

D

CDA3000

Betriebsanleitung

Operation Manual Manuel d'utilisation Istruzioni di esercizio

Umrichtersystem 750 W - 132 kW

Inverter Drive System Système variateur Sistema invertitore

Sizes (BG)

Dear user,

Signposts

Step	Action	Comment
1	This Operation Manual will enable you to install and commission the CDA3000 drive system very quickly and easily.	Guide to quick-starting
2	Simply follow the <i>step-by-step tables</i> in sections 2/3/4. Experience "Plug 'n Play" with the CDA3000.	And away you go!

Overview Documentation

If you want more information on the drive solutions presented here and on the full scope of software features of the drive system, please refer to the **CDA3000 Application Manual**. You can order the following documents from us, or download them free of charge from our website at www.lust-tec.de:

Pictograms

Attention! Misoperation may result in damage to the drive or malfunctions.

Danger from electrical tension! Improper behaviour may endanger human life.

Danger from rotating parts! The drive may start running automatically.

> Note: Useful information

1.1 Measures for your safety

1 Safety

The CDA3000 inverter drives are quick and safe to handle. For your own safety and for the safe functioning of your device, please be sure to observe the following points:

Read the Operation Manual first!

• Follow the safety instructions!

Electric drives are dangerous:

- Electrical voltages > 230 V/460 V: Dangerously high voltages may still be present 10 minutes after the power is cut. You should therefore always check that no power is being applied!
- Rotating parts
- Hot surfaces

Your qualification:

- In order to prevent personal injury and damage to property, only personnel with electrical engineering qualifications may work on the device.
- The qualified personnel must familiarize themselves with the Operation Manual (refer to IEC364, DIN VDE0100).
- Knowledge of national accident prevention regulations (e.g. VBG 4 in Germany)

Always comply with the connection conditions and technical specifications.

- Comply with the standards for electrical installations, such as regarding wire cross-section, grounding lead and ground connections.
- Do not touch electronic components and contacts (electrostatic discharge may destroy components).

5

1.2	Intended use	Inverterdrives are components that are intended for installation in electrical systems or machines. The drive may not be commissioned (i.e. it may not be put to its intended use) until it has been established that the machine as a unit complies with the provisions of the Machinery Directive (98/37/EC). EN 60204 (Safety of machines) is to be observed.CCThe CDA3000 conforms to the Low Voltage Directive DIN EN 50178.	
		EMC Application of the installation instructions ensures conformance to product standard EN 61800-3. It covers:	
		 Public low voltage system: Residential areas up to 10 metres motor cable length Industrial low voltage system: Industrial areas up to 25 metres motor cable length 	
		Varning: This is a product with restricted availability in accordance with EC 61800-3. The Inverter Drive System may cause radio frequency nterference in residential environments. In such cases operators may eed to implement appropriate countermeasures.	
		If the frequency inverter is used for special applications (e.g. in areas subject to explosion hazard), the required standards and regulations (e.g. EN 50014, "General provisions" and EN 50018 "Flameproof housing") must always be observed.	
		Repairs may only be carried out by authorized repair workshops Inauthorized opening and incorrect intervention could lead to physica njury or material damage. The warranty provided by LUST would thereby re rendered void.	
1.3	Responsibility	Electronic devices are fundamentally not fail-safe. The company setting up and/or operating the machine or plant is itself responsible for ensuring that the drive is rendered safe if the device fails.	
		EN 60204-1/DIN VDE 0113 "Safety of machines", in the section or Electrical equipment of machines", stipulates safety requirements for electrical controls. They are intended to protect personnel and machinery and to maintain the function capability of the machine or plant concerned and must be observed.	
		The function of an emergency off system does not necessarily have to cur the power supply to the drive. To protect against danger, it may be more reneficial to maintain individual drives in operation or to initiate specific afety sequences. Execution of the emergency off measure is assessed by means of a risk analysis of the machine or plant, including the	

electrical equipment to DIN EN 1050, and is determined with selection of the circuit category in accordance with DIN EN 954-1 "Safety of machines - Safety-related parts of controls".

1

2

2 Mechanical installation

2.1	Notes for operation	2-1
2.2	Mounting variants	2-1
2.3	Wall mounting	2-2
2.4	Cold plate	2-4
2.5	Push-through heat sink (Dx.x)	2-7

2.1 Notes for operation

2.2 Mounting variants

Please ensure that ...

- no damp enters the device
- no aggressive or conductive substances are in the immediate vicinity
- no drill chippings, screws or foreign bodies drop into the device
- the vent openings are not covered over.

The device may otherwise be damaged.

Step	Action	Comment
1	Refer to the name plate to find out the mounting variant of your inverter module.	The mounting variants differ in their mode of cooling.

2.3 Wall mounting

Step	Action	Comment
1	Mark out the position of the tapped holes on the backing plate. Cut a tap for each fixing screw in the backing plate.	Dimensional drawings/hole spacing see Table 2.2. The tapping area will provide you with good, full-area contact.
2	Mount the inverter module vertically on the backing plate.	Pay attention to the mounting clearances! The contact surface must be metallically bright.
3	Mount the other components, such as the mains filter, line choke etc., on the backing plate.	Mains filter max. 20 cm below the inverter module
4	Continue with the electrical installation in section 3.	

Figure 2.1 Mounting clearances (see Table 2.2)

Note the following points:

- Air must be able to flow unhindered through the device.
- For mounting in switch cabinets with convection (= heat loss is discharged to the outside via the cabinet walls) an internal air circulation fan must always be fitted.
- The backing plate must be well grounded.
- The best result for effective EMC installation is attained with a chromated or galvanized backing plate. If backing plates are varnished, the coating must be removed in the area of the contact surface!

2 Mechanical installation

LUST

2.4 Cold plate

Step	Action	Comment
1	Mark out the positions of the tapped holes on the backing plate or the cooler. Cut a tap for each fixing screw in the backing plate.	Dimensional drawings/hole spacing see Table 2.3. The tapping area will provide you with good, full-area contact.
2	Clean the contact surface and coat it thinly and evenly with heat transfer compound .	The contact surface must be metallically bright.
3	Mount the inverter module vertically on the backing plate or cooler. Tighten all screws to the same tightness.	Pay attention to the mounting clearances! Size of cooling surface see Table 2.4.
4	Mount the other components, such as the mains filter, line choke etc., on the backing plate.	Mains filter max. 20 cm below the inverter module
5	Continue with the electrical installation in section 3.	G
R		

Note the following points:

• Cooling can be attained either by a sufficiently large backing plate (see Table 2.4) or by an additional cooler. The cooler must be mounted centrally behind the hottest area (1) of the device.

- The temperature on the rear panel of the inverter module must not exceed 85.0 °C. At a temperature
 > 85° C the device shuts down automatically. It can only be restarted when it has cooled.
- Required evenness of contact surface = 0.05 mm, maximum roughness of contact surface = roughness factor 6.3

Size	Power	Inverter module	P _V at 4 kHz	P _V at 8/16 kHz	R _{thK} ³⁾ [K/W]	Backing plate (unvarnished steel min. cooling surface	Ambient temperature
BG1	0.75 kW	CDA32.004,Cx.x	48 W	55 W	0.05	650x100mm = 0.065m ²	45°C ¹⁾ , 40°C ²⁾
	1.1 kW	CDA32.006,Cx.x	75 W	82 W	0.05	$650x460mm = 0.3m^2$	45°C ¹⁾ , 40°C ²⁾
	1.5 kW	CDA32.008,Cx.x	95 W	105 W	0.05	$650x460mm = 0.3m^2$	45°C ¹⁾ , 40°C ²⁾
BG2	0.75 kW	CDA34.003,Cx.x	55 W	70 W	0.05	None	45°C ¹⁾ , 40°C ²⁾
	1.5 kW	CDA34.005,Cx.x	80 W	112 W	0.05	$650x460mm = 0.3m^2$	45°C ¹⁾ , 40°C ²⁾
	2.2 kW	CDA34.006,Cx.x	106 W	148 W	0.05		
BG3	3.0 kW	CDA34.008,Cx.x	135 W	162 W	0.03	An additional cooler is required to supply	
	4.0 kW	CDA34.010,Cx.x	172 W	207 W	0.03	adequate cooling.	
RC4	5.5 kW	CDA34.014,Cx.x	210 W	268 W	0.02	Project planning notessee appendix A.4 If you have any further questions please	
DG4	7.5 kW	CDA34.017,Cx.x	255 W	325 W	0.02		
BG5	11 kW	CDA34.024,Cx.x	315 W	400 W	0.015	consult your project engineer	
	15 kW	CDA34.032,Cx.x	400 W	510 W	0.015		
1) At a power stage clock frequency of 4 kHz 2) At a power stage clock frequency of 8 kHz							

3) Thermal resistance between active cooling surface and cooler

Table 2.4 Required cooling with cold plate

Note the following points:

- The backing plate must be grounded over a large area.
- For mounting in switch cabinets with convection (= heat loss is discharged to the outside via the cabinet walls) an internal air circulation fan must always be fitted.
- The best result for effective EMC installation is attained with a chromated or galvanized backing plate. If backing plates are varnished, the coating must be removed in the area of the contact surface!

2.5 Push-through heat sink (Dx.x)

Step	Action	Comment
1	Mark out the positions of the tapped holes and the breakthrough on the backing plate. Cut a tap for each fixing screw in the backing plate.	Dimensional drawings/hole spacing see Table 2.6. The tapping area will provide you with good, full-area contact.
2	Mount the inverter module vertically on the backing plate. Tighten all screws to the same tightness.	Pay attention to the mounting clearances! The mounting seal must contact flush on the surface.
3	Mount the other components, such as the mains filter, line choke etc., on the backing plate.	Mains filter max. 20 cm below the inverter module
4	Continue with the electrical installation in section 3.	

Note the following points:

• Distribution of power loss:

		BG3	BG4	BG5
Power loss	Outside (3)	70%	75%	80%
	Inside (4)	30%	25%	20%
Drotaction	Heat sink side (3)	IP54	IP54	IP54
FIDIECTION	Machine side (4)	IP20	IP20	IP20

• The all-round mounting collar must be fitted with a seal. The seal must fit flush on the surface and must not be damaged:

- Seal
 Tapped hole for EMCcompatible contact
 Outside
- (4) Inside

- The backing plate must be well grounded.
- The best result for effective EMC installation is attained with a chromated or galvanized backing plate. If backing plates are varnished, the coating must be removed in the area of the contact surface!

1

2

4

CDA3, <u>Dx.x</u>	BG3	BG4	BG5
Weight [kg]	4.6	6.7	7.4
W (width)	110	160	210
H (height)		340	
D (depth)	T1 138	, T2 80	T1 138, T2 135
A	90	140	190
A1	-	80	100
C	320		
C1	200		
DØ	Ø 4.8 Ø 4.8		Ø 4.8
Screws	8 x M4	10 x M4	10 x M4
E	10		
E1 (with module)	20		
F	100 ¹⁾		
G	≥ 300		

For more information on the ambient conditions see appendix A.3.

