEND
	WHILE

	System Parameters and Commands
	: (Colon)
	’ (Comment)
	# (Hash)
	$ (Dollar)
	ADDRESS
	ANYBUS
	AOUT
	AUTORUN
	AXIS_OFFSET
	BATTERY_LOW
	BOOT_LOADER
	BREAK_ADD
	BREAK_DELETE
	BREAK_LIST
	BREAK_RESET
	CAN
	CANIO_ADDRESS
	CANIO_ENABLE
	CANIO_STATUS
	CANOPEN_OP_RATE
	CHECKSUM
	CLEAR
	CLEAR_PARAMS
	COMMSERROR
	COMMSPOSITION
	COMMSTYPE
	COMPILE
	COMPILE_ALL
	CONTROL
	COPY
	CPU_EXCEPTIONS
	DATE
	DATE$
	DAY
	DAY$
	DEL
	DEVICENET
	DIR
	DISPLAY
	DLINK
	DUMP
	EDPROG
	EDPROG1
	EPROM
	EPROM_STATUS
	ERROR_AXIS
	ERROR_LINE
	ETHERNET
	EX
	EXECUTE
	FEATURE_ENABLE
	FLASH_DUMP
	FLASHTABLE
	FLASHVR
	FPGA_VERSION
	FPU_EXCEPTIONS
	FRAME
	FRAME_TRANS
	FREE
	HALT
	HLM_COMMAND
	HLM_READ
	HLM_STATUS
	HLM_TIMEOUT
	HLM_WRITE
	HLS_MODEL
	HLS_NODE
	HTTP
	INCLUDE
	INDEVICE
	INITIALISE
	LAST_AXIS
	LIST
	LIST_GLOBAL
	LOAD_PROJECT
	LOADSYSTEM
	LOCK
	LOOKUP
	MOTION_ERROR
	MPE
	N_ANA_IN
	N_ANA_OUT
	NAIO
	NEW
	NIO
	OUTDEVICE
	PEEK
	PLC_ERROR
	PLC_READ
	PLC_STATUS
	PMOVE
	PROC
	PROC_LINE
	PROC_STATUS
	PROCNUMBER
	RESET
	RUN_ERROR
	POKE
	PORT
	POWER_UP
	PRMBLK
	PROCESS
	PROJECT_KEY
	PROTOCOL
	READPACKET
	REMOTE
	REMOTE_PROC
	RENAME
	RUN
	RUNTYPE
	SCHEDULE_TYPE
	SCOPE
	SCOPE_POS
	SELECT
	SERCOS
	SERCOS_PHASE
	SERIAL_NUMBER
	SERVO_PERIOD
	SLOT
	STEP
	STEPLINE
	STICK_READ
	STICK_READVR
	STICK_WRITE
	STICK_WRITEVR
	STOP
	STORE
	SYSTEM_VARIABLE
	SYSTEM_ERROR
	TABLE
	TABLE_POINTER
	TABLEVALUES
	TICKS
	TIME
	TOKENTABLE
	TRIGGER
	TROFF
	TRON
	TSIZE
	UNIT_SW_VERSION
	UNLOCK
	VERSION
	VIEW
	VR
	VRSTRING
	WDOG

	Mathematical Operations and Commands
	+ (Add)
	- (Subtract)
	* (Multiply)
	/ (Divide)
	^ (Power)
	= (Equals)
	<> (Not Equal)
	> (Greater Than)
	>= (Greater Than or Equal)
	< (Less Than)
	<= (Less Than or Equal)
	ABS
	ACOS
	AND
	ASIN
	ATAN
	ATAN2
	B_SPLINE
	CLEAR_BIT
	CONSTANT
	COS
	CRC16
	EXP
	FRAC
	GLOBAL
	IEEE_IN
	IEEE_OUT
	INT
	INTEGER_READ
	INTEGER_WRITE
	LN
	MOD
	NOT
	OR
	READ_BIT
	SET_BIT
	SGN
	SIN
	SQR
	TAN
	XOR

