
C H A P T E R

CHAPTER 0ACTIVE X
PROGRAM
EXAMPLES

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-3
Configuring Visual BASIC

Programming Example:
Simple use of Trio PC Motion ActiveX control in Microsoft Visual
BASIC 6.0

Scope This programming example shows how to use the Trio PC Motion ActiveX control
in a Microsoft Visual BASIC 6.0 application. It demonstrates how to access system
and axis parameters, how to read and write digital I/O and how to perform basic
moves.

Configuring Visual BASIC
Trio PC Motion ActiveX control must already be installed
on the PC.

In order to use the Trio PC Motion ActiveX control Visual BASIC needs
to be configured to use the control. To do this, select Project /
Components from Visual BASIC’s main menu to display the
components dialog. The components dialog contains a list of all the
controls installed on the PC. Make sure that the check box next to
“TrioPC ActiveX Control module” is checked then click on the OK
button to close the dialog. The Trio PC Motion ActiveX control icon
will appear in the component palette (usually at the bottom, right).

Building the application
Main Form - Visual

7-4 Active X Program Examples
Building the application

Trio Motion Technology

Usually the first stage in building an application is creating the main form (the
sample application only has one form). Controls are placed on the form from the
component palette the properties of each component being adjusted as
appropriate. When the Trio PC Motion ActiveX control is placed on a form it appears
as a red, resizable rectangle. The available properties are as shown above.

Only the “Board” and “HostAddress” properties are custom the the control.
The “Board” property is only used for a PCI bus connection and the
“HostAddress” property is only used for an Ethernet connection. The sample
program uses a USB connection so these properties are not used.

The completed main form for the application is shown below, annotated to
show the control names used in the example application.

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-5
Main Form – Code

Main Form – Code
The code is best written in stages in order to make testing easier. The starting
point for this application was handlers for the “Exit”, “Open” and “Close”
buttons. The operation of the “Open” and “Close” buttons should be tested
before any of the code which accesses the Trio PC Motion component. The
handlers for other buttons are then added one at a time, together with any
helper functions, and the functionality tested for each group of controls as the
Digital I/O group is independent from the Axes (moves) group in this application.

lblIO
(array of 4)

btnRunIO

axTrioPC

btnOpen

btnClose

timUpdate

btnExit

btnRunMovelblAxisPos
(array of 2)

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-6
Main Form – Code

Opening and closing the Trio PC Motion component.
Calling the “Open” should open the connection to the controller. A successful
call of the “Open” method should cause the visible Trio PC Motion component to
change colour to green (remember to refresh it). The open/closed state of the
component can be checked using the “IsOpen” method. Calling the “Close”
method will close the connection to the controller. After a successful call of the
“Close” the colour of the visible Trio PC Motion component will be red.

The connection should always be closed before the application exits. This is
done by putting a conditional call to the “Close” method in the “Form_Unload”
routine for the main form in the application. To automatically open the
connection a call to the “Open” method can be put in the Form_Load routine of
the main form in the example application.

Reading and writing Digital I/O
Digital inputs can be read using the “In” method. This can read the states of a
range of inputs. The routine “ReadIO” in this application shows how this is done
and how to separate out individual bits from the number returned by the “In”
method call.

Digital outputs can be written using the “Op” method. The “Op” method only
writes to a single digital output. Writing to a range of outputs can be done by
using a program loop such as the FOR loop used in the IO section of the
“ProcessStateMachine” routine in the example application.

Reading and writing system parameters
System parameters are read using the “GetVariable” method. The example
application demonstrates this when the “WDOG” parameter is read at the
beginning of the “InitAxes” routine. The value of the parameter is always
returned as a double.

System parameters are written using the “SetVariable” method. The example
application demonstrates this when the “WDOG” parameter is written at the
beginning and at the end of the “InitAxes” routine.