3

2

1

5

DE EN FR IT

2 Mechanical installation

1

2

3

DE
EN
FR
IT

3 Installation

3.1	Overview	3-2
3.2	Grounding lead connection	3-3
3.3	Motor connection	3-4
3.4	Mains connection	3-6
3.5	DC network	3-8
3.6	Braking resistor (RB)	3-9
3.7	Control connections	3-10
3.7 3.7.1	Control connections Choice of terminal assignment	3-10 3-11
3.7 3.7.1 3.7.2	Control connections Choice of terminal assignment Specification of control terminals	3-10 3-11 3-12
3.7 3.7.1 3.7.2 3.7.3	Control connections Choice of terminal assignment Specification of control terminals Terminal assignment 1	3-10 3-11 3-12 3-13
3.7 3.7.1 3.7.2 3.7.3 3.7.4	Control connections Choice of terminal assignment Specification of control terminals Terminal assignment 1 Terminal assignment 2	3-10 3-11 3-12 3-13 3-14
3.7 3.7.1 3.7.2 3.7.3 3.7.4 3.7.5	Control connections Choice of terminal assignment Specification of control terminals Terminal assignment 1 Terminal assignment 2 Terminal assignment 3	3-10 3-11 3-12 3-13 3-14 3-15

Attention: Installation must only be carried out by qualified electricians who have undergone instruction in the necessary accident prevention measures.

3 Installation

3.1 Overview

The terminal layout for all sizes is presented in Appendix A8.

Figure 3.1 Overview of connections

	Кеу	Explanation
(1)	Line choke ¹⁾	Reduces the voltage distortions in the system
(2)	Mains filter ^{1) 2)}	Suppresses line-borne interference emission
(3)	Braking resistor ¹⁾	Required for repeated braking
(4)	Control conn. X2	Connection see section 3.7
(5)	Motor PTC connection X3	For thermal monitoring of the motor, see section 3.3
(6)	RS232 connection X4	For operation with KeyPadsee section 4.7/ Operation with DriveManagersee section 4.8
(7)	Connection for DC network	Permits power exchange between servocontrollers, see section 3.5
(8)	Software name plate	Indicates the shipped software status

1) For supplementary components see CDA3000 Order Catalogue.

2) In inverter modules up to 7.5 kW (BG1 to BG4) the mains filter is built-in.

3.2 Grounding lead connection Step Ground e 1 Connect configu

Note the following points:

- The grounding lead must be laid out in star configuration to conform to the EMC standards.
- The backing plate must be well grounded.
- The motor cable, mains lead and control cable must be laid separately from each other.
- Avoid loops, and lay cable over short distances.
- The operational leakage current is > 3.5 mA.

1

2

3

4

3 Installation

LUST

3.3 Motor connection

The CDA3000 inverter modules are protected against shorting and ground faults at the terminals when in operation. In the event of a short-circuit or ground fault in the motor cable, the power stage is disabled and an error message is delivered.

Step	Action	Comment
1	Define the wire cross-section dependent on the maximum current and ambient temperature.	Wire cross-section to VDE0100, part 523, see section 3.4 "Mains connection".
2	Wire the motor phases U, V, W by way of a shielded cable and ground the motor to $X1/\frac{1}{2}$.	Mount shield at both ends to reduce interference emission.
3	Wire the temperature sensor PTC (if fitted) with separately shielded wires.	Mount shield at both ends to reduce interference emission.

Figure 3.3 Connection of motor

1

Note the following points:

- Always use shielded cables to connect the motor.
- Shield contact on the inverter module:
 - For inverter modules BG1 ... 5 (0.37 ... 15 kW) there is an accessory shield (ST02, ST04 or ST05) permitting simple clip mounting with all-round contact.
 - For inverter modules BG6 ... 8 (22 ... 132 kW) we recommend using a cable clamp rail with shield connection directly on the cable gland in the switch cabinet.
- The motor at the inverter output may be shut off by means of a contactor or motor circuit-breaker. The inverter module cannot be damaged in the process. Circuit reference for "motor contactor" see appendix A.5.1.
- Multi-motor operation is possible; for project planning notes see Appendix A.5.

Terminal box

Attention: If the inverter is operated as a controller with encoder (FOR motor control method), motor phases U,V and W must never be reversed! If the motor phases are reversed the inverter has no control over the motor. The motor may buck or accelerate in an uncontrolled manner ("race").

For proper EMC installation the motor terminal box must be HF-tight (metal or metallized plastic). For cable introduction, packing glands with large-area shield contact should be used.

Figure 3.4 Motor terminal box

- (1) Thermistor (PTC)
- (2) Packing gland with shield contact
- (3) Motor phases
- (4) Grounding lead connection

2

3

Motor temperature monitoring

Sensor TSS, No PTC Standard Linear thermostatic 5 PTC used voltage evaluation Tech. data circuit-breaker PTC to KTY84-130, (tolerance Usable type Klixon band yellow) DIN44082 Parameter 0FF DIN KTY TSS 330-MOPTC =Measurement 12 V _ voltage U_{MAX} Measuring range 100 Ω to 15 k Ω _ _

For thermal monitoring of the motor coil, a thermistor (PTC) may be

connected to terminals $X3/\vartheta$ - and ϑ +. The type used must be set during commissioning in parameter 330-MOPTC (factory default setting is "off").

 Table 3.1
 Motor temperature monitoring specification

Attention: Contrary to DIN VDE 0660-303 (short circuit dedection $< 20 \Omega$) the CDA3000 will note a short circuit at $< 5 \Omega$.

CDA3000 Operation Manual

3.4 Mains connection

Ste	ep	Action	Comment		
1	1	Define the wire cross-section dependent on maximum current and ambient temperature. Wire cross-section to VDE010 part 523			
2	2	Wire the inverter module with the mains filter , max. line length 0.3 m (with unshielded cable)!	Step not applicable for BG1 to BG4; up to 7.5 kW the mains filter is built-in.		
3	}	Wire the line choke see Appendix A.5	Reduces the voltage distortions (THD) in the system and extends the service life.		
4	ł	Install a circuit-breaker K1 (power switch, contactor, etc.).	Do not connect the power!		
5	 5 Use the mains fuses (type gL) or miniature circuit-breakers (trip characteristic C) to cut the mains power to all poles of the inverter. To protect the line in accorda with VDE636, part 1 				
Conr of th	nectione ma	on of the inverter module via a line choke v ains voltage ($u_k = 4$ %) is obligatory:	vith a short circuit voltage of 4 %		
1.	Whe and	ere the inverter modules are connected to s I above, see EN 61000-2-4 see appendix A.	ystems of environment class 3 6		
2.	For (4-r	all inverter modules with a recommended r pole standard motor) of 30 kVA or above (CE	notor connected load DA34.060 CDA34.250)		
3.	Whe elec	ere there is a requirement to comply with th ctric drives (see standard EN 61800-3/ IEC ⁻	ie limit values for variable-speed 1800-3)		
4.	Whe	ere there is a dc link between multiple inver	rter modules		
	Ē	€	X1 		
	N L		CDA32.xxx 1 x 230 V X1		

æ

L3 O

L2 C

L1 0

Figure 3.5 Mains connection

K1

÷

FN

L_ 1

÷

Ť

L3 L2

L1

< 0,3 m

CDA34.xxx

3 x 400/460 V

Attention:	Danger to life! Never w tions while they are live! nect the power. Wait unt RB+ and L- has fallen to ing on the device (appro	vire or disconnect ele Before working on the ill the DC-link voltage a o the safety-low voltag x. 5 minutes).	ectrical connec- e device discon- at terminals X1/ ge before work-
Note the fe	ollowing points:		
Only a operat	all-current sensitive fault c tion may be used.	current breakers suitat	ole for inverter
 Switch every If of Ai 	ning the mains power: Cy 60 seconds; jog mode is switching is too frequent, f high-resistance isolation fter a rest phase of a few nce again.	clic power switching is not permitted. , the device protects it n from the system. minutes the device is	s permitted self by means ready to start
 TN ne IT net In as lo For de Appen 	etwork and TT network: Pe work (insulated center po in the event of a ground fai s high, and creepages an onger maintained. etails of measures to main ndix A.7.	ermitted without restrict int): Not permitted! ult the voltage stress is ad clearances to EN50 ntain UL approbation r	ction. s around twice 178 are no refer to
Size	Power range	Mains filter	

Mains filter

Compliance with the limit curves (EN61800-3) to attenuate the lineborne interference voltage and the interference emitted from the inverter module depends on

Internal

External¹⁾

• use of a line choke (recommended),

0.75 ... 7.5 kW

11 ... 132 kW

1) For supplementary components see CDA3000 Order Catalogue.

• the length of the motor cable and

BG1 ... 4

BG5 ... 8

Note:

• the preset clock frequency (4, 8 or 16 kHz) of the inverter module power stage.

For further information please consult your project engineer.

А

3 Installation

Wire cross-section

Inverter module	Device connected load [kVA]	Max. possible wire cross-section of terminals [mm²]	Recommended mains fusing (gL) [A]
CDA32.004	1.7	2.5	1 x 10
CDA32.006	2.3		1 x 16
CDA32.008	3.0	25	1 x 16
CDA34.003	1.6	2.5	3 x 10
CDA34.005	3.0		3 x 10
CDA34.006	4.2	2.5	3 x 10
CDA34.008	5.7	2.5	3 x 10
CDA34.010	7.3	2.5	3 x 16
CDA34.014	10.2	4.0	3 x 20
CDA34.017	12.4	4.0	3 x 25
CDA34.024	17.5	10	3 x 35
CDA34.032	23.3	10	3 x 50
CDA34.045	32.8		3 x 50
CDA34.060	43.8	25	3 x 63
CDA34.072	52		3 x 80
CDA34.090	65	50	3 x 100
CDA34.110	80	50	3 x 125
CDA34.143	104	Throadod bolt M8	3 x 160
CDA34.170	124	THEALEU DUL MO	3 x 200
CDA34.250	145 173	Threaded bolt M8	3 x 250 3 x 315

 Table 3.2
 Wire cross-sections and mains fuses (VDE0298 must be observed)

3.5 DC network

The inverter modules run in regenerative operation (braking) in a DC network feed power into the DC network which is consumed by the motordriven inverter modules.

DC network operation of several inverter modules minimizes the power consumption from the mains and external braking resistors can be eliminated where appropriate.

Note: It is essential that a DC network operation be checked at the project planning stage. Please consult your project engineer.

3 Installation

3.6 Braking resistor (**RB**) In regenerative operation, e.g. braking the drive, the motor feeds energy back into the inverter. This increases the voltage in the DC-link. If the voltage exceeds a threshold value, the internal braking transistor is activated and the regenerated power is converted into heat by way of a braking resistor.