	Constants
	FALSE
	OFF
	ON
	PI
	TRUE

	Axis Parameters
	ACCEL
	ADDAX_AXIS
	AFF_GAIN
	ATYPE
	AXIS_ADDRESS
	AXIS_DEBUG_A
	AXIS_DEBUG_B
	AXIS_DISPLAY
	AXIS_ENABLE
	AXIS_ERROR_COUNT
	AXIS_MODE
	AXISSTATUS
	BACKLASH_DIST
	CHANGE_DIR_LAST
	CLOSE_WIN
	CLUTCH_RATE
	COORDINATOR_DATA
	CORNER_MODE
	CORNER_STATE
	CREEP
	D_GAIN
	D_ZONE_MAX
	D_ZONE_MIN
	DAC
	DAC_OUT
	DAC_SCALE
	DATUM_IN
	DECEL
	DECEL_ANGLE
	DEMAND_EDGES
	DEMAND_SPEED
	DPOS
	ENCODER
	ENCODER_BITS
	ENCODER_CONTROL
	ENCODER_FILTER
	ENCODER_ID
	ENCODER_READ
	ENCODER_STATUS
	ENCODER_TURNS
	END_DIR_LAST
	ENDMOVE
	ENDMOVE_BUFFER
	ENDMOVE_SPEED
	ERRORMASK
	FAST_JOG
	FASTDEC
	FE
	FE_LATCH
	FE_LIMIT
	FE_LIMIT_MODE
	FE_RANGE
	FHOLD_IN
	FHSPEED
	FORCE_SPEED
	FS_LIMIT
	FULL_SP_RADIUS
	FWD_IN
	FWD_JOG
	I_GAIN
	INVERT_STEP
	JOGSPEED
	LIMIT_BUFFERED
	LINK_AXIS
	LOADED
	MARK
	MARKB
	MERGE
	MOVES_BUFFERED
	MPOS
	MSPEED
	MTYPE
	NEG_OFFSET
	NTYPE
	OFFPOS
	OPEN_WIN
	OUTLIMIT
	OV_GAIN
	P_GAIN
	PLM_OFFSET
	POS_OFFSET
	PP_STEP
	PS_ENCODER
	R_MARK
	R_REGISTSPEED
	R_REGPOS
	RAISE_ANGLE
	REG_INPUTS
	REG_POS
	REG_POSB
	REGIST_CONTROL
	REGIST_DELAY
	REGIST_SPEED
	REGIST_SPEEDB
	REMAIN
	REP_DIST
	REP_OPTION
	REV_IN
	REV_JOG
	RS_LIMIT
	SERVO
	SLOT_NUMBER
	SPEED
	SPEED_SIGN
	SPHERE_CENTRE
	SRAMP
	START_DIR_LAST
	STARTMOVE_SPEED
	STOP_ANGLE
	TANG _DIRECTION
	TRANS_DPOS
	TRIOPCTESTVARIAB
	UNITS
	VECTOR_BUFFERED
	VERIFY
	VFF_GAIN
	VP_SPEED

	9 Support Software
	Motion Perfect 2
	System Requirements
	Connecting Motion Perfect to a controller
	Running Motion Perfect 2 for the First time
	Motion Perfect 2 Projects
	Project Check Window

	The Motion Perfect Desktop
	Main Menu
	Controller Menu
	Controller Configuration
	CAN I/O Status
	Ethernet Configuration
	Feature Enable
	Memory Card Support

	Loading New System Software
	Motion Perfect Tools
	Terminal
	Axis Parameters
	Oscilloscope
	Keypad Emulation
	Table / VR Editor
	Jog Axes
	Digital IO Status
	Analogue Input Viewer

	Linking to External Tools
	Control Panel
	The Motion Perfect Editor
	Editor Menus
	Program Debugger
	Variable Watch Tool
	Running Programs
	Making programs run automatically
	Storing Programs in the Flash EPROM

	Configuring The Motion Perfect 2 Desktop
	Communications
	Editor Options

	General Options
	CAN Drive Options
	Diagnostics
	Terminal Font
	Program Compare
	CX-Drive Configuration
	FINS Configuration
	Saving the Desktop Layout

	Running Motion Perfect 2 Without a Controller
	MC Simulation
	Limitations of MC Simulation

	Project Encryptor
	Introduction
	Encryption Process
	Encrypting a Project

	CAD2Motion
	Introduction
	Main Screen
	Sequence Manipulation Tools
	Import Options
	Preparing A Drawing For CAD2Motion

	DocMaker

	10 AutoLoader and MCLoader ActiveX
	Project Autoloader
	Using the Autoloader

	Script Commands
	Script File

	MC Loader
	Installation of the MC Loader Component

	Events
	Methods
	TrioPC Motion ActiveX Control
	Requirements
	Installation of the ActiveX Component
	Using the Component

	11 Using TheTrioPC Motion ActiveX Control
	Connection Commands
	Properties
	Motion Commands
	Process Control Commands
	Variable Commands
	Input / Output Commands
	General commands
	Events
	Intelligent Drive Commands
	Program Manipulation Commands
	Data Types
	TrioPC status

	12 Introduction to Modbus
	Modbus RTU
	Modbus TCP
	Modbus Technical Reference
	DeviceNet
	DeviceNet Objects Implemented
	Identity Object
	DeviceNet Object
	Assembly Object
	Connection Object
	MC Object

	Ethernet
	The Subnet Mask

	Anybus
	Anybus Configuration

	Reference
	Communications Ports
	Error Codes
	Data Formats and Floating-Point Operations
	Product Codes

	Index