Reading and writing axis parameters
This uses the same “Get/SetVariable” methods as are used for reading and
writing system parameters. The difference is that the parameter read or written
is the one from the current base axis. To change the base axis the “Base”
method must be used. The “Base” method can specify a single axis or several
axes (in an array). If more than one axis is specified then parameter reads and
writes use the first axis specified (in element 0 of the array). Examples of this
can be seen in the “ReadAxisPositions”, the “ProcessStateMachine” and the
“InitAxes” routines in the example

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-7
Main Form – Code

Performing Moves
Moves can be specified using the following methods:

 CamBox - Cam shape move linked to another axis

 Cam - Cam shape move

 Connect - Ratio move linked to another axis

 Datum - Datuming move sequence

 Forward - Continuous position move in positive direction

 Reverse - Continuous position move in reverse direction

 MoveAbs – absolute

 MoveRel – relative (equivalent to MOVE in Trio BASIC)

 MoveCirc – circular

 MoveHelical – helical

 MoveLink – linked to another axis

 MoveModify – modify move end position

The example application shows examples of the “MoveAbs” and “MoveRel”
methods in the “ProcessStateMachine” routine. Both of these methods specify an
array of move positions/distances. The positions/distances are applied to the
axes specified in the last call to the “Base” method. If a “Base” method call
specifies axes 1, 2 & 5 (in that order) then a call to “MoveRel” with one axis
specified would use axis 1, two axes specified would use axis 1 and axis 2, three
axes specified would use axis 1, axis 2 and axis 5.

Moves are loaded into a buffering system for each axis. This is capable of
containing two moves, the current move and the next move. If a move is written
to an axis which already has a next move specified then the move method called
will not return until it is possible for the move to be loaded into the next move
position in the move buffer. This can have the effect of hanging the GUI of the
calling application unless moves are taken to prevent this. Checking that the
“NTYPE” axis parameter is zero on all axes involved in the move is one way of
doing this although it may have a side effect of introducing pauses in the motion
if the moves are short. The example application demonstrates this method in the
“ProcessStateMachine” routine.

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-8
Main Form – Code

Timed operations
Visual BASIC has no means of waiting for a time period therefore any timed
operations need to be performed in response to events (usually generated by a
timer component). This must be done in order to keep the GUI active during ant
“Wait” periods. In the example application the “ProcessStateMachine” method is
called by the handler for a timer event. This is to allow the I/O sequence to be
performed slowly enough for the counting operation to be seen on the GUI and
also to allow the display of axis demand position during the Move sequence.

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-9
Main Form – Code

 Program Code
 The full source code for the program is shown below:

' Demo program for Trio PC Motion ActiveX control
'
' Trio PC Motion Control version 1.1.0.2 or later is required
'
' Program demonstrates opening and closing connection to controller
' as well as reading and writing axis parameters and I/O states.
'
' I/O and Move sequences are controlled using a state machine run from
' a timer. This is done to make sure that the values displayed on the PC
' are updated on a regular basis and the PC is not held up waiting for a
' command to complete. It also allows the I/O sequence to run at a slow
' speed.

Option Explicit ' Forces variables to be declared before being used

' Global Variables
Dim g_bRunningIO As Boolean ' Flag to control running of I/O sequence
Dim g_bRunningMove As Boolean ' Flag to control running of Move sequence
Dim g_nIOCount As Integer ' I/O counter used in I/O sequence
Dim g_nMoveNo As Integer ' Move counter used in Move sequence

' Define connection defaults
Const gk_sDefaultHostAddress As String = "192.168.0.111"
Const gk_nDefaultPciBoard As Integer = 0
Const gk_nDefaultLink As Integer = 0 ' USB link
Const gk_nDefaultMode As Integer = 0 ' Synchronous (Token) mode
Const gk_nMaxAxes As Integer = 24
Const gk_nAxesInUse As Integer = 2

Private Sub Form_Load()
 ' Initialise global variables
 g_bRunningIO = False
 g_bRunningMove = False
 timUpdate.Enabled = True
 g_nIOCount = 0
 g_nMoveNo = 0
 UpdateButtonStates
End Sub

Private Sub btnClose_Click()
 ' Handler for close button - closes connection to controller