The switching transistor is installed as standard. The design of the external braking resistor depends on a number of drive factors: for example the load to be moved, the required dynamics of the drive or the braking and cycle duration.

Figure 3.6 Braking resistor connection

Note the following points:

- The design of the braking resistor must be clarified at the project planning stage.
- For details of the permissible minimum ohmic resistance of an externally installed braking resistor for the individual inverter modules refer to Appendix A.2.
- Details of the peak braking power with an internal braking resistor (only with version CDA34 ...,Wx.x,BR) are also given in Appendix A.2.

For further information please consult your project engineer.

Attention: In device version CDA3X.xxx, Wx.x, BR

the braking resistor is built-in. No additional braking resistor may be connected to terminals X1/L+ and RB; this would damage the inverter module.

Attention: At warning message "excessive temperature at inverter heat sink" the connected device must be separated from the mains, because an overvoltage of the mains leads to an overload of the braking resistor. Please integrate one of the digital outputs into your control concept, e.g. set OSDxx to WOTI (Warning heat sink temperature of device).

1

3

3.7 Control connections

Step	Action	Comment
1	Check whether your inverter module is fitted a modified software package (>V100.x) (standard software = Vx.xx-xx) If this is the case, the control terminal assignment is different. Please contact your project engineer with regard to wiring and commissioning!!	Type: CDA32.004,C1.0 O SOFtware: v O Software: 0 O Software: 0
2	Check whether you already have a SMARTCARD or a DRIVEMANAGER data set with a complete device setup. If this is the case, the control terminal assignment is different. Please contact your project engineer to obtain the terminal assignment!	Bulk customers For details of how to load the data set into the inverter module refer to section 4.6.
3	Choose a terminal assignment.	see 3.7.1 "Choice of terminal assignment"
4	Wire the control terminals with shielded cables. The only essential signals are the ENPO signals and a start signal (STR or STL).	Ground the cable shields over a wide area at both ends. Wire cross-section maximum 1.5 mm ² or two cores per terminal each 0.5 mm ²
5	Keep all contacts open (inputs inactive).	
6	Check all connections again!	Continue with commissioning in section 4.

Note the following points:

- Always wire the control terminals with shielded cables.
- Lay the control cables separately from the mains lead and motor cable.
- The CDA3000 Application Manual presents more drive solutions.
- For all shielded connections a cable type with double copper braiding with 60-70 % coverage must be used.

3 Installation

3.7.1 Choice of terminal

assignment		Selection		
Typical applications	Control method	Terminal assignment	Continued on	
 Project planning and commissionin already complete. Loading of an existing data set.	ng are Serial commissioning	Obtain the terminal assignment from your project engineer.	Page 4-12 Commis- sioning	
 Pump, fan and extruder drivers and and lifting drives with low dynamic Multi-motor operation 	traction s Voltage Frequency Control (VFC)	Assignment 1 Assignment 2	Page 3-13 Page 3-14	
 Dynamic traction and rotational dr Applications with dynamic load surges 	ves Sensorless Flux Control (SFC) - Only for asynchronous motor	Assignment 1 Assignment 2	Page 3-13 Page 3-14	
 Dynamic traction, lifting and rotati drives with speed control With encoder feedback 	Field-Oriented Regulation (FOR) - Only for asynchronous motor	Assignment 3	Page 3-15	

Attention: With the SFC motor control mode (Sensorless Flux Control) no lifting drives and no applications with regenerative load torque¹⁾ can be operated at present.

¹⁾All machinery counteracts the drive with a static torque. The static torque is generally termed load torque. If this load torque acts in the direction of movement, such as in lifting mechanisms, during lowering, then the term "regenerative load torque" is used.

Note:

During operation intensive load peaks or unintentional cancelling of the start effects in a loss of stator flow control of the SFC-control. So that a current overload shut-off or uncontrolled movements can occur.

3

4

3 Installation

3.7.2 Specification of control terminals

The terminal scan cycle is 1 ms.

	Des.	Specification
Analog inputs Analog	ISA00 ISA01 OSA00	$\label{eq:solution} \begin{array}{ll} & \text{ISA00: } U_{\text{IN}} = +10 \text{ V DC}, \pm 10 \text{ V DC}, \text{ I}_{\text{IN}} = (0) \text{ 4-20 mA DC},\\ & \text{switchable by software} \\ & \text{ISA01: } U_{\text{IN}} = +10 \text{ V DC} \\ & \text{Tolerance U: } \pm 1\% \text{ v. M., I: } \pm 1\% \text{ of MV} \\ & 24 \text{ V digital input, PLC-compatible} \\ & \text{Switching level Low/High: } <4.8 \text{ V} / >8 \text{ V DC} \\ & \text{Resolution 10-bit} \\ & \text{R}_{\text{in}} = 110 \text{ k}\Omega \\ & \text{Floating against digital ground} \\ & \text{Tolerance U: } \pm 2.5\% \text{ of MV} \end{array}$
output		 U_{out}=+10 V DC, R_{OUT}=100 Ω I_{max}=5 mA, short-circuit-proof
Digital inputs	ISD00 ISD01 ISD02 ISD03 ENP0	• PLC-compatible • Switching level Low/High: $<5 \text{ V} / >18^{*} \text{ V DC}$ • I_{max} at 24 V = 10 mA • $R_{IN} = 3 \text{ k}\Omega$ • Power stage enable = High level
Digital outputs	OSD00	 Specification as ISDX Short-circuit-proof PLC-compatible I_{max} = 50 mA Protection against inductive load High-side driver
	OSD01	 Short-circuit-proof with 24V supply from inverter module PLC-compatible I_{max} = 50mA No internal freewheeling diode; provide external protection High-side driver
Relay output	OSD02	 Relay 48 V / 1 A AC, changeover contact Usage category AC1 Operating delay approx. 10 ms
Motor tempera- ture	PTC1/2	 max. 12 V DC, measuring range 100 Ω - 15 kΩ Suitable for PTC to DIN 44082 or temperature sensor KTY84-130 (tolerance band yellow) or thermostatic circuit-breaker
Voltage supply	+10.5V +24V	 Reference voltage U_R =10.5 V DC, short-circuit-proof I_{max} = 5 mA Auxiliary voltage U_V = 24 V DC, short-circuit-proof I_{max} = 200 mA (overall, also includes driver currents for outputs
		OSD0x)

*In the range >5 V / <18 V the response of the inputs is undefined.

3.7.3 Terminal assignment 1

Terminal assignment in factory setting

Preset solution "Clock drive, quick/slow jog".

Features

٠

Parameter

- Quick jog/slow jog driving profile ٠ with two directions of rotation Output for motor holding brake
- $152-ASTER = DRV_1$

		X2	Des.	Fu	unction
	<u></u>	20	OSD02	14	Relay contact
ко	+24V _ ►	19	OSD02		for "Ready"
		18	OSD02	12	message
		17	DGND	Digital ground	
~	H1	16	OSD01	"Reference rea	ached" message
	K1	15	OSD00	Output for mot	or holding brake
¥+		14	DGND	Digital ground	
M M		13	U _V	Auxiliary volta	ge 24 V
L 3~		12	ISD03	Not assigned	
	<u></u>	11	ISD02	Selection of slo	ow jog
	1				

10

9

8

7

6

5

4

3

2

1

Figure 3.7 Control terminals, traction drive without encoder evaluation

+

STL

STR

ENPO

0 ... 10 V

ISD01

ISD00

ENPO

Uv

Uv

0SA00

AGND

ISA01

ISA00

UR

3

Start/Stop quick jog anti-clockwise

Start/Stop quick jog clockwise

Power stage hardware enable

Actual frequency 0 ... FMAX

0 ... 10 V corresponds to Analog ground

0 ... 10 V corresponds to

Reference voltage 10.5 V, 5 mA

Not assigned

Not assigned

Auxiliary voltage 24 V

DE
EN
FR
IT

3 Installation

LUST

3.7.4 Terminal assignment 2

Preset solution "Analog reference and fixed frequency".

Parameter

Analog speed input for two directions

• Selection of fixed frequencies via binary coding of switches S1/S2

- 152-ASTER = ROT_6
- Functionally compatible with VF1000

	X2	Des.	Function
	20	OSD02	Relay contact
K0 +24V →	19	OSD02	for "Ready"
	18	OSD02	12 message
	17	DGND	Digital ground
H2	16	0SD01	"Standstill" message
H1	15	OSD00	"Reference reached" message
	14	DGND	Digital ground
	13	U _V	Auxiliary voltage 24 V
	12	ISD03	Choice of fixed frequency
S1	11	ISD02	(binary coded) *
STL	10	ISD01	Start/Stop quick jog anti-clockwise
STR	9	ISD00	Start/Stop quick jog clockwise
ENPO	8	ENPO	Power stage hardware enable
	7	U _V	Auviliary voltago 24 V
	6	U _V	Auxiliary voltage 24 v
N1 +	5	0SA00	Actual frequency 0 FMAX
-	4	AGND	Analog ground 0 10 V corresponds to
	3	ISA01	Not assigned
	2	ISA00	Reference 0 V + 10 V
£ 10 hs2	1	U _R	Reference voltage 10.5 V, 5 mA
	*Fund	ction see sect	ion 4.3, Table 4.1

Note: The terminal assignment applies to firmware V3.1 and higher

3 Installation

3.7.5 Terminal assignment 3

Preset solution "Analog reference + correction, with rotary encoder".

Features

Parameter

 Analog speed input for two directions with speed correction

152-ASTER = ROT_2

Encoder evaluation

(1) Only encoder type HTL (24V supply) usable. The encoder is evaluated only in control mode FOR. For notes on the rotary encoder see Figure 3.10.

Figure 3.9 Control terminal assignment, rotational drive with encoder evaluation

Correction reference*: For a description of the function refer to the CDA3000 **Application Manual**.

2

3

4

3 Installation

3.7.6 Encoder

Specification of encoder connections:

	Des.	Specification
Digital inputs	ISD02 ISD03	 f_{ilmit} = 150 kHz PLC-compatible (L = < 5 V, H = > 18 V) Current consumption (encoder) max. 80 mA
Connecting cable	-	 Screened twisted-pair cable with approx. 60 nF/km Cable length max. 30 m

A HTL encoder with 24 V supply can be connected to terminals X2/11 and 12. Permissible pulse counts are in the range from 32, 64, 128, 256, 512, 1024 ...to 16384 pulses per rev (2^n where n = 5 to 14).

Figure 3.10 Block diagram, HTL output circuit

$$LR_{max} = \frac{9 \cdot 10^{6}}{n_{max}} | LR_{max} = Maximum number of lines of encoder in pulses per rev.$$

$$n_{max} = Maximum speed of motor in rpm$$

Example of n_{max} = 6000 rpm:

$$a_{x} = \frac{9 \cdot 10^{6}}{6000} = 1500$$
 pulses per rev.

