
MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 1 of 15

Interface overview:

Methods:

OpenPort()
ClosePort()
ReadParameter([in] Address, [in] ParamNum, [out] Value)
ReadParameterAlternate([in] Address, [in] ParamNum, [out] Value)
WriteParameter([in] Address, [in] ParamNum, [in] Value)
WriteParameterAlternate([in] Address, [in] ParamNum, [in] Value)
GetParamNumFromName([in] ParamNum)
GetLastError()
GetLastErrorStr([in] long ErrorCode)
GetParameterType([in] ParamNum)
Reset([in] Address)
ResetWait([in] Address)
WriteToFlash([in] Address)
WriteToFlashWait([in] Address)
SetFactors([in] PositionFactor, [in] AccelerationFactor, [in] VelocityFactor)
AboutBox()

Properties:

ComPort
Retries

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 2 of 15

Method Descriptions:
In the examples MacComm is an instance of the MacComm OCX.
NOTE: All methods will block the calling thread until completed.

Name: OpenPort()
Return type: Boolean
Returns true if open was successful
Description:
Use this method to open the port
Example(s):
C++:
 Opening the port
 bool Result=MacComm.OpenPort();

BASIC:
 Opening the port
 Dim Result As Boolean
 Result = MacComm.OpenPort

Name: ClosePort()
Description:
Use this method to close the port
Example(s):
C++:
 Closing the port
 MacComm.ClosePort();

BASIC:
 Closing the port
 MacComm.ClosePort

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 3 of 15

Name: ReadParameter([in] Address, [in] ParamNum, [out] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit signed integer (pointer) Value Value to be written (Pointer)
Return type: Boolean
Returns true if read was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to read a parameter from a Macmotor register

Value is one of the following types cast to a long integer:
 Word: 16 bit unsigned integer
 Integer: 16 bit signed integer
 LongInt: 32 bit signed integer
 Fixed4: 16 bit signed fixed point (Unit: 1/4096)
 Fixed8: 16 bit signed fixed point (Unit: 1/256)
Example(s):
C++:
 Getting operation mode (Parameter number 2)
 long Value;
 bool Result=MacComm.ReadParameter(255,2,&Value);

 Getting position (Parameter 10: P_IST)
 long Value;
 bool Result=MacComm.ReadParameter(255,3,&Value);

BASIC:
 Common dim statements:
 Dim LocalValue As Long
 Dim Result As Boolean

 Getting operation mode (Parameter number 2)
 Result = MacComm.ReadParameter(255, 2, LocalValue)

 Getting position (Parameter 10: P_IST)
 Result = MacComm.ReadParameter(255, 10, LocalValue)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 4 of 15

Name: ReadParameterAlternate([in] Address, [in] ParamNum, [out] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit floating point (pointer) Value Value to be written (Pointer)
Return type: Boolean
Returns true if read was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to read a parameter from a Macmotor register
This method uses the factors for Acceleration, Position and Velocity-registers, which can be set by
calling SetFactors.
For the other registers the value just passes through
Types are handled automatically by this method
Example(s):
C++:
 Getting operation mode (Parameter number 2)
 float Value;
 bool Result=MacComm.ReadParameterAlternate(255,2,&Value);

 Getting position (Parameter 10: P_IST) multiplied with Positionfactor
 float Value;
 bool Result=MacComm.ReadParameterAlternate(255,3,&Value);

BASIC:
 Common dim statements:
 Dim LocalValue As Single
 Dim Result As Boolean

 Getting operation mode (Parameter number 2)
 Result = MacComm.ReadParameterAlternate(255, 2, LocalValue)

 Getting position (Parameter 10: P_IST) multiplied with Positionfactor
 Result = MacComm.ReadParameterAlternate(255, 10, LocalValue)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 5 of 15

Name: WriteParameter([in] Address, [in] ParamNum, [in] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit signed integer Value Value to be written
Return type: Boolean
Returns true if write was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to write a parameter to a Macmotor register

Value is one of the following types cast to a long integer:
 Word: 16 bit unsigned integer
 Integer: 16 bit signed integer
 LongInt: 32 bit signed integer
 Fixed4: 16 bit signed fixed point (Unit: 1/4096)
 Fixed8: 16 bit signed fixed point (Unit: 1/256)
Example(s):
C++:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 bool Result=MacComm.WriteParameter(255,2,2);

 Setting Position (Parameter 3: P_SOLL) to 4096 (Value 4096)
 bool Result=MacComm.WriteParameter(255,3,4096);

BASIC:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 Dim Result As Boolean
 Result = MacComm1.WriteParameter(255, 2, 2)

 Setting Position (Parameter 3: P_SOLL) to 4096 (Value 4096)
 Dim Result As Boolean
 Result = MacComm1.WriteParameter(255, 3, 4096)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 6 of 15