7-10 Active X Program Examples
Main Form – Code

Trio Motion Technology

 If axTrioPC.IsOpen(gk_nDefaultMode) Then
 axTrioPC.Close (gk_nDefaultMode)
 End If
 UpdateButtonStates
 Refresh
End Sub

Private Sub btnOpen_Click()
 ' Handler for Open button - opens connection to controller
 Dim bOpen As Boolean

 axTrioPC.HostAddress = gk_sDefaultHostAddress ' Only needed for ethernet
 axTrioPC.Board = gk_nDefaultPciBoard ' Only needed for PCI
 bOpen = axTrioPC.Open(gk_nDefaultLink, gk_nDefaultMode)
 UpdateButtonStates
 Refresh

End Sub

Private Sub btnRunIO_Click()
 ' Handler for RunIO button - starts I/O sequence
 g_nIOCount = 0 ' Initialise counter
 ReadIO
 g_bRunningIO = True ' Indicate I/O sequence running to state machine processor
 UpdateButtonStates
End Sub

Private Sub btnRunMove_Click()
 ' Handler for RunMove button - starts Move sequence
 InitAxes ' Initialise axis parameters
 g_nMoveNo = 0 ' Initialise counter
 lblMoveNumber.Caption = g_nMoveNo
 lblMoveNumber.Refresh
 ReadAxisPositions
 g_bRunningMove = True ' Indicate move sequence running to state machine processor
 UpdateButtonStates
End Sub

Private Sub btnExit_Click()
 ' Handler for Exit button
 End
End Sub

Private Sub UpdateButtonStates()
 ' Update button enable states depending on connection state and running sequences
 Dim bOpen As Boolean

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-11
Main Form – Code

 bOpen = axTrioPC.IsOpen(0)

 btnOpen.Enabled = Not bOpen
 btnClose.Enabled = bOpen And Not (g_bRunningIO Or g_bRunningMove)
 btnRunIO.Enabled = bOpen And Not g_bRunningIO
 btnRunMove.Enabled = bOpen And Not g_bRunningMove
End Sub

Private Sub Form_Unload(Cancel As Integer)
 ' Make sure link to controller is closed when form closes
 If axTrioPC.IsOpen(gk_nDefaultMode) Then
 axTrioPC.Close (gk_nDefaultMode)
 End If
End Sub

Private Sub ReadIO()
 ' Read Input values used in I/O sequence
 Dim lIO As Long ' Used to hold value IO value returned from controller
 Dim lMask As Long ' Used to mask out individual bit values
 Dim nBit As Integer ' Used to count bits
 Dim nMBR As Integer ' Used as dummy for MessageBox return value

 If axTrioPC.IsOpen(gk_nDefaultMode) Then
 If axTrioPC.In(9, 12, lIO) Then ' Read bits 9 to 12

 ' Cycle through returned bits (0 to 3 equivalent to inputs 9 to 12)
 ' and display bit values in lblIO control array
 lMask = 1
 For nBit = 0 To 3
 If lIO And lMask Then
 lblIO(nBit).Caption = "On"
 lblIO(nBit).ForeColor = &HFF& ' Red
 Else
 lblIO(nBit).Caption = "Off"
 lblIO(nBit).ForeColor = &HFF0000 ' Blue
 End If
 lMask = lMask * 2 ' Move mask to next bit
 lblIO(nBit).Refresh ' Make sure new value is displayed
 Next nBit

 Else
 nMBR = MsgBox("Error reading IO")
 End If
 Else
 nMBR = MsgBox("Connection not open")
 End If

End Sub

7-12 Active X Program Examples
Main Form – Code

Trio Motion Technology

Private Sub ReadAxisPositions()
 ' Read demand positions of axes used in Move sequence
 Dim nAxis As Integer ' Used for axis number
 Dim nAxes(gk_nMaxAxes) As Integer ' Array used to set Base axis/axes
 Dim dPosition As Double ' Used for demand position read from controller
 Dim nMBR As Integer ' Used as dummy for MessageBox return value