Selected:An encoder with 1024 pulses per rev.Reasoning:1500 pulses per rev. is not programmable - the nearest
possible value is 1024 pulses per rev. (binary 2¹⁰)

Minimum motor speed

Formula for calculating the minimum motor speed depending on the encoder lines per revolution so that one pulse of the encoder can be evaluated each scan cycle of the inverter module.

$$n_{min} = \frac{3000}{LR} \cdot \frac{1}{min}$$

 $LR =$ Number of lines of encoder in pulses per rev.
 $n_{min} =$ Minimum speed of motor in rpm

Maximum number of lines of encoder

CDA3000 Operation Manual

4 Commissioning

Choice of commissioning	4-1
Standard commissioning	4-2
KeyPad commissioning	4-4
DRIVEMANAGER commissioning	4-6
Direction check	4-11
Serial commissioning	4-12
Serial commissioning with KeyPad Serial commissioning with DRIVEMANAGER	4-12 4-14
Operation with KeyPad KP200	4-15
Operation with DRIVEMANAGER	4-18
Parameter list (selection)	4-19
	Choice of commissioning Standard commissioning KeyPAD commissioning DRIVEMANAGER commissioning Direction check Serial commissioning Serial commissioning with KeyPAD Serial commissioning with DRIVEMANAGER Operation with KeyPAD KP200 Operation with DRIVEMANAGER Parameter list (selection)

4.1 Choice of commissioning

Attention: Commissioning must only be carried out by qualified electricians who have undergone instruction in the necessary accident prevention measures.

Standard commissioning	The device can be put into operation with its factory settings, without need of any other aids.
KeyPad commissioning	The KEYPAD enables you to preset a number of basic parameters, such as rotating field limitation (FMAX), acceleration/deceleration ramps (ACCR/DECR) or fixed frequencies (FFIX) etc.
DRIVEMANAGER commissioning	The "DriveManager 3.0" PC user interface enables you to customize your drive tasks in a user-friendly way.
Serial commissioning	To commission several identical drives, for example, you can transfer the data set of the first drive via KeyPaD with SMARTCARD or via DRIVEMANAGER to the following drives.

4.2 Standard commissioning

This mode of commissioning is based on the factory setting.

Precondition:

- Inverter module is fully connected.
- Recommended IEC standard motor (see section A.2) is connected.
- Control terminals are wired as per *terminal assignment 1*, see page 3-13.

Attention: Make sure that the rotating drive of your machine cannot cause any damage during commissioning (such as by overshooting a stop limit) and that there are no personnel inside the danger zone.

Step	Action	Note
1	Connect the mains power supply to the inverter module.	After power-on, inverter module performs a self-test (lasting approx. 1 3 s).
2	Check that your drive can be run at the factory set (FS) rotating field frequency and ramps.	Quick jog = 50 Hz Slow jog = 20 Hz Acceleration ramp ¹⁾ Deceleration and stop ramp ¹⁾

3	Close ENPO contact.	Enables power stage.
4	Set drive to slow jog	Close S1 = slow jog
5	Start drive by closing STL or STR contact.	STL = start anti-clockwise STR = start clockwise
6	Check direction of rotation of motor shaft	see section 4.5 "Direction check"
7	Brake drive by opening start contact.	Drive brakes down to standstill.
	Open ENPO contact.	Safely disables power stage.

Commissioning is completed.

1) Factory setting from BG1 to BG5 (15 kW) = 20 Hz/s, from BG6 (22 kW) to BG8 = 5 Hz/s

Note: If the connected IEC standard motor differs by more than two power classes from the rated power output of the inverter module, "DRIVEMANAGER commissioning" with automatic motor identification should be carried out, see section 4.4. The same applies to commissioning of special motors such as reluctance, synchronous or HF motors. Please consult your project engineer.

Start drive

4 Commissioning

Input signals of terminal assignment 1 (152-ASTER = DRV_1)

Figure 4.1 Example of a quick/slow jog driving profile for two directions

Output signals of terminal assignment 1 (152-ASTER = DRV_1)

H1 = Reference reached; K1 = Motor holding brake output signal

1

2

4

5

Α

4 Commissioning

4.3 KeyPad commissioning

This mode of **commissioning** is performed with the KEYPAD control unit (accessory order designation: KP200). It enables a number of basic parameters to be adjusted directly.

Precondition:

- Inverter module is fully connected.
- Recommended IEC standard motor (see section A.2) is connected.
- Control terminals are wired as per *terminal assignment 2*, see page 3-14.
- KP200 is plugged in.

Attention: Make sure that the rotating drive of your machine cannot cause any damage during commissioning (such as by overshooting a stop limit) and that there are no personnel inside the danger zone.

Step	Action	Note
1	Connect the mains power supply to the inverter module.	After power-on, inverter module performs a self-test (lasting approx. 1 3 s).
2	Check that your drive can be run at the factory set (FS) rotating field frequency and ramps.	Rotating field frequency (FMAX) = $50Hz$ at reference value (R1) = $10 V$ Acceleration ramp ¹⁾ Deceleration and stop ramp ¹⁾
	If this is not possible, change the par	ameters with the KeyPAD
3	Press the start/enter key once to enter subject area _11UA and press the start/enter key again to select the parameter you want to change.	FMAX 303-FMAX1 Acceleration ramp 590-ACCR1 Deceleration ramp 592-DECR1 Stop ramp 594-STPR1 Adapt parameter using cursor keys, confirm change with "start/enter" key.
4	Select the preset solution "Rotational drive 6"	Parameter 152-ASTER to "ROT_6"
5	Press "stop/return" to return to "Mer Save setting by pressing both cursor	u". keys simultaneously for 3 seconds.
1	Close ENPO contact and set a low reference value with R1.	ENPO enables power stage.
2	Start drive by closing STL or STR contact.	Motor accelerates to preset reference
3	Check direction of rotation of motor shaft	see section 4.5 "Direction check"
4	Open start contact.	Drive brakes down to standstill.
5	Open ENPO contact.	Safely disables power stage.
	Commissioning is completed.	

Start drive

1) Factory setting from BG1 to BG5 (15 kW) = 20 Hz/s, from BG6 (22 kW) to BG8 = 5 Hz/s

Note:

If the connected IEC standard motor differs by more than two power classes from the rated power output of the inverter module, "DRIVEMANAGER commissioning" with automatic motor identification should be carried out, see section 4.4. The same applies to commissioning of special motors such as reluctance, synchronous or HF motors. Please consult your project engineer.

Reference	S2 (ISD03)	S1(ISD02)	ISA00
Analog reference at input ISA00 (R1)	0	0	active
Table frequency 601 -FFTB1 (FS = 10 Hz)	0	1	inactive
Table frequency 602-FFTB2 (FS = $15Hz$)	1	0	inactive
Table frequency 603-FFTB3 (FS = $20Hz$)	1	1	inactive

Table 4.1Scaling of binary coded inputs ISD02 (S1) and ISD03 (S2)

Input signals terminal assignment 2 (152-ASTER = ROT_6)

Output signals terminal assignment 2 (152-ASTER = ROT_6)

H1 = Reference reached H2 = Standstill

EN

1

2

3

4

4.4 DRIVEMANAGER commissioning

The DRIVEMANAGER as from version 3.0 makes commissioning easier, especially the adaptation of your drive. It should be used specifically when commissioning with "SFC" or "FOR" mode.

The following is an illustration of the commissioning procedure based on the example of the preset solution ROT_2.

Precondition:

- Inverter module is fully connected.
- Control terminals are wired as per *terminal assignment 3*, see page 3-15.
- The motor with encoder planned for the application is correctly connected.
- All data of the motor (rating plate data) and the encoder are available.

Attention: Make sure that the rotating drive of your machine cannot cause any damage during commissioning (such as by overshooting a stop limit) and that there are no personnel inside the danger zone.

The main window contains the "Initial commissioning" button. Click on it to open up the Wizard, which will guide you in four steps through the commissioning process.

1. Preset solution...

2. Control method ...

Different control methods have special advantages depending on the application. Three modes of control are available.

For our example please set FOR(2).

Table 4.2 Choice of control method

motors

1

2

3

4

3. Motor data ...

By way of the automatic motor identification the characteristic data of IEC standard motors and ASM servomotors can be determined. The precondition for problem-free identification is that the rating plate data are present and correctly entered.

Note: The data of the motor nominal point (max. rated power output of the motor) must always be entered. In 87 Hz applications (motor: 230 V, delta configuration) the converted 87 Hz data must be entered. For more information refer to the CDA3000 Application Manual.

For our example this setting is required.

Following identification of the motor, all control loops are automatically computed and the necessary parameter adjustments made.

Precondition:

- The motor is connected.
- Hardware enabled (= ENPO contact closed).

Step	Action	Note
1	Enter motor data	see your motor type designation
2	Click on "Start identification" button	Takes approx. 3 min.
3	Apply setting	Values are transferred to device
4	Re-open ENPO contact on device	Power stage safely disabled
-		

Motor identification is complete

4 Commissioning

Figure 4.4 Example of a driving profile for two directions with correction reference (R2), 152-ASTER = ROT_2

FOR is preset, and requires no further optimization for standard applications.

Note:

For more detailed information on optimizing

• the speed control loop

refer to the CDA3000 Application Manual.

Input signals

FOR setting

4 Commissioning

4.5 Direction check

Precondition:

- ٠ Inverter module is fully connected.
- The motor planned for the application is correctly connected. ٠
- Device set to VFC mode = Voltage Frequency Control (factory setting).
- Enter a low reference value, e.g. slow jog. ٠

1. Test phase position of motor connections.

2. Test encoder connection

CD P tr/ a tr/	A300 Vere	ence and actual value 🖾 0.00 0.51
ո խ M	act /mnl CDA3000	19.25 ence and actual value
	act fr	-0.48
	nact [tr/mn]	-18.81
	Mact [Nm]	0.00

Step	Action	Note
1	Close ENPO contact.	ENPO active enables power stage.
2	Start drive by closing STR contact.	Motor accelerates to preset reference
3	Check direction of rotation of drive.	With STR active, motor rotates clockwise (2) (1) Direction of view.
4	Brake drive by opening start contact.	Drive brakes down to standstill.
5	Open ENPO contact.	ENPO inactive safely disables power stage.
6	If direction is wrong, check phase position of motor connections.	Also check the control connections: STR > term. X2/9 (ISD00)

If the direction matches the actuation, the test is completed.

Precondition:

- Inverter module is fully connected.
- The motor with encoder planned for the application is correctly ٠ connected.
- Device set to FOR mode = Field Oriented Regulation. ٠

Step	Action	Note
1	Open ENPO contact.	Power stage safely disabled.
2	Turn motor shaft clockwise by hand (1) Direction of view, (2) Clockwise.	In status display: Right (clockwise) = no preceding sign Left (anti-clockwise) = neg. preceding sign.
3	If assignment is wrong, check wiring of encoder.	
If the dire	ection matches the display, the test i	is completed.