Name: WriteParameterAlternate([in] Address, [in] ParamNum, [in] Value)
Parameters:
Type Name Description
16 bit signed integer Address Address of the MAC motor (Use 255 to broadcast)
16 bit signed integer ParamNum Parameter number
32 bit floating point Value Value to be written
Return type: Boolean
Returns true if write was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Use this method to write a parameter to a Macmotor register
This method uses the factors for Acceleration, Position and Velocity-registers, which can be set by
calling SetFactors.
For the other registers the value just passes through
Types are handled automatically by this method
Example(s):
C++:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 bool Result=MacComm.WriteParameterAlternate(255,2,2);

 Setting Position (Parameter 3: P_SOLL) to 4000 divided by Positionfactor (Value 4000)
 bool Result=MacComm.WriteParameterAlternate(255,3,4000);

BASIC:
 Setting operation mode (Parameter number 2) to Position mode (Value 2)
 Dim Result As Boolean
 Result = MacComm1.WriteParameterAlternate(255, 2, 2)

 Setting Position (Parameter 3: P_SOLL) to 4000 divided by Positionfactor (Value 4000)
 Dim Result As Boolean
 Result = MacComm1.WriteParameterAlternate(255, 3, 4000)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 7 of 15

Name: GetParamNumFromName([in] ParamName)
Parameters:
Type Name Description
String ParamName Parameter name
Return type: 16 bit signed integer
Returns parameter number or 0 if not found.
Description:
Use this method to retrieve the parameter number from the name
Example(s):
C++:
 Getting last error code:
 unsigned short ParamNum=MacComm.GetParamNumFromName(“P_IST”);

BASIC:
 Getting last error code:
 Dim ParamNum As Integer
 ParamNum=MacComm.GetParamNumFromName(“P_IST”)

Name: AboutBox()
Description:
Shows a dialog about the program
Example(s):
C++:
 Show the about box
 MacComm.AboutBox();

BASIC:
 Show the about box
 MacComm.AboutBox

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 8 of 15

Name: GetLastError()
Return type: 32 bit signed integer
Returns an error code like the Windows GetLastError(), but with some additions
Description:
Use this method to retrieve the error code for the last error
Example(s):
C++:
 Getting last error code:
 unsigned short ErrorCode=MacComm.GetLastError();

BASIC:
 Getting last error code:
 Dim ErrorCode As Integer
 ErrorCode = MacComm.GetLastError

Name: GetLastErrorStr([in] ErrorCode)
Parameters:
Type Name Description
32 bit signed integer ErrorCode Errorcode to be converted to a string
Return type: String
Returns an error code description like the Windows GetLastError(), but with the same additions as
GetLastError()
Description:
Use this method to retrieve a description of an error code
Example(s):
C++:
 Get description of passed error code
 CString Text=MacComm.GetLastErrorStr(MacComm.GetLastError());

BASIC:
 Getting last error code:
 Dim Description As String
 Description = MacComm.GetLastErrorStr(MacComm.GetLastError)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 9 of 15

Name: GetParameterType([in] ParamNum)
Parameters:
Type Name Description
16 bit signed integer ParamNum Parameter number
Return type: 16 bit signed integer
Return value indicates what type the parameter is stored as internally in the MAC Motor
 -1 Invalid Invalid parameter!
 0 Word: 16 bit unsigned integer
 1 Integer: 16 bit signed integer
 2 LongInt: 32 bit signed integer
 3 Fixed4: 16 bit signed fixed point (Unit: 1/4096)
 4 Fixed8: 16 bit signed fixed point (Unit: 1/256)
Description:
Use this method to determine how a parameter should be sent.
The integer types should just be used as parameters.
The Fixed4 type should be converted to an integer by multiplying with 4096
The Fixed8 type should be converted to an integer by multiplying with 256
Example(s):
C++:
 Get Parameter 100s type
 short Type=MacComm.GetParameterType(100);

BASIC:
 Get Parameter 100s type
 Dim ParameterType As Integer
 ParameterType = MacComm.GetParameterType(100)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 10 of 15

Name: Reset([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if reset was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Resets MAC motor to last flashed values.
Returns as soon as the Reset command has been sent to the MAC motor.
Example(s):
C++:
 Reset MAC motor
 bool Result=MacComm.Reset(255);

BASIC:
 Reset MAC motor
 Dim Result As Boolean
 Result=MacComm.Reset(255)

Name: ResetWait([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if reset was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Resets MAC motor to last flashed values
Returns when MAC motor is ready.
Example(s):
C++:
 Reset MAC motor
 bool Result=MacComm.Reset(255);

BASIC:
 Reset MAC motor
 Dim Result As Boolean
 Result=MacComm.Reset(255)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 11 of 15

Name: WriteToFlash([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if flashing was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Writes MAC registers to Flash memory
Returns as soon as the Flash command has been sent to the MAC motor.
Example(s):
C++:
 Write registers to flash
 bool Result=MacComm.WriteToFlash(255);

BASIC:
 Write registers to flash
 Dim Result As Boolean
 Result=MacComm.WriteToFlash(255)