 ' Initialise Axes array to all zero
 For nAxis = 0 To gk_nMaxAxes - 1
 nAxes(nAxis) = 0
 Next nAxis

 If axTrioPC.IsOpen(gk_nDefaultMode) Then
 ' Scan through all axes in use to read DPOS and show value in lblAxisPos
 ' control array
 For nAxis = 0 To gk_nAxesInUse - 1
 nAxes(0) = nAxis ' Set up Axes array for Base command
 ' (single value in element 0)
 If axTrioPC.Base(1, nAxes) Then
 If axTrioPC.GetVariable("DPOS", dPosition) Then
 lblAxisPos(nAxis).Caption = Int(dPosition)
 lblAxisPos(nAxis).Refresh ' Make sure display is updated
 Else
 nMBR = MsgBox("Error reading axis positions")
 nAxis = gk_nAxesInUse ' Set condition to force loop exit
 End If
 Else
 nMBR = MsgBox("Error setting base for reading axis positions")
 nAxis = gk_nAxesInUse ' Set condition to force loop exit
 End If
 Next nAxis
 Else
 nMBR = MsgBox("Connection not open")
 End If
 End Sub

Private Sub timUpdate_Timer()
 ' Handler for timer
 If axTrioPC.IsOpen(gk_nDefaultMode) Then
 ProcessStateMachine ' State machine controls running of I/O and
 ' Move sequences
 End If
End Sub

Private Sub ProcessStateMachine()
 ' State machine controls running of I/O and Move sequences

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-13
Main Form – Code

 ' Called at regular intervals by the timer
 Dim nMask As Integer ' Used to mask out individual I/O bit values
 Dim bOK As Boolean ' Used for value returned by Trio PC commands.
 Dim nIO As Integer ' Used as I/O bit number
 Dim nBases(gk_nMaxAxes) As Integer ' Array used for storing axis numbers used
 ' by the Base command
 Dim nAxis As Integer ' Axis number
 Dim bOkToMove As Boolean ' Flag to indicate that it's OK to load moves
 Dim dReadVal As Double ' Used for value returned by GetVariable command
 Dim dMoveRef As Double ' Reference value used in calculation of move
 ' distances
 Dim dMovePos(gk_nMaxAxes) As Double ' Array used for move distances

 Const kdRefDistance As Double = 500# ' Fixed value used in calculating moves
 Const knMoves As Integer = 5 ' Number of moves in Move sequence

 ' IO
 If g_bRunningIO Then
 nMask = 1
 ' Set I/O bits 9 to 12 to represent the value in the I/O counter
 For nIO = 0 To 3
 bOK = axTrioPC.Op(nIO + 9, g_nIOCount And nMask)
 nMask = nMask * 2 ' Move mask to next bit
 Next nIO
 ReadIO
 g_nIOCount = g_nIOCount + 1 ' Increment move count
 If g_nIOCount > 15 Then ' Check for end of move sequence
 g_bRunningIO = False ' End of sequence so flag it
 UpdateButtonStates
 End If
 End If

 ' Moves
 If g_bRunningMove Then
 ' Scan through NTYPE (next move type) on all axes to make sure that moves
 ' can be loaded into the move buffer without holding up the PC.
 bOkToMove = True
 For nAxis = 0 To gk_nAxesInUse - 1
 nBases(0) = nAxis ' Set single value in Bases array to select
 ' axis to read
 bOK = axTrioPC.Base(1, nBases)
 If bOK Then
 bOK = axTrioPC.GetVariable("NTYPE", dReadVal)
 If bOK Then
 If dReadVal <> 0# Then
 ' Next move still loaded on this axis so mark as not OK
 ' to load

7-14 Active X Program Examples
Main Form – Code

Trio Motion Technology

 bOkToMove = False
 End If
 End If
 End If
 Next nAxis

 If bOkToMove Then
 dMoveRef = kdRefDistance * (g_nMoveNo + 1) ' Move distance is based
 ' on move number