EN

5

4 Commissioning

4.6 Serial Apply this mode o drives into operatio

Apply this mode of commissioning if you want to put several identical drives into operation (serial commissioning). The same inverter type and motor must be set for each drive in an identical application.

If you already have a complete data set, skip the subsection headed *"Save data set to SMARTCARD"* (with KEYPAD) or *"Save data set from device to file"* (with DRIVEMANAGER).

Note: Do not load the firmware V180.x (for inverter modules in execution HF) in the standard inverter modul . By loading the firmware the error message E-COPU39 will be signalised one-time by a flashing code of indication H1.

4.6.1 Serial commissioning with KeyPad

Save data set to SmartCard

Precondition:

- All inverter modules are fully connected.
- The first drive is already fully commissioned into operation.

Note:

The CARD menu can only be selected if the **drive is not** active!

Step	Action	Note	Presentation
1	Connect the KeyPad to the inve first drive, insert a SMARTCARE power.	erter module of the and switch on the	
2	Select the CARD menu.	= load/save with SmartCard	CARD MENU MENU
3	Choose WRITE.	= Save data set	
4	Choose ALL and start the save operation with the <i>start/enter key.</i>	= Complete data set is saved	ALL OF
5	READY appears.	= Save operation completed without error	
	By this procedure you have w	ritten your data set to	a SmartCard.

Download data set from SMARTCARD to next inverter

Step	Action	Note	Presentation	
1	Connect the KeyPaD to the invo next drive, insert the SMARTCA data set and switch on the po	erter module of the ARD with the desired wer.		1
2	Select the CARD menu.	= load/save with SmartCard	CARD MENU MENU	
3	Choose READ.	= Load data set	REAJ	2
4	Choose ALL and start the load operation with the <i>start/enter key.</i>	= Complete data set is loaded		3
5	READY appears.	= Load operation completed without error		
	Repeat this procedure on eacl	n of the other drives.		4

Note: Data set is automatically stored in inverter module.

4 Commissioning

4.6.2 Serial commissioning with DRIVEMANAGER

Save data set from device to file

Precondition:

- All inverter modules are fully connected.
- The first drive is already fully commissioned into operation.
- A PC with installed DRIVEMANAGER user software (V3.0 or higher) is connected.

Step	Action	Comment
1	Connect your PC to the inverter module of the first drive and swit on the power to the inverter.	Use a standard serial cable (9-pin D- SUB, socket/pin) e.g. LUST accessory CCD-SUB90x .
2	Start DriveManager. If the connection fails, check the menu and try again by way of ico	Automatically links to the connected inverter module. settings in the Tools > Options in.
3	Save the current data set with icon, either in the parameter database (directory: c://userdata) of the DRIVEMANAGER or on a floppy disk (a:/).	With icon the current data set of the connected device is always saved. Give the file a name of your choice.
4a	Disconnect from all devices with icon	
4b	Connect your PC to the inverter m power to the inverter.	nodule of the next drive and switch on the
5	With icon establish a link between the DRIVEMANAGER and the newly connected device.	2
6	With icon load the data set saved in step 4 into the device.	The data set is stored in the device as user data set 1.
7	With icon select the main window. Save the setting with button ->	Actual values Error/Warning Save setting in device
	Repeat steps 4 7 on each of th	e other drives.

For more information refer to the DRIVEMANAGER Manual.

Download data set from file

Remember to save the setting.

into device

4.7

4 Commissioning

Operation with The KEYPAD can be plugged directly into the inverter module (X4). KEYPAD KP200 Overview of KeyPad KP200 1 SMARTCARD chipcard to save and (1) transfer settings 3-digiti display, e.g. for parameter (1) (2) number SMART C A R D Current menu (3) 2 5-digit display for parameter name and (4) (2) value LUST (5)85 Ö (3) Acceleration or braking ramp active (5) 15763# (4) -N∎∎∎0000000 - (6) 3 (6) Bar graph display, 10-character stop relutin Call up menu branches or parameters: Save changes: enter Start in "Control drive" mode Quit menu branches; Cancel changes; Stop in "Control drive" mode 4 return Select menu, subject area or parameter; Increase setting Select menu, subject area or parameter; Reduce setting Table 4.3 Operating and display elements of the KEYPAD KP200 5 Menu structure The KEYPAD KP200 has a user-friendly menu structure which is identical to that of the KP100 for the SMARTDRIVE VF1000 inverters and the MASTERCONTROL SERVOCONTROLLERS. Actuals Subject area Drive SMARTCARD select select control read display Parameter write select Write •

• change

Initial

commissioning

Capacity indicator

protection

EN

FR

Example of parameter setting (PARA menu)

- The parameters in the PARA menu are grouped into subject areas according to their functions, in order to provide a clearer overview.
- Only the parameters to which the current user level permits access can be changed.
- 1. Select PARA menu.
- 2. Select desired subject area with cursor keys and confirm with start/enter.
- Select desired parameter with cursor keys (user level 1-MODE = 2).
- 4. The current value is displayed, with the last character flashing. Switch to the next character using the down key. Use the up key to change the flashing character. The fifth character at the extreme left indicates the preceding sign: (-) = minus.

The last character can be entered as an exponent.

Save new value with **start/enter** or cancel (without saving) with **stop/return.**

CARD MENU

Read from/write to SMARTCARD:

• In this menu inverter settings can be saved to the SMARTCARD and transferred to other inverter modules.

4 Commissioning

• In every storage operation **all** parameters are always saved to the SMARTCARD. For read operations, either all parameters or only parameters from one subject area (per read operation) can be read-in.

Function	Meaning
READ > ALL	Read all parameters from SMARTCARD
READ > 27RS	Parameters from subject area, e.g. B27RS (reference structure)
WRITE	Store all parameters on the SMARTCARD
LOCK	Write-protect the SmartCard
UNLOCK	Cancel the write protection
	•

For more information on operation with the KEYPAD refer to the KEYPAD KP200 Operation Manual.

1

2

4 Commissioning

LUST

4.8 Operation with DRIVEMANAGER

Precondition:

• DRIVEMANAGER user software version V3.0 or higher installed on the PC.

Figure 4.6 Inverter module connection to PC/DRIVEMANAGER

The key functions

lcon	Function	Menu
鰹	Change setting of active device	Active device > Change settings
	Print parameter data set	Active device > Print settings
\mathbf{Z}	Digital scope	Active device > Monitoring > Quickly changing digital scope values
()	Control drive	Active device > Open-loop control > Basic operation modes
Ŕ	Connect to device	Communication > Connect > Single device
T.	Bus initialization, change setting	Communication> Bus configuration
	Disconnect all devices	Communication > Disconnect
	Save data set of active device to file	Active device > Save device settings to
Ð	Data set transfer from file to active device	Active device > Load device settings from

For more information refer to the DRIVEMANAGER Manual.

4 Commissioning

4.9 **Parameter list** (selection)

Any parameters can be inserted into this subject area using the DRIVEMANAGER (V3.0 or higher). The number is limited to 14. *

In the factory setting the parameters listed here are inserted.

* For more information refer to the DRIVEMANAGER MANUAL.

Name	Unit	Function	Factory setting	Your setting	
Subject area l	lser-defin	ed_11UA			
01-MODE - User level of KP200 2					
150-SAVE - Save setting in device			READY		
152 -ASTER	-	Preset terminal assignment	DRV_1		
180 -FISA0	-	Function selector of ISA00	off		
181 -FISA1	-	Function selector of ISA01	off		
242 -F0S02	-	Function selector of OSD02	off		
270-FFIX1	Hz	Fixed frequency characteristic data set CDS1	20		
301 -FMIN1	Hz	CDS1: Minimum frequency	0		
303 -FMAX1	Hz	CDS1: Maximum frequency	50		
330-MOPTC	-	Type of PTC evaluation	off		
590 -ACCR1	Hz/s	CDS1: Acceleration ramp	20		1
592 -DECR1	Hz/s	CDS1: Braking ramp	20		
594 -STPR1	Hz/s	CDS1: Stop ramp	20		
95-ERR1	h	Last error	-		
Subject area In	nitial comr	nissioning_15FC			
150-SAVE	-	Back-up device setup	READY		
152 -ASTER	-	Preset terminal assignment	DRV_1		
Subject area F	ixed frequ	encies_27FF			
270-FFIX1	Hz	Fixed frequency	20		
Subject area F	requency	limits_300L			
301 -FMIN1	Hz	CDS1: Minimum frequency	0		1
303 -FMAX1	Hz	CDS1: Maximum frequency	50		
Subject area N	lotor prote	ection_33M0			1
330-MOPTC	-	Type of motor PTC evaluation	OFF		
Subject area D	riving pro	file generator_59DP			1
590 -ACCR1	Hz/s	CDS1: Acceleration ramp	20		1
592 -DECR1	Hz/s	CDS1: Deceleration ramp	20		
594 -STPR1	Hz/s	CDS1: Stop ramp	20		1
Subject area E	ncoder ev	aluation_79EN			
790-ECLNC	Pulses per rev	Lines per revolution of encoder	1024		

4 Commissioning

Name	Unit	Function	Factory setting	Your setting			
Subject area A	Subject area Analog inputs _18/A						
180 -FISA0	Settings ³ OFF 0-10V PM10V 0-20 4-20	⁾ for analog input ISA00: = Not active = Voltage input 010 V = Voltage input -10 V+10 V = Current input 020 mA = Current input 420 mA	OFF				
Subject area L	Driving set	s_60TB					
601-FFTB1	Hz	Table frequency 2	10				
602-FFTB2	Hz	Table frequency 3	15				
603-FFTB3	Hz	Table frequency 4	20				

1) Setting dependent on device. 2) Setting dependent on motor. 3) Selection, not complete

5 Diagnosis/Fault rectification

5.1	LEDs	5-1
5.2	Error messages	5-2
5.3	User errors in KeyPAD operation	5-3
5.4	User errors in SMARTCARD operation	5-3
5.5	Errors in power switching	5-3
5.6	Reset	5-4

At the top right of the inverter module there are three status LEDs colored red (H1), yellow (H2) and green (H3).

	-		-
Device status	Red LED (H1)	Yellow LED (H2)	Green LED (H3)
Power on	-	-	•
Ready (ENPO set)	О	•	•
In service/Auto-tuning active	О	*	•
Warning	•	● / 米	•
Error	¥ (flash code)	О	•
\bigcirc LED off, \bigcirc LED on, $\%$ LED flashing		•	

2

3

4

5.2 Error messages If a fault occurs in operation it is indicated by a flash code from LED H1 (red) on the inverter module. The code indicates the type of error. If a KP200 is connected the KP200 indicates the error type as an abbreviation.