Name: WriteToFlashWait([in] Address)
Parameters:
Type Name Description
16 bit unsigned short integer Address Address of the MAC motor (Use 255 to broadcast)
Return type: Boolean
Returns true if flashing was successful
It will try the amount of times the property “Retries” has been set to before returning false.
Description:
Writes MAC registers to Flash memory
Returns when MAC motor is ready.
Example(s):
C++:
 Write registers to flash
 bool Result=MacComm.WriteToFlashWait(255);

BASIC:
 Write registers to flash
 Dim Result As Boolean
 Result=MacComm.WriteToFlashWait (255)

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 12 of 15

Name: SetFactors([in] PositionFactor, [in] AccelerationFactor, [in] VelocityFactor)
Parameters:
Type Name Description
16 bit floating point Pos Position Factor
16 bit floating point Acc Acceleration Factor
16 bit floating point Vel Velocity Factor
Description:
Sets factors used by ReadParameterAlternate and WriteParameterAlternate
The defaults are
Name Factor Resulting unit
PositionFactor 1/4096 Pulses
AccelerationFactor ~248.3 RPM/s
VelocityFactor ~0.4768 RPM

The following registers are also converted, but these factors are fixed:
7 (T_SOLL) 100/1023 Percent
8 (P_SIM) 1/16 Encoder counts
16 (I2T) 1/22 Percent (assuming I2TLIM is 2200)
18 (UIT) 1/6 Percent (assuming UITLIM is 600)
41 (T_HOME) 100/1023 Percent
77-80 (T1-4) 100/1023 Percent
121 (VF_OUT) 100/1023 Percent
122 (ANINP) 10/1023 Volts
123 (ANINP_OFFSET) 10/1023 Volts
124 (ELDEGN_OFFSET) 360/2048 Degrees
125 (ELDEGP_OFFSET) 360/2048 Degrees
143 (ELDEG_IST) 360/2048 Degrees
151 (U_SUPPLY) 0.0537 Volts
Example(s):
C++:
 Set Position factor to 1/4096 (Converts Pulses to revolutions), and disable the other factors
 MacComm.SetFactors((float)1/4096,1,1);

BASIC:
 Set Position factor to 1/4096 (Converts Pulses to revolutions), and disable the other factors
 MacComm.SetFactors 1/4096,1,1

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 13 of 15

Installation

The MacComm OCX and required DLLs are installed automatically by running Setup.exe and
following the onscreen prompts.
You have the option to install a Visual Basic sample and a LabVIEW along with the OCX.

It can also be done manually by copying the following Microsoft redistributable DLLs to the
Windows\System folder:

• OLEAUT32.DLL
• OLEPRO32.DLL

MacComm.OCX should be placed in a directory called MacComm in the Windows folder, and
registered with RegSvr32 i.e. “Regsvr32 C:\Windows\MacComm\MacComm.ocx”

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 14 of 15

Adding MacComm OCX to the program

Visual Basic 6

1. In the menu Projects click Components.
2. Make sure the “Selected Items Only” checkbox is NOT selected
3. Find “MacComm OCX Control module”, and put a checkmark besides it, and click OK

The MacComm OCX is now available in the controls bar
When put on a form the properties page of the object can be used to set the startup values for the
2 properties (Retries and ComPort)

Visual C++ 6

1. In the menu “Projects” choose “Add To Project” and click “Components and Controls…”
2. Go into the folder “Registered ActiveX Controls” and click “MacComm Control”
3. Click Insert, and two times OK followed by a Close

The MacComm OCX is now available in the controls bar
When put on a dialog the properties page of the object can be used to set the startup values for
the 2 properties (Retries and ComPort)

Visual .NET
1. In the menu “Tools” click “Customize Toolbox…”
2. Find “MacComm OCX Control module”, and put a checkmark besides it, and click OK

The MacComm OCX is now available in the Toolbox
When put on a form the properties page of the object can be used to set the startup values for the
2 properties (Retries and ComPort)

Borland C++ Builder 6.0
1. In the menu “Component” click “Import ActiveX Control…”
2. Select “MacComm ActiveX Control module…” in the lists of components.
3. Press the “install…” button.
4. On the page “Into existing package” select the dclusr.bpk file (This should be default) and

click “OK”.
5. Select “yes” to rebuild the package.
6. The ActiveX should now be available in the tool palette on the ActiveX page.

LabVIEW 7.0

1. Place an ActiveX container on your Front Panel.
2. Right click it and select "Insert ActiveX object…"
3. Select MacComm Control from the list.
4. Connect it to a "Property node" and use this to setup the properties.
5. Connect it to an "Invoke node" and use this to call the methods.

MacComm OCX Control documentation
Version 1.01 Beta 8

 JVL Industri Elektronik A/S Page 15 of 15

Custom Errors:

Hex value: Description
2000 0000 Serial port could not be initialized
2000 0001 Serial port is not open
2000 0002 Could not write required Bytes to serial port
2000 0003 Answer is not of expected length
2000 0004 Invalid accept from mac motor
2000 0005 Writesync error in reply
2000 0006 Address mismatch in reply
2000 0007 Parameter number mismatch in reply
2000 0008 Reply length mismatch
2000 0009 Inversion check failed on value
2000 000A Endsync error in reply