 If g_nMoveNo = 0 Then
 ' First move
 ' Set up Bases for all axes in use and set all moves to zero
 For nAxis = 0 To gk_nAxesInUse - 1
 nBases(nAxis) = nAxis
 dMovePos(nAxis) = 0
 Next nAxis
 bOK = axTrioPC.Base(gk_nAxesInUse, nBases)
 ' First move is absolute to reset position to zero on all used axes
 bOK = axTrioPC.MoveAbs(gk_nAxesInUse, dMovePos)
 ElseIf g_nMoveNo > 0 And g_nMoveNo < knMoves Then
 ' Other moves
 ' Set up bases for all axes and set move distances to
 ' calculated values
 For nAxis = 0 To gk_nAxesInUse - 1
 nBases(nAxis) = nAxis
 dMovePos(nAxis) = dMoveRef * (nAxis + 1)
 Next nAxis
 bOK = axTrioPC.Base(gk_nAxesInUse, nBases)
 ' All other moves are relative
 bOK = axTrioPC.MoveRel(gk_nAxesInUse, dMovePos)
 Else
 ' Terminate move sequence
 g_bRunningMove = False
 UpdateButtonStates
 End If
 lblMoveNumber.Caption = g_nMoveNo
 lblMoveNumber.Refresh
 g_nMoveNo = g_nMoveNo + 1 ' Increment move number
 End If
 ReadAxisPositions
 End If
End Sub

Private Sub InitAxes()
 ' Performs axis initialisation for all axes in use
 Dim bOK As Boolean ' Used as return value for TrioPC motion commands
 Dim nAxis As Integer ' Used as Axis number

Motion Coordinator PCI 208 Technical Reference Manual

Active X Program Examples 7-15
Main Form – Code

 Dim nBases(gk_nMaxAxes) As Integer ' Array used to store axis numbers for
 ' Base command
 Dim dReadVal As Double ' Used for value returned by GetVariable command

 If axTrioPC.IsOpen(gk_nDefaultMode) Then

 ' Modifications should be done with watchdog off
 bOK = axTrioPC.GetVariable("WDOG", dReadVal) ' Read value should be 0 or 1
 If dReadVal > 0.5 Then
 bOK = axTrioPC.SetVariable("WDOG", 0#) ' Turn watchdog off
 End If

 ' Scan through all axes in use and set axis parameters
 For nAxis = 0 To gk_nAxesInUse - 1
 nBases(0) = nAxis ' Set correct (single) axis for Base command
 bOK = axTrioPC.Base(1, nBases)

 ' Modify parameters
 If bOK Then
 bOK = axTrioPC.SetVariable("SERVO", 0#)
 End If
 If bOK Then
 bOK = axTrioPC.SetVariable("ATYPE", 0#)
 End If
 If bOK Then
 bOK = axTrioPC.SetVariable("UNITS", 100#)
 End If
 If bOK Then
 bOK = axTrioPC.SetVariable("SPEED", 5000#)
 End If
 If bOK Then
 bOK = axTrioPC.SetVariable("ACCEL", 3000#)
 End If
 If bOK Then
 bOK = axTrioPC.SetVariable("DECEL", 7000#)
 End If
 If bOK Then
 bOK = axTrioPC.SetVariable("FELIMIT", 10000#)
 End If
 If bOK Then
 bOK = axTrioPC.SetVariable("SERVO", 1#)
 End If
 Next nAxis
 bOK = axTrioPC.SetVariable("WDOG", 1#) ' Modifications complete so
 ' turn watchdog on
 End If
End Sub

7-16 Active X Program Examples
Main Form – Code

Trio Motion Technology

	Program Code
	Active X Program Examples
	Programming Example:
	Simple use of Trio PC Motion ActiveX control in Microsoft Visual BASIC 6.0
	Configuring Visual BASIC
	Building the application
	Main Form - Visual

	Main Form - Code
	Opening and closing the Trio PC Motion component.
	Reading and writing Digital I/O
	Reading and writing system parameters
	Reading and writing axis parameters
	Performing Moves
	Timed operations