Flash code of red LED H1	Display KeyPad	Explanation	Cause/Remedy
1x	E-CPU	Collective error	Power-off, remove all control signals, power-on. If error recurs, inform LUST Service. $^{1)} \label{eq:service}$
2x	E-0FF	Undervoltage shut-off	Check power supply. Also occurs briefly in response to normal power-off.
Зх	E-0C	Current overloadshut-off	Short-circuit, ground fault: Check cabling of connections, check motor coil, check neutral conductor and grounding (see also section 3, Installation). Device setup not correct: Check parameters of control loops. Check ramp setting.
4x	E-0V	Voltage overload shut-off	Voltage overload from mains: Check mains voltage. Restart device. Voltage overload resulting from feedback from motor (regenerative operation): Slow down braking ramps. If not possible, use a braking resistor.
5x	E-OLM	Motor protectionshut-off	Motor overloaded (after I x t monitoring): Slow down process cycle rate if possible. Check motor dimensioning.
6x	E-0LI	Device safety shut-off	Device overloaded: Check dimensioning. Possibly use a larger device.
7x	E-OTM	Motor temperature too high	Motor PTC correctly connected? Parameter MOPTC correctly set(type of motor PTC evaluation)? Motor overloaded? Allow motor to cool down. Check dimensioning.
8x	E-OTI	Inverter overheating	Ambient temperature too high: Improve ventilation in switch cabinet. Load too high during driving/braking: Check dimensioning. Possibly use a braking resistor.

1) For more information refer to CDA3000 Application Manual

Table 5.1 Error messages

Helpline	If you need further assistance, our specialists at the LUST helpline will be glad to help.						
	You can reach us:						
	MonThur.:	8 a.m 4.30 p.m.Tel. ++49 64 41/9 66-180					
	Fri.:	8 a.m 4 p.m. Tel. ++49 64 41/9 66-180					
	E-mail:	helpline@lust-tec.de					
	Fax:	++49 64 41/9 66-177					

5.3 User errors in KEYPAD operation

Error	Cause	Remedy
ATT1	Parameter cannot be changed at current user level or is not editable.	Select user level 1-MODE higher.
ATT2	Motor must not be controlled via the CTRL menu.	Cancel start signal from a different control location.
ATT3	Motor must not be controlled via the CTRL menu because of error state.	Reset error.
ATT4	New parameter value impermissible	Change value.
ATT5	New parameter value too high	Reduce value.
ATT6	New parameter value too low	Increase value.
ATT7	Card must not be read in current state.	Reset start signal.
ERROR	Invalid password	Enter correct password.
Table 5.2	KEYPAD user error. Reset with \$	Start/Enter

5.4 User errors in **SMARTCARD** operation

5.5 **Errors in power** switching

Error	Meaning	Remedy	
ERR91	SMARTCARD write-protected		
ERR92	Error in plausibility check		
ERR93	SMARTCARD not readable, wrong inverter type		
ERR94	SMARTCARD not readable, parameter not compatible	Lloo difforent	
ERR96	Connection to SMARTCARD broken	SMARTCARD	
ERR97	SMARTCARD DATA invalid (checksum)		
ERR98	Insufficient memory on SmartCard		
ERR99	Selected area not present on SMARTCARD, no parameters transferred to SMARTCARD		
Table 5.3	SMARTCARDerror: Reset with Stop/Return		

Error Cause Remedy If switching is too frequent, Power on. Inverter module After a rest phase of a few the device protects itself by minutes the device is ready shows no response (LEDs means of high-resistance to start once again. off). isolation from the system.

DE EN FR

2

DRIVEMANAGER

5.6 Reset	The reset function is divided into two areas with differing effects. Parameter reset restores to the last value stored in the device. Device reset restores the entire data set to factory setting (delivery defaults).
Parameter reset with KeyPad	If you are in the setup mode of a parameter and press the two cursor keys simultaneously, the parameter you are currently editing will be reset to the last setting stored (= saved with parameter 150-SAVE).
Factory setting with KeyPad	Press both cursor keys simultaneously during inverter module power-up to reset all parameters to their factory defaults and the system is reinitialized.
Factory setting with	In the "Active device" menu, the "Reset to factory setting" option can be

In the "Active device" menu, the "Reset to factory setting" option can be used to restore the delivery defaults of the device.

1

Note: The factory setting causes application data set 1 (traction and lifting drive, DRV_1) to be loaded. Check the terminal assignment and functionality of the inverter module in this operation mode, or load your own user data set.

Appendix A

A.1	Current capacity of inverter modules	A-2
A.2	Technical data	A-5
A.3	Ambient conditions	A-8
A.4	Project planning notes, Cold plate	A-9
A.5	Project planning notes for multi-motor operation	A-10
A.5.1	Engineering note "motor contactor"	A-11
A.6	through use of a line choke	A-12
A.7	UL approbation	A-14
A.8	Layouts of all sizes	A-15

J

A

A.1 Current capacity of inverter modules

*Intermittent I_N > I_{eff}

 $I_{eff} = \sqrt{\frac{1}{T} \cdot \Sigma_{i=1}^{n} I_{i}^{2} \cdot t_{i}}$

The maximum permissible inverter output current and the peak current are dependent on the mains voltage, the motor cable length, the power stage switching frequency and the ambient temperature. If the conditions change, the maximum permissible current capacity of the inverter modules also changes. Refer to the following graphs and tables.

Continuous

(1)

(2) Intermittent* > 5 Hz rotating field frequency Inverter modules 0.37 to 15 kW $|/I_N = 1.8$ (for 30 s at 4 kHz) $|/I_N = 1.8$ (for 30 s at 8 kHz) $|/I_N = 1.8$ (for 30 s at 16 kHz) Inverter modules 22 to 90 kW $|/I_N = 1.5$ (for 60 s at 4 kHz) $|/I_N = 1.5$ (for 60 s at 8 kHz)

 (3) Intermittent* 0 to 5 Hz rotating field frequency Inverter modules 0.37 to 15 kW I/_N = 1.8 (for 30 s at 4 kHz) I/_N = 1.25-1.8 (for 30 s at 8 kHz) Inverter modules 22 to 90 kW VI_N = 1.5 (for 60 s at 4 kHz) I/_N = 1-1.5 (for 60 s at 8 kHz)

(4) Pulse mode Inverter modules 0.37 to 15 kW I/I_N = approx. 2.2 (at 4, 8, 16 kHz) Inverter modules 22 to 90 kW I/I_N = approx. 1.8 (at 4, 8 kHz)

Inverter modules for 230 V systems

Inverter module	Rec. 4-pole standard motor [kW]	Switching frequency of power stage [kHz]	Rated current [A]	Peak current for intermittent mode 0 to 5 Hz [A]	Peak current for intermittent mode > 5 Hz [A]	
CDA32.004,Cx.x ¹⁾	0.75	4 8 16	4 4 3	7.2 7.2 5.4	7.2 7.2 5.4	
CDA32.006,Cx.x ¹⁾	1.1	4 8 16	5.5 5.5 4.3	9.9 9.9 7.7	9.9 9.9 7.7	
CDA32.008,Cx.x ¹⁾	1.5	4 8 16	7.1 7.1 5.5	12.8 12.8 8	12.8 12.8 9.9	
Peak current for 30 s with inverter module 0.75 to 15 kW Peak current for 60 s with inverter module 22 to 90 kW Cooling air temperature: 45 °C at power stage switching frequency 4 kHz 40 °Catpowerstageswitchingfrequency 8, 16 kHz 1) With heat sink HS3 or additional cooling surface Mains voltage 1 x 230 V -20 % +15 % Motor cable length 10 m Mounting height 1000 m above MSL End-to-end mounting						

Inverter modules for 400/460 V systems:

Inverter module	Rec. 4-pole standard motor [kW]	Switching frequency of power stage [kHz]	Rated current I _N [A] at 400V ²⁾	Rated current I _N [A] at 460V ³⁾	Peak current for intermittent mode 0 to 5 Hz [A]	Peak current for intermittent mode > 5 Hz [A]	1
CDA34.003,Cx.x	0.75	4 8 16	2.2 2.2 1.0	2.2 2.2 1.0	4 4 1.1	4 4 1.8	2
CDA34.005,Cx.x ¹⁾	1.5	4 8 16	4.1 4.1 2.4	4.1 3.6 -	7.4 7.4 4.3	7.4 7.4 4.3	
CDA34.006,Cx.x ¹⁾	2.2	4 8 16	5.7 5.7 2.6	5.7 5.7 -	10.3 10.3 4.7	10.3 10.3 4.7	3
CDA34.008,Wx.x	3.0	4 8 16	7.8 7.8 5	7.8 7.8	14 14 7.8	14 14 9	
CDA34.010,Wx.x	4.0	4 8 16	10 10 6.2	10 8.8 -	18 16.5 7.8	18 18 11	4
CDA34.014,Wx.x	5.5	4 8 16	14 14 6.6	14 12.2 -	25 21 9.2	25 21 11.9	
CDA34.017,Wx.x	7.5	4 8 16	17 17 8	17 13.5 -	31 21.2 9.2	31 31 14.4	5
CDA34.024,Wx.x	11	4 8 16	24 24 15	24 24 -	43 40 22	43 43 27	Δ
CDA34.032,Wx.x	15	4 8 16	32 32 20	32 28 -	58 40 22	58 58 36	
CDA34.045,Wx.x	22	4 8	45 45	45 39	68 54	68 68	
CDA34.060,Wx.x	30	4 8	60 60	60 52	90 71	90 90	DE EN FR

IT

Inverter module	Rec. 4-pole standard motor [kW]	Switching frequency of power stage [kHz]	Rated current I _N [A] at 400V ²⁾	Rated current I _N [A] at 460V ³⁾	Peak current for intermittent mode 0 to 5 Hz [A]	Peak current for intermittent mode > 5 Hz [A]
CDA34.072,Wx.x	37	4 8	72 72	72 62	112 78	112 112
CDA34.090,Wx.x	45	4 8	90 90	90 78	135 104	135 135
CDA34.110,Wx.x	55	4 8	110 110	110 96	165 110	165 165
CDA34.143,Wx.x	75	4 8	143 143	143 124	215 143	215 215
CDA34.170,Wx.x	90	4 8	170 170	170 147	255 212	255 255
CDA34.250,Wx.x	132	4	250	250	255	300
Peak current for 30 s with inverter module 0.75 to 15 kW 2) Mains voltage 3 x 400 V ±10 %						

Peak current for 60 s with inverter module 22 to 132 kW

Cooling air temperature: 45 °C at power stage switching frequency 4 kHz (CDA34.003 - 34.032) 40 °C at power stage switching frequency 8, 16 kHz Cooling air temperature:40 °C at power stage switching frequency 4 kHz (CDA34.045 - 34.250)

3) Mains voltage 3 x 460 V \pm 10 %

Motor cable length 10 m Mounting height 1000 m above MSL End-to-end mounting

1) With heat sink HS3... or additional cooling surface

A.2 Technical data

CDA32.004 to CDA34.006

Technical data	Designation	CDA32.004	CDA32.006	CDA32.008	CDA34.003	CDA34.005	CDA34.006	
Output, motor side								
Recommended rated power with 4-pole Standard motor		0.75 kW	1.1 kW	1.5 kW	0.75 kW	1.5 kW	2.2 kW	
Voltage		3 x 0 230 V			3 x 0 400/460 V			
Continuous current (R	MS) (I _N)	4.0 A	5.5 A	7.1 A	2.2 A	4.1 A	5.7 A	
Peak current 1.8 x I _N for 30 s		7.2 A	9.9 A	12.8 A	4.0 A	7.4 A	10.3 A	
Rotating field frequency		0 400 Hz						
Switching frequency o	f power stage	4, 8 , 16 kHz						
Input, mains side								
Mains voltage		1 x 230 V -20 % +15 %			-	3 x 460 V 25 % +10 %	, 0	
Device connected load		1.7 kVA	2.3 kVA	3.0 kVA	1.6 kVA	3.0 kVA	4.2 kVA	
Asymmetry of mains v	voltage	-			±3 % max.			
Frequency		50/60 Hz ±10 %			50/60 Hz ±10 %			
Power loss at	4 kHz	48 W	75 W	95 W	55 W	80 W	106 W	
frequency	8/16 kHz	55 W	82 W	105 W	70 W	112 W	148 W	
Braking chopper pow	er electronics							
Peak braking power w braking resistor (only CDA34, Wx.x, BR)	rith int. with version	-	-		-	-	1.6 kW at 360 Ω	
Minimum ohmic resist externally installed br	tance of an aking resistor	100 Ω	56	Ω	180 Ω			

5

A

CDA34.008 to CDA34.060

Designation Technical data	CDA34.008	CDA34.010	CDA34.014	CDA34.017	CDA34.024	CDA34.032	CDA34.045	CDA34.060
Output, motor side								
Recommended rated power with 4-pole Standard motor	3.0 kW	4.0 kW	5.5 kW	7.5 kW	11 kW	15 kW	22 kW	30 kW
Voltage			•	3 x 0 4	00/460 V			
Continuous current (RMS) (I _N)	7.8 A	10 A	14 A	17 A	24 A	32 A	45 A	60 A
Peak current 1.8 x I _N for 30 s	14 A	18 A	25 A	31 A	43 A	58 A	68 A	90 A
Rotating field frequency	0 400 Hz						0 200 Hz	
Switching frequency of power stage	4, 8 , 16 kHz					4, 8 kHz		
Input, mains side								
Mains voltage			3	x 460 V -2	25 % +10 %	6		
Device connected load	5.7 kVA	7.3 kVA	10.2 kVA	12.4 kVA	17.5 kVA	23,3 kVA	32.8 kVA	43.8 kVA
Asymmetry	±3 % max.							
Frequency	50/60 Hz ±10 %							
Power loss at Power stage4 kHz clock frequency 8/16 kHz	135 W 162 W	172 W 207 W	210 W 268 W	255 W 325 W	315 W 400 W	400 W 510 W	777 W 933 W	1010 W 1220 W
Braking chopper power electronic	S							
Peak braking power with int. braking resistor (only with version CDA34, Wx.x, BR)	6.0 kW at 90 Ω		6.0 kW at 90 Ω		6.0 kW at 90 Ω		-	
Minimum ohmic resistance of an externally installed braking resistor	81	Ω	47 Ω		22 Ω		18	Ω

CDA34.072 to CDA34.250

IT

Technical data Output, motor side Recommended rated power with 4-pole Standard motor Voltage Continuous current (RMS) (l _N) Peak current 1.5 x l _N for 60 s Rotating field frequency Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage	37 kW 72 A 108 A	45 kW 90 A 135 A	55 kW 3 x 110 A 165 A 4, 8 kHz	75 kW 0 400/46 143 A 214 A 0 200 Hz	90 kW 90 kW 170 A 255 A	210 A 300 A	132 kW 250 A 300 A	
Output, motor side Recommended rated power with 4-pole Standard motor Voltage Continuous current (RMS) (I _N) Peak current 1.5 x I _N for 60 s Rotating field frequency Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage	37 kW 72 A 108 A	45 kW 90 A 135 A	55 kW 3 x 110 A 165 A 4 , 8 kHz	75 kW 0 400/46 143 A 214 A 0 200 Hz	90 kW 0 V 170 A 255 A	110 kW 210 A 300 A 4 k	132 kW 250 A 300 A	
Recommended rated power with 4-pole Standard motor Voltage Continuous current (RMS) (I _N) Peak current 1.5 x I _N for 60 s Rotating field frequency Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage	37 kW 72 A 108 A	45 kW 90 A 135 A	55 kW 3 x 110 A 165 A 4 , 8 kHz	75 kW 0 400/46 143 A 214 A 0 200 Hz	90 kW 0 V 170 A 255 A	110 kW 210 A 300 A 4 k	132 kW 250 A 300 A	
Voltage Continuous current (RMS) (I _N) Peak current 1.5 x I _N for 60 s Rotating field frequency Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage	72 A 108 A	90 A 135 A	3 x 110 A 165 A 4 , 8 kHz	0 400/46 143 A 214 A 0 200 Hz	0 V 170 A 255 A	210 A 300 A 4 F	250 A 300 A Hz	
Continuous current (RMS) (I _N) Peak current 1.5 x I _N for 60 s Rotating field frequency Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage	72 A 108 A	90 A 135 A	110 A 165 A 4 , 8 kHz	143 A 214 A 0 200 Hz	170 A 255 A	210 A 300 A 4 k	250 A 300 A KHz	
Peak current 1.5 x I _N for 60 s Rotating field frequency Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage	108 A	135 A	165 A 4 , 8 kHz	214 A 0 200 Hz	255 A	300 A 4 k	300 A	
Rotating field frequency Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage			4 , 8 kHz	0 200 Hz		4 k	kHz	
Switching frequency of power stage Input, mains side Mains voltage Device connected load Asymmetry of mains voltage			4 , 8 kHz			4 k	κHz	
Input, mains side Mains voltage Device connected load Asymmetry of mains voltage							4 kHz	
Mains voltage Device connected load Asymmetry of mains voltage								
Device connected load Asymmetry of mains voltage	3 x 460 V -25 % +10 %			3 x 460 V -25 % +10 %	6			
Asymmetry of mains voltage	52.5 kVA	65.6 kVA	80 kVA	104 kVA	124 kVA	145 kVA	173 kVA	
	±3 % max.							
Frequency		50/60 Hz ±10 %						
Power loss at 4 kHz	1270 W	1510 W	1880 W	2450 W	2930 W	3405 W	4043 W	
frequency 8 kHz	1530 W	1820 W	2290 W	2970 W	3550 W	-	-	
Braking chopper power electronics	5		ı			ı	1	
Minimum ohmic resistance of an externally installed braking resistor	13 Ω	12 Ω	10 Ω		5.6	SΩ		

A.3 Ambient conditions

Characterist	c	Inverter module			
in operation		-1045 ° C (BG1 BG5) 0 40 ° C (BG6 BG8) with power reduction to 55 ° C			
range	in storage	-25 +55 °C			
	in transit	-25 +70 °C			
Relative air humidity		15 85 %, condensation not permitted			
Mechanical	in stationary use	Vibration: 0.075 mm in frequency range 10 58 Hz Shock: 9.8 m/s ² in frequency range $>$ 58 500 Hz			
IEC 68-2-6	in transit	Vibration: 3.5 mm in frequency range 5 9 Hz Shock: 9.8 m/s ² in frequency range >9 500 Hz			
	Device	IP20 (NEMA 1)			
Protection	Cooling method	Cold plate: IP20 Push-through heat sink: IP54 (315 kW)			
Touch protect	ion	VBG 4			
Mounting height		up to 1000 m above MSL, above 1000 m above MSL with power reduction 1% per 100 m, max. 2000 m above MSL			
Voltage stress motor winding	s of the J	typical slew rate 3 - 6 kV/μs			

Note: If a rotating field frequency of > 200/400 Hz is required, inverter modules with special firmware for high-frequency motors must be ordered. Detailed order data see in order calogue CDA3000.

A.4 Project planning notes, Cold plate

Subject			Project plann	ing notes		
Thermal connection to cooler	 Evenness of Roughness of Coat area be compound (of The temperation 	Evenness of contact surface = 0.05 mm Roughness of contact surface = roughness factor 6.3 Coat area between inverter module ("cold plate" backing plate) and cooler with heat transfer compound (coat thickness $30-70\mu$). The temperature in the middle of the inverter module backing plate must not exceed 85 °C.				
Distribution of power loss	Size BG 1/2 BG 3 BG 4 BG 5	Power 0.37 to 2.2 3 to 4 k 5.5 to 7.5 11 to 15	2 kW W kW kW	Heat approy approy approy approy	sink (. 65% (. 70% (. 75% (. 80%	Housing approx. 35% approx. 30% approx. 25% approx. 20%
Active cooling surface $ \begin{array}{c} $	Size BG 1 BG 2 BG 3 BG 4 BG 5	Power [kW] 0.37 to 0.75 kW 1.1 to 2.2 kW 3 to 4 kW 5.5 to 7.5 kW 11 to 15 kW	Device b [m B 70 70 100 150 200	asic area m] H 193 218 303 303 303 303	Active coo [n a 50 90 120 65 80	ling surface nm] b 165 200 260 215 300
Thermal resistance		Size BG 1 BG 2 BG 3 BG 4 BG 5		Power [kW] 0.37 to 0.75 kW 1.1 to 2.2 kW 3 to 4 kW 5.5 to 7.5 kW 11 to 15 kW		stance between ig surface and poler [K/W] .05 .05 .03 .02 015

Note:

For size 3 (BG3) and above an active cooling surface or cooler is required. The usual mounting surface or a position on the machine housing is not adequate.

Α

2

A.5 Project planning notes for multimotor operation

Subject	Project planning notes
Current	The sum total of the mater surrente must be less than the rotad output
configuration of	current of the inverter module
inverter module	Σ of motor currents, $(I_{M1} + I_{M2} + I_{Mn}) < I_{inverter}$
Motor control method	Multi-motor operation is only permitted with the VFC motor control method.
Motor choke	A motor output choke must always be used. The motor choke limits the du/dt and thus the leakage currents, and protects again switching voltage overload resulting from switching of the motor inductance.
Motor cable length	The total length of the overall motor cable is produced by adding the individual lengths per motor.
Motor protection	In multi-motor operation the parallel-connected motors cannot be protected by the inverter module. As a result, depending on application the motor protection should be provided by means of external motor circuit-breakers or thermistor protective relays.
All motors have the same power output	In this application the torque characteristics of all motors remain roughly equal.
The motors have different power outputs	If the motor outputs are very different, problems may occur on startup and at low speeds. This is because of the high stator resistance of small motors and the resultant high voltage drop on the stator coil.
	In practice: With a power ratio of around 1:4 between the motors, the starting torque of the smallest motor is still approx. 70% of the nominal torque. If the torque of approx. 70% is not sufficient, a larger motor must be used.
	If all the motors are started together, the small motor will start up later, because the slip frequency is higher.
Speed proportionality	Differing motor output speeds can only be attained by using motors with differing nominal speeds, e.g. 1440 rpm and 2880 rpm. The speed ratio of approx. 1:2 is maintained during the speed change. The accuracy depends on the slip and thus on the load.
Connecting individual motors	When connecting motors, ensure that the connection current is not higher than the inverter peak current. It is advantageous if the inverter load is >40%. This 40% base load backs up the output voltage of the inverter module at the moment of connection of the motor. During connection the motor must not be run in the field
	weakening range, since the connected motor would otherwise have to run at reduced runup torque.

A.5.1 Engineering note "Motor

contactor"

In order to prevent an unexpected starting it is necessary to avoid a dangerous motion at access to the machine according to EN1037 - thus to provide galvanic separation with a motor contactor in the cable between inverter and motor.

Basically the switching in the motor cable must always be made in deenergized condition, otherwise there will be problems of burnt contacts and a switching off due to overvoltage or overcurrent.

To guarantee a deenergized switching, it is necessary that the contacts of the motor contactor are closed before enabling the power stage of the inverter. In the opposite case it is necessary that the contacts are closed until the power stage is switched-off.

This will be reached by planning corresponding safety time for the switching of the motor contactor during control sequence or by using the special software function of CDA3000 inverter.

Software function "Switching of motor contactor":

Step	Action	Example for the digital output OSD01 (terminal plug X2-16/17)
1	Adjust one of the digital outputs of the inverter to function "ENMO".	 choose in subject area _240D para- meter 241_F0S01 adjust parameter 241_F0S01 to "ENMO" memorize the adjustment
2	Adjust the necessary delay time at parameter 247_TENMO.	 choose parameter 247_TENM0 in subject area _240D choose parameter 247_TENM0 app- lied to your application (factory set- ting = 300 ms) value area = 0 2000 ms

1

2

3

4

5

Α

Example for the digital output OSD01:

A.6 through use of a line choke

Attention: A corresponding driver relay has to be used between the digital output and the motor contactor.

Line chokes are required:

- Where the drive controller is used in applications with disturbance variables corresponding to environment class 3, as per EN 61000-2-4 and above (hostile industrial environment).
- With a dc-link between multiple drive controllers.

Characteristics of environment class 3 include:

- Mains voltage fluctuations > <u>+</u> 10% U_N
- Short-time interruptions between 10 ms and 60 s
- Voltage asymmetry > 3%

Environment class 3 typically applies where:

- a major part of the load is supplied by power converters (dc choppers or soft-start equipment).
- welding machines are present.
- induction or arc furnaces are present.
- large motors are started frequently.
- loads fluctuate rapidly.

Mains load (example)

	Without line choke	With line choke	Change
	4 kW inverter, mains impedance 0.6 mH	4 kW inverter, mains impedance 6 mH	Without line choke compared to with line choke
Voltage distortion (THD) ¹⁾	99 %	33 %	-67 %
Mains current amplitude	18.9 A	9.7 A	-48 %
Mains current effective	8.5 A	6.23 A	-27 %
Commutation notches referred to the mains voltage	28 V	8 V	-70%
Life of the DC-link capacitors	Nominal life	2 to 3 times nominal life	+100 to 200 %

1) THD = Total Harmonic Distortion $(U_5 ... U_{41})$

Table A.1

Change in system load resulting from insertion of a line choke with 4% short-circuit voltage based on the example of a 4 kW inverter CDA34.010

Mains voltage asymmetry (example)

	Without line choke			With line choke			
	4 kW impe	inverter, n edance 0.6	nains 5 mH	4 kW inverter, mains impedance 6 mH			
Asymmetry of mains voltage	0 %	+3 %	-3 %	0 %	+3 %	-3 %	
Mains current amplitude	18.9 A	25.4 A	25.1 A	9.7 A	10.7 A	11 A	
Mains current effective	8.5 A	10.5 A	10.2 A	6.2 A	6.7 A	6.8 A	

Effect of the line choke with asymmetrical mains voltage based on the example of a 4 kW inverter CDA34.010 $\,$ Table A.2

Recommended:

The example shows that the benefits of a line choke with 4 % short-circuit voltage are multi-faceted. We therefore recommend that you use a line choke as a matter of course.

1

2

3

Α

A.7 UL approbation Measures to maintain UL approbation 1. Switch cabinet mounting with IP54 protection and pollution degree 2 is mandatory. 2. The devices are only usable in systems with surge strength class III. 3. Only UL approved fuses and circuit-breakers may be used. CDA32.xxx : Mains fuses min. 250 V H or K5 CDA34.xxx : Mains fuses min. 600 V H or K5 4. The devices are usable in systems with a maximum current capacity of 5000 A. 5. The connecting cables (mains power, motor and control cables) must be UL approved.

Tightening torque of grounding lead terminals	Tightening torque of mains/motor terminals	Device	Wire cross-section	Mains fuse
as mains/motor terminals	0.5 0.6 Nm	CDA32.004	AWG 16 N/M	10 A
as mains/motor terminals	0.5 0.6 Nm	CDA32.006	AWG 14 N/AWG 16 M	10 A
as mains/motor terminals	0.5 0.6 Nm	CDA32.008	AWG 14 N/AWG 16 M	20 A
as mains/motor terminals	0.5 0.6 Nm	CDA34.003	AWG 16 N/M	10 A
as mains/motor terminals	0.5 0.6 Nm	CDA34.005	AWG 16 N/M	10 A
as mains/motor terminals	0.5 0.6 Nm	CDA34.006	AWG 16 N/M	10 A
as mains/motor terminals	0.5 0.6 Nm	CDA34.008	AWG 14 N/M	15 A
as mains/motor terminals	0.5 0.6 Nm	CDA34.010	AWG 14 N/M	15 A
as mains/motor terminals	0.5 0.6 Nm	CDA34.014	AWG 12 N/M	20 A
as mains/motor terminals	0.5 0.6 Nm	CDA34.017	AWG 12 N/M	25 A
as mains/motor terminals	1.2 1.5 Nm	CDA34.024	AWG 10 N/M	30 A
as mains/motor terminals	1.2 1.5 Nm	CDA34.032	AWG 8 N/M	50 A
as mains/motor terminals	6 8 Nm	CDA34.045	AWG 6 N/M	50 A
as mains/motor terminals	6 8 Nm	CDA34.060	AWG 6 N/M	63 A
as mains/motor terminals	6 8 Nm	CDA34.072	AWG 4 N/M	80 A
6 8 Nm	15 20 Nm	CDA34.090	AWG 2 N/M	100 A
6 8 Nm	15 20 Nm	CDA34.110	AWG 1 N/M	125 A
as mains/motor connection	10 Nm (connection via screw bolt)	CDA34.143	AWG 2/0 N/M	160A

CDA32.xxx : Min. 300 V cables (mains/motor), Cu 75° C min. CDA34.xxx : Min. 600 V cables (mains/motor), Cu 75° C min.

Table A.3 Cable cross-sections - mains (N), motor (M)

1

Minimum cross-section of the grounding lead to DIN VDE 0100 Part 540

Cross-section	PE mains connection
Mains power cable <10 mm²	Grounding lead (PE) cross section of at least 10 mm ² or lay a second electrical conductor parallel to the existing grounding lead, because the operational leakage current is > 3.5 mA.
Mains power cable >10 mm ²	PE conductor with cross-section of mains power cable - see VDE 0100 Part 540

Table A.4 Minimum cross-section of the grounding lead

A.8 Layouts of all sizes

Terminal	Explanation
X1	Power connections
X2	Control connections
X3	Motor PTC connection
X4	PC/KP200 connection (RS232 interface)
X6	UM-xxx module connection
Х7	CM-xxx module connection

LUST

I

Hinweis zur EN 61000-3-2 DE	Notes on EN 61000-3-2 EN
(rückwirkende Netzbelastung durch Oberwellen) Unsere Frequenzumrichter und Servo-regler sind im Sinne der EN61000 "professionelle Geräte", so dass sie bei einer Nennan- schlußleistung ≤1kW in den Geltungsbereich der Norm fal- len.Beim direkten Anschluß von Antriebsgeräten ≤1kW an das öffentliche Niederspannungsnetz sind entweder Maßnahmen zur Einhaltung der Norm zu treffen oder das zuständige Energie- versorgungsunter-nehmen muß eine Anschlußge-nehmigung erteilen. Sollten Sie unsere Antriebsgeräte als eine Komponente in ihrer Maschine/ Anlage einsetzen, dann ist der Geltungsbereich der Norm für die komplette Maschine/ Anlage zu prüfen.	(limits for harmonic current emissions) Our frequency inverters and servocontrollers are "professional devices" in the sense of the European Standard EN 61000, and with a rated power of \leq 1kW obtained in the scope of this stan- dard. Direct connection of drive units \leq 1kW to the public low-voltage grid only either by means of measurements for keeping the standard or via an authorization of connection from the respon- sible public utility. In case our drive units are used as a component of a machinery/ plant, so the appropriate scope of the standard of the machinery/plant must be checked.
Remarque concernant EN 61000-3-2 FR	Riferimento ad EN 61000-3-2 IT
(valeurs limites pour courants d'harmonique) Dans l'esprit de EN61000, nos convertisseurs de fréquence et régulateurs automatiques sont des "appareils professionnels". Par conséquent ils tombent sous l'application de la norme lors- que la puissance de raccordement nominale ≤1kW. Lorsque des appareils d'entraînement sont raccordés directe- ment au réseau public basse tension, il convient de prendre des mesures pour respecter la norme ou l'entreprise de distribution d'électricité compétente doit délivrer une autorisation de bran- chement. Si vous deviez utiliser nos appareils de branchement comme composants dans votre machine ou votre installation, il convient dans ce cas de vérifier le domaine d'application de l'ensemble de la machine ou de l'installation.	(carico di rete retroattivo tramite armoniche) I nostri invertitori di frequenza e servoregolatori sono degli "apparecchi professionali" ai sensi della EN61000 così da ricadere nel campo di validità della norma con una potenza nominale di collegamento di ≤1kW. Nel caso di collegamento diretto di azionamenti da ≤1kW alla rete pubblica di bassa tensione devono essere applicati dei provvedimenti per il rispetto della norma oppure ottenere un permesso di allacciamento da parte dell'ente di energia competente. Doveste usare i nostri apparecchi di azionamento come componenti della vostra macchina o del vostro impianto, controllare il campo di validità della norma per l'intera macchina o l'impianto.

Lust Antriebstechnik GmbH

Gewerbestrasse 5-9 • D-35631 Lahnau Tel. 0 64 41 / 9 66-0 • Fax 0 64 41 / 9 66-137 Internet: http://www.lust-tec.de • e-mail: info@lust-tec.de

ID no.: 0840.00B.4-00 • 05/2003

Technische Änderungen vorbehalten. We reserve the right to make technical changes. Sous réserve de modifications techniques. Ci riserviamo il diritto di apportare modifiche tecniche.